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a nano-QSPR model to predict
band gaps of spherical metal oxide nanoparticles†

Jiaxing Wang,‡a Ya Wang,‡a Yang Huang,a Willie J. G. M. Peijnenburg, bc

Jingwen Chen a and Xuehua Li *a

Antibacterial activities and cytotoxicity of metal oxide nanoparticles are determined by their special band

structures, which also influence their potential ecological risks. Traditional experimental determination of

the band gap is time-consuming, while the accuracy of theoretical computation depends on the

selected algorithm, for which higher precision algorithms, being more expensive, can give a more

accurate band gap. Therefore, in this study, a quantitative structure–property relationship (QSPR) model,

highlighting the influence of crystalline type and material size, was developed to predict the band gap of

metal oxide nanoparticles rapidly and accurately. The structural descriptors for metal oxide nanoparticles

were generated via quantum chemistry computations, among which heat of formation and beta angle of

the unit cell were the most important parameters influencing band gaps. The developed model shows

great robustness and predictive ability (R2 ¼ 0.848, RMSE ¼ 0.378 eV, RMSECV ¼ 0.478 eV, QEXT
2 ¼

0.814, RMSEP ¼ 0.408 eV). The current study can assist in screening the ecological risks of existing metal

oxide nanoparticles and may act as a reference for newly designed materials.
1. Introduction

Metal oxide nanoparticles (MONs) are used widely in many
elds due to their unique properties.1 Some of these properties,
such as optical and electronic properties, are determined by
their special band structure, which can be characterized by
three parameters: EC (energy of conduction band), EV (energy of
valence band) and Eg (energy of band gap). For example, as
a very important optical property, the ability to generate reactive
oxygen species (ROS) is tightly related to the band structure of
the material. TiO2 and ZnO nanoparticles could generate three
types of ROS ($O2

�, H2O2,$OH) under UV irradiation while other
metal oxides generate only one or two types or even do not
generate any type of ROS at all.2 Different metal oxide nano-
particles also generate different amounts of ROS, and conse-
quently, they have different antibacterial activities or abilities to
degrade organic pollutants.3,4

Meanwhile, as the wide applications of MONs increase
rapidly, their potential ecological risks have drawn more and
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more attention.2 One of the main mechanisms of oxidative
damage caused by MONs is the overlap of conduction band
energy (EC) levels with the cellular redox potential. The overlap
of EC with the redox potential leads to the transfer of electrons
from reductive substances, which then generate reactive oxygen
species (ROS) which could eventually damage cells.3–5 There-
fore, the EC value is a meaningful parameter for the assessment
of the ecological risks of MONs. EC can be calculated by means
of eqn (1): EC refers to the conduction band energy; Eg is the
band gap energy and coxide is the absolute electronegativity of
the metal oxide.6

Ec ¼ coxide + 0.5Eg (1)

The absolute electronegativity can be calculated by a set of
equations reported by Portier et al.7 Values of the band gaps of
MONs can be obtained from experimental determination and
from estimation.

The experimental determination of band gaps requires
diffuse reectance UV-vis spectroscopic analysis, which can
accurately measure the band gaps of MONs. However, consid-
ering the increase of emerging MONs both in amount and types
as well as taking into account that band gaps of MONs vary
when crystalline types, sizes and shapes are different,8 experi-
mental determinations of band gaps are inefficient and cannot
provide any guide at all for the design of novel MONs that are
safe with regard to their ecological impacts.

Estimation methods were proposed, including theoretical
computation and empirical equation to obtain band gaps
This journal is © The Royal Society of Chemistry 2019
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efficiently and conveniently. As for theoretical computation, its
inaccuracy is the main obstacle which undermines its authori-
zation and application domain. For example, the band gaps of
solids could be underestimated with an accuracy of 30–100% in
a typical density functional theory calculation.9 Building
a cluster of unit cells was tried,10 but computation for a cluster
commensurate with real material requires vast investment of
computational resources. As for empirical estimation, Portier
et al.,11 demonstrated the correlation between band gap and
thermodynamic properties, and put forward an empirical
equation to estimate band gap of bulk metal oxides by using
enthalpies of formation (eqn (2)).

