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Abstract

Background: Integrin aLb2 (lymphocyte function-associated antigen, LFA-1) bears force upon binding to its ligand
intercellular adhesion molecule 1 (ICAM-1) when a leukocyte adheres to vascular endothelium or an antigen presenting cell
(APC) during immune responses. The ligand binding propensity of LFA-1 is related to its conformations, which can be
regulated by force. Three conformations of the LFA-1 aA domain, determined by the position of its a7-helix, have been
suggested to correspond to three different affinity states for ligand binding.

Methodology/Principal Findings: The kinetics of the force-driven transitions between these conformations has not been
defined and dynamically coupled to the force-dependent dissociation from ligand. Here we show, by steered molecular
dynamics (SMD) simulations, that the aA domain was successively transitioned through three distinct conformations upon
pulling the C-terminus of its a7-helix. Based on these sequential transitions, we have constructed a mathematical model to
describe the coupling between the aA domain conformational changes of LFA-1 and its dissociation from ICAM-1 under
force. Using this model to analyze the published data on the force-induced dissociation of single LFA-1/ICAM-1 bonds, we
estimated the force-dependent kinetic rates of interstate transition from the short-lived to intermediate-lived and from
intermediate-lived to long-lived states. Interestingly, force increased these transition rates; hence activation of LFA-1 was
accelerated by pulling it via an engaged ICAM-1.

Conclusions/Significance: Our study defines the structural basis for mechanical regulation of the kinetics of LFA-1 aA
domain conformational changes and relates these simulation results to experimental data of force-induced dissociation of
single LFA-1/ICAM-1 bonds by a new mathematical model, thus provided detailed structural and kinetic characterizations
for force-stabilization of LFA-1/ICAM-1 interaction.
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Introduction

Integrins are a family of heterodimeric transmembrane

receptors composed of an a and a b subunit that involve in a

wide variety of physiological processes such as cell adhesion, cell

migration and immunoresponse [1]. They usually bear forces

upon binding to ligands in cell-cell and cell-extracellular matrix

adhesions, which are crucial to mechanosensing and mechno-

transduction of cells [2,3]. Of the 24 known human integrins, 10 of

them, including the integrin aLb2 or lymphocyte function-

associated antigen 1 (LFA-1) studied here, have an additional

aA (or aI) domain inserted in the b-propeller domain of the a
subunit, where the ligand binding site resides [4]. By binding

intercellular adhesion molecule 1 (ICAM-1), LFA-1 mediates

adhesion of leukocytes to the blood vessel wall or antigen

presenting cells (APC), and sustains forces generated by the blood

flow or the cell’s motile machinery [1,5].

In response to various biochemical [3,4,6] and mechanical

signals [7,8], integrins change conformations and ligand binding

affinities. In physiological condition, they may assume a bent

conformation and have a low ligand binding affinity. Inside-out

signaling or changes in the metal ion conditions from Ca2+/Mg2+

to Mn2+ result in integrin conformational change to an extended

form, with a closed or swung-out hybrid domain, accompanied by

a higher ligand binding affinity (Fig. 1A, 1B) [3,4,9].

In addition to global conformational changes in the whole

ectodomain and in the hybrid domain, the aA domain

conformation also controls the affinity of aA-containing integins

such as LFA-1 [5,9]. Several aA domains, including that of LFA-1,

have been crystallized [10–15], revealing as many as three

PLoS ONE | www.plosone.org 1 November 2011 | Volume 6 | Issue 11 | e27946



conformations termed closed, intermediate and open, depending on

the position of the C-terminal a7-helix [5] (Fig. 1C). As measured by

surface plasmon resonance [5] and micropipette adhesion frequency

assay [6], LFA-1 with the aA domain locked in the intermediate and

open conformations have hundreds and thousands folds higher

affinities for ICAM-1, respectively, than that locked in the closed

conformation. A study of molecular dynamics (MD) simulations of aA

domains with implicit water suggested that the fractions of these three

conformation states are sensitive to the force applied to the C-terminus

of their a7-helix [16]. Using a biomembrane force probe (BFP), single

LFA-1/ICAM-1 bonds are found to dissociate from three states with

distinct apparent off-rates and associated fractions [9]. The short-lived

fraction (with the greatest apparent off-rate) is dominant at zero force

and the fractions of intermediate- and long-lived states increase with

the tensile force applied to the bond. The force-dependent transitions

among these three fractions of bond states give rise to the LFA-1/

ICAM-1 catch bond behavior in which the bond lifetimes are

prolonged by tensile force in a certain regime [9].

Building from the above studies, we used steered molecular

dynamics (SMD) simulations with explicit water to study the force-

induced transitions of conformations of the LFA-1 aA domain. We

also constructed a mathematical model to describe the interstate

transitions integrin and their coupling with ligand dissociation.

Using this model, we re-analyzed our previous data on single LFA-

1/ICAM-1 bonds lifetimes measured from biomembrane force

probe (BFP) force-clamp experiments [9], and estimated interstate

transition rates that govern the time courses for activation of the

liganded LFA-1 under force [9].

Results

SMD-simulated force-induced conformation transitions
of LFA-1 aA domain

To study the force-induced conformational transitions of the

LFA-1 aA domain, we used constant-force SMD simulations to

pull the C-terminus of its a7-helix, as the position of the tension-

bearing a7-helix determines the aA domain conformation [5,16].

Unlike the previous implicit water simulations [16], our simula-

tions included physiologically relevant water molecules. To

observe the sequential transitions of the a7-helix position, we

quantified the root mean square distance (RMSD) between the

simulated structure and its initial ‘‘up’’ position, which corre-

sponds to the ‘‘closed’’ conformation of the aA domain [16].

Pulling the a7-helix C-terminus in the first 3.6 ns only increased

the RMSD slightly, indicating the stability of the ‘‘up’’ position

(Fig. 2A, 2B). A sudden increase of the RMSD from 3 to 6 Å was

then observed during 3.4–4 ns simulations, suggesting state

transitions. Zooming in this transition phase with a magnified

time scale, a stable ‘‘intermediate’’ a7-helix position with a 4.5-Å

RMSD was observed (Fig. 2A inset, 2C). This ‘‘intermediate’’ a7-

helix position is linked to the ‘‘intermediate’’ conformation of the

aA domain. After two abrupt increments, the RMSD was

stabilized at around 8 Å for the next 10 ns, corresponding to a

‘‘down’’ position of the a7-helix and the ‘‘open’’ conformation of

the aA domain (Fig. 2A, 2D). After the pulling force was removed

at the 15 ns time point, the a7-helix returned back from the

‘‘down’’ position to the ‘‘up’’ position in a few nanoseconds and

remained up within the next 20-ns simulations (Video S1).

Besides the a7-helix position, another remarkable difference between

the open and closed conformation of LFA-1 aA domain revealed by

structural studies is the metal ion position at the metal ion dependent

adhesion site (MIDAS). It was observed that in the open conformation,

the MIDAS metal ion underwent inward movement for about 2 Å.

Previous implicit water molecular dynamics simulations suggested that

the movement of a7-helix and that of the MIDAS metal ion were

coupled. Hence, we measured the RMSD of the MIDAS metal ion

and other important residues between the simulated structures and the

open or closed conformations (Figure S1). These included residues

S139, S141, T206, and D239 that coordinated the MIDAS metal ion

and residues L289, F292, and L295 that formed a ‘‘ratchet’’-like

structure to define the position of the a7-helix. In the simulations,

although the pulling force induced movements of the a7-helix, no

movements of the MIDAS metal ion were observed (Figure S1B),

nor were their coordinating residues (Figure S1C–F). Nevertheless,

Figure 1. Conformational changes of aA domain-containing integrin. (A, B) Global conformations of integrin are affected by cation
conditions. The integrin assumes a bent conformation with a low ligand binding on-rate under Ca2+/Mg2+ (A). In Mg2+/EGTA or Mn2+, the
conformation may be shifted to an extended form with a closed (left) or swung-out (right) hybrid domain and correspondingly higher ligand binding
on-rates (B). (C) Force applied via a bound ligand switches the aA domain from closed (a7-helix at the up position), intermediate (a7-helix at the
middle position), and open (a7-helix at the down position) conformations with different off-rates.
doi:10.1371/journal.pone.0027946.g001
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we did observe the relevant ‘‘ratchet’’-like movements on residues

L289, F292, and L295 (Figure S1G–I), which followed the

movements of the a7-helix.