Eg ¼ A e0.34EDH (2)

EDH ¼ �2� DH
�
f � 2:612� 1019

.
ðN � neÞ (3)

In the eqn (3), DH
�
f refers to the standard enthalpy of

formation of the oxide in cal mol�1 and the coefficient A is
determined by cation ion of the oxide, N is Avogadro's number,
ne refers to the number of valence electron. For s-block, p-block,
d-block and f-block of metal elements, the reported A values are
0.80, 1.35, 1.00 and 0.80 respectively.11 Using this empirical
equation, the band gaps of binary oxides can be calculated very
quickly. But this equation ignores the effects of size differences.
Therefore, it is required to develop a prediction method to
obtain the band gap of MONs with different crystalline type and
particle size accurately and efficiently.

Quantitative structure–property relationships (QSPRs) have
been used to predict various properties of chemicals.12,13 QSPRs
can be applied fast, they are low-cost and efficient compared
with other methods. For MONs, several QSPRs models were
reported to predict photo-induced toxicity of MONs, including
toxicity of MONs to E. coli and to human keratinocyte cells as
well as the cell uptake rate of MONs.14–17 Wyrzykowska et al.
developed a nano-QSPR model to predict the zeta potential of
MONs in KCl aqueous solution of MONs.18

In this study, we developed a nano-QSPR model, considering
different crystalline types and sizes, to predict band gaps of
MONs. Besides, band gaps were also calculated by two other
estimation methods to compare the predictive ability of
different methods. From a wider perspective, this study could
help screen the potential ecological risk of MONs and provide
reference for newly designed MONs.
2. Methods
2.1. Data set for band gaps

Experimental band gaps of MONs were obtained by collection
from literature3,19–50 and by experimental determination.

To control variables that inuence band gaps of MONs as
much as possible and to ensure the consistency of collected
band gaps, a qualied data point from literature must meet the
following demands: size of material is in the nanometer scale;
particles must be spherical or approximate a spherical shape;
particles have a single chemical makeup without any chemical
This journal is © The Royal Society of Chemistry 2019
modication on the surface; characterizations including X-ray
diffraction, which veries the crystalline structure of MONs,
and UV-vis spectroscopic analysis are required.

Seven kinds of MONs (5 nm anatase-TiO2, 25 nm anatase-
TiO2, 40 nm anatase-TiO2, 100 nm anatase-TiO2, 40 nm rutile-
TiO2, 100 nm rutile-TiO2 and 50 nm ZnO) bought from Aladdin
(http://www.aladdin-e.com/) were prepared for UV-vis spectro-
scopic analysis using UV-550 spectrophotometer produced by
JASCO Corporation. To minimize possible errors, each deter-
mination for each material was repeated three times and the
eventual outcome is the arithmetic mean of parallel experi-
ments. The raw data of UV-vis spectroscopic analysis were
transformed according to the Kubelka–Munk equation.51

The total data set of band gaps of MONs was split randomly
into a training set and a validation set with a ratio of 3 : 1 (30 : 10).

2.2. Date pre-processing

Previous studies indicated that the band gap of relatively large
particles (size > 10 nm) is not affected by size whereas the
quantum connement effect only occurs when the size of
nanoparticle is smaller than approximately 10 nm, consequently
leading to a larger value of band gap.52,53 Therefore, the value of
the band gaps ofmaterials with size smaller than 10 nmwas used
directly. In case of material with a size larger than 10 nm, the
average size and the average band gap were calculated and
included in either the training set or the validation set.

2.3. Descriptors

The descriptors used to develop the nano-QSPR were derived
from theoretical calculation, as well as from literature and
experimental characterization. (1) Theoretical descriptors were
calculated by using the Vienna Ab initio Simulation Package
(VASP) 5.4.1 (ref. 54) and MOPAC2016 (ref. 55) (2) reported
descriptors of MONs in literatures, such as the ratio of metal
atoms to oxygen atoms and weight of atoms, were included in
this study, remaining to be selected further.4,56 (3) Experimental
characterization outcomes such as size, crystalline type infor-
mation and the number of unit cells contained by the material
were included.