Residue D239 coordinated directly with the MIDAS metal ion

in the closed conformation as observed in the crystal structures

[11,12]. On the other hand, in the open conformation, D239

might not coordinate with metal ion directly but through a water

molecule. In our pulling simulation, it seemed that the strong ionic

interaction between D239 and the metal ion constrained the metal

ion at its closed (outward) position, thus preventing the inward

movement from being observed within the short timescale of the

simulation. To test this hypothesis, we performed a set of three

simulations. These simulations started from the structures

generated from the above pulling simulations. The snapshots at

0, 3.7 and 16 ns were taken as the respective new starting points.

Among them, the 0 ns configuration represented the ‘‘up’’ position

of the a7-helix, the 3.7 ns configuration represented the ‘‘middle’’

position and the 16 ns one represented the ‘‘down’’ position. In

these free dynamics simulations, the applied force was released. To

prevent the a7-helix from returning back to the ‘‘up’’ position in

the simulations starting from 3.7 and 16 ns snapshots, we

constrained the Ca atoms of the a7-helix in addition to the

original constraint residues. Firstly, 30 ns free dynamics simula-

tions were performed followed by 20 ns free dynamics simulations

with the point charges of the two oxygen atoms of D239 carboxyl

group reduced by 0.5e each. As shown in Fig. 3 with the RMSD

time courses of the MIDAS ion between the simulated structure and

its closed or open positions, in all three simulations, the MIDAS ions

fluctuated around their closed position without any tendency to

move towards the open position before the point charges were

reduced. By comparison, after the point charges of the D239

carboxyl oxygen were reduced, in the simulations starting from

3.7 ns (a7-helix at middle position) and 16 ns (a7-helix at down

position) (Fig. 3B and 3C), the metal ion showed strong tendencies

to move inward towards the open position, with the RMSD to the

closed position reduced and that to the open position increased. For

the simulation starting from 0 ns (a7-helix at down position)

(Fig. 3A), the movement was also possible (30–32 ns and 44–46 ns

in Fig. 3A), but the duration was short. The simulated structure

fluctuated around the closed position for the majority of simulation

times. These simulations confirm that the position of the metal ion is

related to the position of the a7-helix, consistent with the generally

accepted contention that the position of the metal ion determines

the ligand binding affinity of the aA domain.

These results support the hypothesis that the closed, interme-

diate and open conformations of LFA-1 aA domain represent

stable states and that sequential transitions from the closed to

intermediate and from intermediate to open conformations can be

induced by pulling the a7-helix.

Mathematical model for force-induced interstate
transition of LFA-1 and ICAM-1 dissociation

Our SMD simulations suggested that the LFA-1 aA domain

transitioned from the closed, intermediate and open conforma-

Figure 2. SMD simulation of pulling the a7-helix of the LFA-1 aA domain. (A) The time course of the RMSD between the simulated a7-helix
structure and the equilibrated structure at the up position. Letters indicate time points where the snapshots shown in B–E were taken. Dashed
vertical line marks the time when force was released to allow free dynamics simulation. The inset shows the successive conformational changes
through three stable conformations marked with dashed lines at 3.4–4.0 ns. (B–E) Snapshots of the simulated structures (cyan) at the indicated times
with the a7-helix shown in green. The equilibrated a7-helix at the up (blue) and down (red) positions are also shown. The Mg2+ ion is shown as golden
spheres. See also Figure S1 and Video S1.
doi:10.1371/journal.pone.0027946.g002
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tions successively by applied force (Fig. 2). To incorporate such

conformational change kinetics into the kinetics of force-induced

ligand dissociation, we constructed a mathematical model for the

BFP force-clamp experiment in which single LFA-1/ICAM-1

bonds were pulled with a constant force until rupture [9]. This

simple model considers two interstate transition steps: from state

C1 to state C2 and from state C2 to state C3 (Fig. 4) as well as three

ligand dissociation steps from each of the three states. Each of

these steps is assumed irreversible, which seems reasonable under

force, as force drives unidirectionally both the interstate transition

and ligand dissociation.

The model results in a set of coupled, linear, first-order,

ordinary differential equations (Equations 1–3, Materials and

Methods) governing the changes of the probabilities of the LFA-1/

ICAM-1 bond in the three states in time, with constant coefficients

(functions of force but not time): two interstate transition rates, k12

and k23, as well as three reverse-rates kr1, kr2 and kr3. The equations

were solved analytically (Equations 7–9, Materials and Methods).

The solution was fit to the data of the BFP force-clamped

experiments [9] to obtain three apparent dissociation rate

constants k1, k2, k3 and their associated apparent fractions v1,

v2, v3 (summarized in Tables S1,S2,S3,S4,S5,S6). The intrinsic

parameters are expressed as functions of the apparent parameters

(Equations 20–24, Materials and Methods) and evaluated at

different forces. Since the unique force-stabilizing catch-bond

behavior of LFA-1/ICAM-1 interaction occurred at the force

regime of about 10 pN, only the data below 20 pN were analyzed

and shown (Figs. 5,6,7).

Analysis of force-dependent ICAM-1 dissociation reveals
characteristics of three LFA-1 states

The intrinsic reverse-rates, kr1–kr3, of ICAM-1 dissociation from

the three LFA-1 states were plotted versus force in Fig. 5 in the

range analyzed. They follow trends similar to the apparent off-

rates determined previously [9], but are quantitatively different.

Interestingly, ICAM-1 dissociated from state C1 with the highest

but least force-sensitive reverse-rate kr1 (Fig. 5A), from state C2

with an intermediate reverse-rate kr2 that has an intermediate

force sensitivity (Fig. 5B), and from state C3 with the lowest but

most force-sensitive reverse-rate kr3 (Fig. 5C). Although the model

assumes that all bonds start from state C1 and then proceed

successively to states C2 and C3, the kr1–kr3 values were evaluated

from data without assuming a priori their relative values and

relative sensitivities to force. It is therefore gratifying that our

analysis of the previous BFP experimental data [9] with the

present model returns the results that state C1 is short-lived, state

C2 is intermediate-lived, and state C3 is long-lived. These results

indicate a correlation between the experimentally observed short-,

intermediate- and long-lived states of LFA-1/ICAM-1 bonds and

the SMD-simulated closed, intermediate, and open conformations

of the LFA-1 aA domain (Fig. 2).

The force dependencies of all these intrinsic reverse-rates follow

the Bell model [17], as indicated by the linear reverse-rates vs.

force semi-log plots. They were indifferent to cation conditions

Ca2+/Mg2+ Mg2+/EGTA or Mn2+, suggesting that the initial

Figure 3. Simulated inward movements of the MIDAS metal
ion. RMSD time courses of the MIDAS metal ion between the simulated
structure and its closed or open positions were shown in blue or red,
respectively. The simulations started from the snapshots at 0 ns (A),
3.7 ns (B) and 16 ns (C) of the SMD simulations described in Fig. 2.
Dashed vertical line marks the time when the point charges of the two
carboxyl oxygens of residue D239 were reduced by 0.5e each.
doi:10.1371/journal.pone.0027946.g003

Figure 4. Schematic of the kinetic model of coupled confor-
mational change of LFA-1 and dissociation from ICAM-1 under
force. A LFA-1/ICAM-1 bond is assumed to dissociate irreversibly from
one of three states – C1, C2 and C3 – with respective reverse-rates kr1, kr2

and kr3. This is coupled with one-way sequential transitions from C1 to
C2 and from C2 to C3 with respective interstate transition rates k12 and
k23. The corresponding mathematical model is Equations 1–3 in
Materials and Methods.
doi:10.1371/journal.pone.0027946.g004
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global conformation of the LFA-1 before it was liganded and

stressed did not affect the intrinsic dissociation rates.