To consider the inuence of crystalline types to band gaps of
materials in calculation, input les should specify crystalline
type, which must be consistent with corresponding band gap of
every material. The XRD outcomes or joint committee powder
diffraction standards (JCPDS) number was collected from the
same literature from which the value of the band gap of MONs
was collected. MDI JADE 5.0 (ref. 57) was utilized to analyze
collected XRD patterns and to match the corresponding stan-
dard XRD cards, which could specify crystalline type. Based on
the crystalline type information derived from standard cards,
the corresponding crystalline le in common intermediate
format (CIF) was obtained in FindIt58 before being transformed
by Open Babel 2.4.1 (ref. 59) into standard input les. Single cell
units were optimized by the general gradient approximate
(GGA) of VASP before descriptor computation and the error of
optimization for structure was veried to be within 5%.
Descriptors of VASP computation were obtained from POTCAR
RSC Adv., 2019, 9, 8426–8434 | 8427
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and OUTCAR aer structure optimization. The PM7 method
was used to generate various descriptors in MOPAC computa-
tion. In order to validate the acceptability of descriptors derived
from the computation being based on single cell units, impor-
tant descriptors selected in model were compared with their
experimental values.

In order to ensure that the correlation between descriptors
and band gaps is linear, several parameters were processed
before they were suited as descriptor. Heat of formation of the
unit cell, computed by MOPAC, was transformed according to
a previously reported empirical equation.11 The reciprocal value
of the squared diameter was processed as a descriptor accord-
ing to the Brus equation (eqn (4)).52

EgðRÞ ¼ EgðR ¼ NÞ þ h2

8R2

�
1

m*
e�

þ 1

m*
hþ

�
(4)

2.4. QSPR modeling

Partial least square (PLS) regression was utilized to develop the
QSPR model. The SIMCA 13.0 soware package was used to
provide PLS as well as the subsequent analysis.60 The PLS
approach was established around 1975 by Herman Wold for the
modelling of complicated data sets.61 The basic principle of PLS
could be interpreted as PLS being the combination of principal
components analysis (PCA), correlation analysis (CA) and
multiple linear regression (MLR).62 Unlike MLR, PLS can
analyze data with strongly collinear, noisy and numerous X
variables.63 In our study, the amount of descriptors is relatively
large and the correlation between various descriptors is difficult
to demonstrate. Therefore, PLS was used to develop this model.

A genetic algorithm (GA), developed by means of the R
program,64 was used to select descriptors for developing
prediction models. The number of descriptors in the model was
further decreased by using a method reported in literature:65

Based on the values of the variable inuence for the projection
(VIP), descriptors with lower VIP values were deleted from the
model until the model shows best validation performance.

2.5. Model characterization

In order to ensure the reliability and predictive ability of the
developed model, various analyses were done to characterize
the performance of the model. The correlation coefficient R2

between predicted and observed Eg and the root mean standard
error of estimation (RMSEE) measure the tting performance.
The performance of internal validation could be indicated by
the root mean standard error of cross validation (RMSECV),
which is based on the leave-one-out (LOO) test. As for external
validation, the predictive power of the developed QSPR model
was estimated by means of calculating the root mean standard
error of prediction (RMSEP) and QEXT

2 dened by means of eqn
(5), where yi and ŷi are the measured and predicted value of Eg in
the validation set, respectively; �yi is the average value of Eg for
the training set. A value of QEXT

2 larger than 0.5 indicates a good
predictive capability of the model and a value of QEXT

2 larger
than 0.9 indicates excellent predictive ability.
8428 | RSC Adv., 2019, 9, 8426–8434
QEXT
2 ¼ 1�

Ptest
i¼1

ðyi � ŷiÞ2

Ptest
i¼1

ðyi � yiÞ2
(5)

According to the OECD guideline,66 the applicability domain of
the developedmodel was determined by themethod reported by K.
Roy et al.67 Firstly, descriptors in training set were normalized. If all
of the normalized descriptors for a material are larger than 3, that
material can be judged as an outlier. On the contrary, a material is
treated as non-outlier if all of its normalized descriptors are
smaller than 3. For a material who has some descriptors larger
than 3 but the others not, it will be further investigated.

3. Results and discussion
3.1. Data set of band gaps

Through data collection, 91 values of band gaps of 22 different
MONs were collected.3,19–50 Band gaps ranged from 1.85 eV to
6.07 eV with an average of 3.60 eV and a standard deviation of
0.8 eV. The particles diameters ranged from 2.5 nm to 100 nm
with an average of 26.0 nm and a standard deviation of 24.8 nm.
All collected data are shown in Table S1† and the data set pro-
cessed according to particles size for model development is
displayed in Table 1.

The distribution of band gaps values for MON with multiple
sizes was investigated in more detail. First of all, the arithmetic
means and standard deviations of the band gaps were calculated:
CeO2 (3.50 � 0.13 eV), Cr2O3 (3.82 � 0.24 eV), Cu2O (2.57 � 0.34
eV), Fe2O3 (2.38 � 0.33 eV), Ga2O3 (4.93 � 0.12 eV), NiO (3.43 �
0.19 eV), SnO2 (3.93� 0.38 eV), TiO2 (3.25� 0.03 eV), ZnO (3.25�
0.08 eV). Fig. 1a and b show the distribution of band gaps of NiO
and SnO2 respectively as a function of their squared diameter. It
can be observed clearly from these plot that band gaps increase
as size decreases to values below 10 nm, indicating the occur-
rence of a quantum connement effect around 10 nm. However,
ambiguity does exist. For example, band gaps increase was not
observed for some particles smaller than 10 nm. Besides, large
variance of values of band gaps were observed, especially for SnO2

larger than 10 nm. NiO with size of 10.1 nm and 12.4 nm were
treated as two single points although their sizes are larger than
10 nmbecause they display signicant difference from other data
with size larger than 10 nm. It is the same with Cr2O3. These
phenomena might due to these materials are from different
literatures, in which materials were synthesized by different
methods in different conditions. These differences are hard to
characterize because of limited information. Therefore, using the
average value of data points with size larger than 10 nm could
avoid this unexplainable difference and will minimize the
uncertainty of data generated in different laboratories.

3.2. Model development and evaluation

Through PLS regression and descriptor selection, the model
was obtained as given in eqn (6) (standard error of regression
coefficients are listed in Table S5†). The coefficient of every
descriptor in the reported equation is unscaled in order to be
This journal is © The Royal Society of Chemistry 2019



Table 1 Metal oxide nanoparticles and their structural descriptorsa

No. Metal oxide a b c a b g Size (nm) Eexp. (eV) Epred. (eV) Set

1 Al2O3 4.81 4.81 13.12 90 90 120 76.0 5.97 5.74 T
2 CeO2 5.46 5.46 5.46 90 90 90 12.0 3.39 3.74 T
3 3.6 3.68 3.82 T
4 2.6 3.44 3.89 T
5 Cr2O3 4.58 4.58 14.72 90 90 120 26.5 4.22 4.11 T
6 38.2 3.70 4.11 V
7 Cu2O 4.31 4.31 4.31 90 90 90 4.0 2.90 2.35 T
8 9.0 2.50 2.29 V
9 6.0 2.83 2.31 V
10 20.0 2.04 2.28 V
11 Fe2O3 4.74 4.74 13.49 90 90 120 100.0 2.38 2.96 V
12 Fe3O4 8.04 8.04 8.04 90 90 90 12.0 1.85 2.61 T
13 Ga2O3 12.50 3.10 5.92 90 103.7 90 65.0 4.85 4.81 T
14 2.5 5.10 5.00 T
15 HfO2 5.14 5.19 5.31 90 99.2 90 17.0 6.07 5.66 T
16 In2O3 10.35 10.35 10.35 90 90 90 17.0 3.85 4.37 T
17 La2O3 3.94 3.94 6.18 90 90 120 30.0 4.98 4.30 T
18 MgO 4.25 4.25 4.25 90 90 90 7.0 4.27 4.54 T
19 Mn2O3 9.03 9.03 9.03 90 90 90 30.2 3.27 3.38 T
20 NiO 4.16 4.16 4.16 90 90 90 3.5 3.67 3.62 T
21 4.6 3.63 3.58 T
22 5.5 3.62 3.57 V
23 10.1 3.62 3.54 T
24 12.4 3.61 3.54 T
25 22.0 3.27 3.53 T
26 Sb2O3 5.18 16.61 5.51 90 90 90 11.8 4.49 4.77 T
27 SnO2 4.83 4.83 3.24 90 90 90 4.5 4.20 3.80 T
28 4.0 4.10 3.81 V
29 5.0 4.21 3.79 T
30 5.2 4.20 3.79 V
31 3.7 4.33 3.82 T
32 30.0 3.74 3.75 T
33 TiO2-a 3.82 3.82 9.70 90 90 90 17.3 3.25 3.44 T
34 TiO2-b 9.28 5.52 5.19 90 90 90 7.9 3.48 3.85 T
35 18.9 3.11 3.83 V
36 TiO2-r 4.66 4.66 2.97 90 90 90 70.0 3.00 3.00 T
37 WO3 5.39 5.36 7.84 90 91.8 90 42.0 2.77 2.98 T
38 Y2O3 10.65 10.65 10.65 90 90 90 14.6 5.30 5.38 V
39 ZnO 3.29 3.29 5.31 90 90 120 35.0 3.24 2.62 T
40 ZrO2 5.19 5.24 5.38 90 99.2 90 40.0 5.04 5.36 T