Force-dependent kinetics of LFA-1 transitions from short-
to intermediate- to long-lived states and inhibition by
XVA143

Interestingly, our kinetic analysis found that the transition rate

k12 from the short- to intermediate-lived states of LFA-1/ICAM-1

bonds (Fig. 6) was zero at zero force but increased with force in the

range studied (Fig. 6A). Force also enhanced the transition rate k23

from the intermediate- to long-lived states of LFA-1/ICAM-1

bonds from its zero value at zero force (Fig. 6B), but to a lesser

extent (compare the two Fig. 6 panels). In the force regime studied

(,20 pN), the force-dependent interstate transition rates were

indifferent to the cation conditions Ca2+/Mg2+, Mg2+/EGTA or

Mn2+, thus were not affected by the initial global conformation of

the LFA-1 molecule before it was liganded and stressed.

With XVA143, a small molecule antagonist that blocks the

interaction between the aA and bA domains [18,19], the force-

dependent k12 was suppressed (Fig. 6A, red). The transition from

the intermediate- to long-lived states of LFA-1 was nearly

completely blocked by XVA143, as shown by the zero k23 in the

force range studied (Fig.6B, red). A possible explanation for this

result may be that the force applied on the a7-helix to induce the

conformational changes has to be transmitted through the

Figure 5. Force-dependent reverse-rates of three states under different cation conditions. Intrinsic reverse-rates kr1 (A), kr2 (B) and kr3 (C)
of ICAM-1 dissociating from respective LFA-1 states C1, C2, and C3 (see Fig. 3) were estimated by fitting the experimental data from Ref. [9] with our
kinetic model (equations 22–24) and plotted versus force at indicated cation conditions.
doi:10.1371/journal.pone.0027946.g005

Figure 6. Force-dependent interstate transition rates. (A) The rate of transition of ICAM-1-bound LFA-1 from short- to intermediate-lived states
(k12) is accelerated by force. This force-accelerated transition rate is suppressed by XVA143 (red). (B) The transition rate of ICAM-1-bound LFA-1 from
intermediate- to long-lived states (k23) is accelerated by force, which is nearly completely blocked by XVA143 (red). The force-dependency of
transition rates is not affected by cation conditions.
doi:10.1371/journal.pone.0027946.g006
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connection between aA and bA domains. Further, the suppression

and blocking effects of XVA143 on k12 and k23 were not affected

by the cation conditions.

Force decelerates LFA-1 dissociation from ICAM-1 by
accelerating LFA-1 activation

With the intrinsic parameters k12, k23, and kr1–kr3 estimated, we

used equations 1–3 to study the dynamic evolution of LFA-1/

ICAM-1 bonds and of individual conformation states and their

overall behavior. As shown with representative model predictions

for the Mg2+/EGTA condition, ligand dissociation manifests as

decrease in time of the total survival probability of an LFA-1/

ICAM-1 bond in all three states (Fig. 7 A and B). The decay of the

curve is decelerated by force from 0 to 5.9 pN (Fig. 7A). This is not

surprising since this force range corresponds to the experimentally

observed catch-bond regime where the bond lifetimes are

prolonged by force [9]. As force further increases, the decay of

the bond survival probability is accelerated by force (Fig. 7B),

corresponding to the slip-bond regime where the bond lifetimes

are shortened by force, also observed experimentally [9]. Similar

trends are predicted for other cation conditions (data not shown).

Remarkably, our analysis predicts that as force increases, the

probability vs. time curves of the long-lived LFA-1/ICAM-1 bonds

(C3 state) are left-shifted, as the slope of the initial phase is

increased and the time needed to reach the maximal probability is

shortened by 10-folds, from .3 s to ,0.3 s (Fig. 7C). Since LFA-1

with an open aA domain binds ligand with the highest affinity [5]

and the lowest reverse-rate (Fig. 5C), this result indicates that force

accelerates the activation of LFA-1/ICAM-1 bond by increasing

the interstate transition rates.

Discussion

As primary force-bearing molecules governing cell-cell and cell-

matrix adhesions [2,3], integrins are tightly regulated biochemi-

cally [3,4,6] and mechanically [7,8] via their dynamic conforma-

tional changes. The closed, intermediate and open conformations

of the integrin LFA-1 aA domain metal ion dependent adhesion

site (MIDAS) have been observed crystallographically to couple

with the up, middle and down positions of its a7-helix position [5].