a T: training set; V: validation set; Eexp.: experimental gaps; Epred.: predicted gaps.
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convenient for subsequent use. Fig. 2 was plotted to visualize
the observed experimental Eg values vs. predicted values of Eg as
calculated by eqn (6). The correlation coefficient R2 and the
RMSEE of the training set containing 30 values of band gaps of
MONs are 0.848 and 0.378 eV, indicating an excellent goodness-
of-t. QEXT

2 and RMSEP are 0.814 and 0.408 eV respectively,
indicating good predictive ability. The developed model
contains three principal components (N : A ¼ 10 : 1, N: number
of data in training set, A: number of principal components),
which accounts for 85 percent explanation of the total variance.
The physical meaning and the loading weights of the descrip-
tors in the rst two principal components are displayed in Table
2. In the rst principal component, heat of formation, beta
angle of unit cell and the Thomas Fermi vector outweigh the
other descriptors. For the second principle component, Fermi
energy, heat of formation and the ratio of metal atoms to oxygen
atoms are the most signicant descriptors. The VIP values of
This journal is © The Royal Society of Chemistry 2019
selected descriptors are plotted in Fig. 3. The VIPs of heat of
formation, beta angle of unit cell and Thomas Fermi vector are
larger than 1, indicating that these descriptors explain most of
the variance of band gaps. Computed heat of formation was
compared with the experimental ones in Table S4 and Fig. S1†
to validate the acceptability of computed descriptors derived
from small molecular model computation, which displayed
acceptable tting performance.

Eg ¼ 0.553HF + 0.0806BETA + 1.09D�2 � 0.0121V2 + 0.18EFermi

� 2.23TFW + 0.803R + 0.00469ET � 0.000305DENC

� 0.00403XCENC + 0.168 (6)

N ¼ 30, A ¼ 3, R2 ¼ 0.848, RMSEE ¼ 0.378 eV, RMSECV ¼
0.478 eV, QEXT

2 ¼ 0.814, RMSEP ¼ 0.408 eV.
The applicability domain of the developed model was deter-

mined by the reportedmethodmentioned above. Data points from
RSC Adv., 2019, 9, 8426–8434 | 8429



Fig. 1 (a) Band gaps of NiO versus the squared diameter of the particles. (b) Band gaps of SnO2 versus the squared diameter of the particles. The
dotted line marks the value of 100 nm2, which means that data points in the zone left to the dotted line refers to particles with a size smaller than
10 nm and the other data points relate to particles that are larger than 10 nm.

Fig. 2 Observed vs. predicted Eg values.

Fig. 3 Variable influence for the projection (VIP) plot of selected
descriptors.
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both training set and validation set were investigated. The detailed
information of the calculation process is provided in Table S2.†
There are 5 and 4 data points with at least one outlier of descriptor
Table 2 Meaning and loading weight of descriptors in the QSPR model

Descriptor Physical meaning

HF Heat of formation
BETA Beta angle of unit cell
D�2 Reciprocal of square diameter
V2 Length of second vector of unit cell
EFermi Energy of Fermi level
TFW Thomas Fermi vector
R Ratio of metal atoms to oxygen atoms
ET Total energy
DENC Electron–electron repulsion energy
XCENC Exchange and correlation energy

a w*c [1]: loading weight of component [1] w*c [2]: loading weight of com

8430 | RSC Adv., 2019, 9, 8426–8434
in the training set and the validation set respectively. But there is
only one material (Y2O3 in validation set) that was judged as an
outlier, mainly because its heat of formation deviates far from that
of most metal oxides in this model.
a

Source w*c [1] w*c [2]

MOPAC 0.65 0.57
— 0.51 0.34
— 0.04 0.03
VASP �0.06 �0.12
VASP 0.03 0.72
VASP �0.35 0.14
— �0.08 0.45
MOPAC 0.26 0.12
VASP 0.28 �0.04
VASP �0.20 0.14

ponent [2].

This journal is © The Royal Society of Chemistry 2019



Table 3 Predictive performance of the developed model vs. empirical equation

Predictive method R2 RMSE (eV) Reference

QSPR model 0.848 0.378 This study
Empirical equation based on computed heat of formation 0.490 2.24 Portier et al., 2001
Empirical equation based on experimental heat of formation 0.571 1.58 Portier et al., 2001

Paper RSC Advances
3.3. Mechanistic interpretation

Heat of formation and beta angle of unit cell are the most
signicant descriptors. The correlation between band gap and
heat of formation has already been demonstrated by previous
studies, that is: bulk metal oxides with larger heat of formation
tend to have a larger band gap.68–70 In this study, this correlation
for metal oxide nanoparticles was also observed (p < 0.001),
which means that this relation remains irrespective of
a decrease of material size. It needs to be notied that in this
study, heat of formation was calculated by MOPAC PM7. This
calculation may not be as accurate as experimental determina-
tion but provides a quick method for obtaining heat of forma-
tion. Crystalline types could be reected by not only direct
variables characterizing crystalline type such as beta angle and
length of vector but also by indirect variables like the E-Fermi
and the Thomas Fermi vector because these parameters were
calculated based on specic crystalline types. The presence of
the beta angle (p < 0.05) and the length of unit cell in the
developed model indicates that crystalline type is an important
parameter inuencing the band gap of MONs. Beta angle and
length of vector contribute to the interference of the wave vector
of electrons and consequently determine the density of elec-
trons and eventually inuence band gaps.

The VIP of materials size is not large, which coincides with
the Brus equation and the computed standard deviation of
materials with multiple sizes. Although the effect of size has
been taken into consideration during data pre-processing, it
needs to be noted that some variables which may inuence the
band gap of MONs, were not contained in the developed model.
For example, the annealing temperature, time and the ratio of
different precursor materials might also affect the value of the
band gap. However, these variables are difficult to describe
because of the numerous types of MONs and numerous
methods to synthesize nanoparticles. Different experimental
conditions may lead to unknown differences in the composition
of materials, which need to be characterized further.
3.4. Model comparison

The developed QSPR model was compared with empirical
equation. Band gaps were calculated with the computed and
experimental heat of formation according to the empirical
equations.11 The results of comparison are shown in Table 3.

The empirical equation using experimental heat of forma-
tion to predict band gap, shows better performance than the
empirical equation which used computed heat of formation.
However, R2 did not change signicantly while there was
a decrease in RMSE. During characterization the performance
of these two empirical methods, it is found that these two
This journal is © The Royal Society of Chemistry 2019
methods underestimate or overestimate band gaps. Our QSPR
model developed by PLS performs better than previous empir-
ical equations.
4. Conclusions

A nano-QSPR model, covering various crystalline types and
material sizes, was developed to predict band gaps for metal
oxide nanoparticles. The established QSPRmodel performs well
in terms of goodness-of-t, robustness and predictive ability.
Heat of formation and the beta angle of unit cell are the most
important parameters inuencing the band gaps of metal oxide
nanoparticles. Compared with empirical equation related to the
heat of formation, the developed QSPRmodel had a larger value
of R2 and a smaller RMSE. This newly developed QSPR model
could thus contribute signicantly to the rapid screening of the
ecological risk of existing MONs and could assist the design of
novel MONs that are environmentally safe.
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60 M. Bylesjö, M. Rantalainen, O. Cloarec, J. K. Nicholson,
E. Holmes and J. Trygg, OPLS discriminant analysis:
combining the strengths of PLS-DA and SIMCA
classication, J. Chemom., 2006, 20(8–10), 341–351.

61 H. Wold, So modeling: the basic design and some
extensions, in Systems under Indirect Observation, 1982, vol.
2, p. 343.

62 S. Wold, A. Ruhe, H. Wold and W. J. Dunn III, The
collinearity problem in linear regression. The partial least
squares (PLS) approach to generalized inverses, SIAM
RSC Adv., 2019, 9, 8426–8434 | 8433



RSC Advances Paper
Journal on Scientic and Statistical Computing, 1984, 5(3),
735–743.
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