The distribution among these conformations has been observed by

MD simulations to depend on force [16]. The present work has

added to this body of literature by defining the sequential process

of the force-induced conformational changes of the LFA-1 aA

domain and modeling the coupled kinetics of interstate transition

between, and ligand dissociation from, different LFA-1 states.

Unlike the previous implicit water SMD study that analyzed the

cluster distribution of aA domain conformations at the end of

force application [16], our explicit water SMD simulations have

observed the sequential transitions of the aA domain under force:

Upon pulling the LFA-1 aA domain C-terminus, the a7-helix

successively moved from the up to middle and down positions

(Fig. 2). Our reduced charge simulations suggest that when a7-

helix stays in middle or down position, the MIDAS ion has a

strong tendency to move inward to its open position, which binds

ligand with high affinity. These simulations indicate that applied

force results in successive changes from the closed to intermediate

and open conformations.

The force-induced transition of the three aA domain confor-

mations observed in our simulations correlates with the force-

dependent three-state dissociation observed in our previous BFP

experiment [9]. Another interesting simulation result is that the a7-

helix relaxed back to the up position after force removal (Fig. 2A),

suggesting that force is required to maintain its intermediate and

down conformations under the simulation conditions. This also

correlates with the experimental observation that the LFA-1/

ICAM-1 reverse-rate at zero-force was indifferent to changes in

cation conditions and XVA143 treatment [9]. These correlations

support our hypothesis that while the ICAM-1 association on-rate

depends on the global conformations of LFA-1, the ligand

dissociation off-rate is primarily determined by the aA domain

conformation, which has been supported by experiment [9].

We constructed a mathematical model to further test this

hypothesis, by examining how the three aA domain conforma-

tional transition may be related to the three-state dissociation

kinetics. The model assumes force-induced successive transitions

from C1 to C2 and C3 states (Fig. 4), in accordance with the SMD

results. Comparing to the previous phenomenological treatment,

which fitted the force-dependent lifetime distributions by three

apparent off-rates and their associated static fractions [9], the

present mechanistic model treats the coupled kinetics of both

Figure 7. Predicted time courses of LFA-1/ICAM-1 bond survival probability at different forces. (A and B) The total survival probability of
LFA-1/ICAM-1 bond (sum of all three states) decayed slower as the force increased from 0 to 5.9 pN (A) and decayed faster as force increased further
(B). (C) The force-dependent time courses of the survival probability of the long-lived state (C3). The presence of C3 state was induced by force,
indicating activation of LFA-1 by force applied via the ICAM-1 bond. As force increased from 0 to 17.1 pN, the time needed to reach the maximal
probability was shortened with the maximum level increased, indicating shorter activation time with higher activity. Data obtained in Mg2+/EGTA
were taken as representative parameters for the model prediction.
doi:10.1371/journal.pone.0027946.g007
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interstate transition and ligand dissociation. This new model

advances our knowledge in several aspects.

First, analyzing the previous BFP experiments [9] with this

model has shown that the stability of LFA-1/ICAM-1 bonds are

lowest at C1, intermediate at C2, and highest at C3 states,

suggesting a correspondence of the short-, intermediate- and long-

lived states with the closed, intermediate, and open conformations,

respectively. Incorporating other forms of integrin conformational

changes and relating them to functionality will be an important

subject of future studies.

Second, the previously proposed allosteric mechanism for the

LFA-1/ICAM-1 catch-slip bond [9] can be fully accounted for

using the newly evaluated intrinsic parameters. Indeed, although

the force-dependent dissociation of ICAM-1 from each of the

three states behaves as slip bonds (Fig. 5), force accelerates

transition from C1 to C2 more than it does dissociation from C1 to

R+L (compare Figs. 5A and 6A). Force also increases transition

rate k23 from C2 to C3 comparably to it does dissociation rate kr2

from C2 to R+L (compare Figs. 5B and 6B). This interplay

between force-accelerated interstate transition and dissociation

gives rise to the LFA-1/ICAM-1 catch bond at low forces (Fig. 7A)

and slip bond at higher forces (Fig. 7B), as observed experimentally

[9].

Third, our model reveals that XVA143 suppresses the transition

from C1 to C2 and inhibits the transition from C2 to C3 without

altering the intrinsic reverse-rates kr1–kr2 for dissociation from the

three LFA-1/ICAM-1 bond states. This result has elucidated the

mechanism for XVA143 to covert the LFA-1/ICAM-1 catch-slip

bond to slip-only bond. Because both interstate transitions are

induced by force (Fig. 6), our data indicate that XVA143

significantly weakens the force transmission from the aA to bA

domains by blocking the binding of the intrinsic ligand of the aA

domain a7-helix to the bA domain MIDAS [18,19]. This finding

supports the hypothesis that the three-state dissociations of LFA-1/

ICAM-1 bonds are tightly regulated by the three-conformation

transition of the LFA-1 aA domain.

Fourth, the new model has allowed us to estimate the time scale

for integrin activation by force. Integrin activation has been

suggested to be almost instantaneous [3], but data from different

experiments are variable. Binding of fluorochrome-labled ligands

to integrin aIIbb3 reveals fast reversible formation of an integrin/

ligand precomplex followed by a stable irreversible complex,

during which the affinity upregulation occurs in a time scale of

10 seconds [20,21]. Conversion from selectin-mediated rolling to

integrin-mediated firm adhesion of leukocytes on endothelium and

the detachment followed thereafter are used as criteria for integrin

activation and deactivation [3,22,23]. Chemokine-triggered full

activation of LFA-1 mediates arrest of rolling lymphocytes on high

endothelial venules within 1 second under flow conditions similar

to those in the circulation [3,24]. The conversion of rolling to

stationary adhesion after the initial attachment of a neutrophil is

induced by IL-1 in as little as 0.24 s in the presence of 1 dyn/cm2

shear stress [22]. Force has been shown to facilitate the affinity

upregulation at the cellular level. Our work provided the first

estimates at the single-molecule level for the time scales of force-

induced integrin activation from the reciprocal interstate transition

rates, 1/k12 and 1/k23, which range from tens of milliseconds to

several seconds (Fig. 6). Thus, the activation times estimated

herein are in accordance with the previous reports. In addition,

the interstate transition rates increase with increasing force (Fig. 6),

indicating that force accelerates LFA-1 activation (Fig. 7C)

These results further extend the model for activation of aA

domain-containing integrins that we proposed previously [9]. Our

molecular dynamics simulations show that applying forces shifted

the equilibrium of different conformations of integrin aA domain,

which is also supported by the agreement between our

mathematical model fits and the experimental data, which

indicates that force enhances the transition rates. Without force,

the up position of the a7-helix in the aA domain is the favored

conformation, where the MIDAS ion tends to stay at the outward

position, and the ligand binding affinity is low. When force is

applied, the equilibrium of the a7-helix position is shifted to middle

and down; as a result, the MIDAS metal ion tends to stay at the

inward position, and the ligand binding affinity is high.

In summary, this study defines the structural basis for

mechanical regulation of the kinetics of LFA-1 aA domain

conformational changes and relates these simulation results to

experimental data of force-induced dissociation of single LFA-1/

ICAM-1 bonds by a new mathematical model. Future studies may

include simulations to compare aA domains of other integrins and

model refinements to add reverse transitions among the three

conformational states.

Methods

Molecular dynamics simulations
The LFA-1 aA domain was modeled from the crystal structure

1LFA (residues 128–292) [12] except for the distorted a7-helix

(residues 293–308), which was from another crystal structure

1ZON [11]. The MIDAS Mg2+ and all crystallized waters in

1LFA were retained. The modeled structure was soaked in an

80680680 Å3 water box with periodic boundary conditions,

which included 3 Na+ and 2 Cl2 to neutralize the system. The

NAMD package [25] and CHARMM22 all-atom force field [26]

were used for energy minimization and molecular dynamics

simulations. A 12-Å cutoff was used for van der Waals interactions

and Particle Mesh Ewald summation was used to calculate the

electrostatic interactions. Energy was minimized in multi-steps

with careful treatments of the interactions to avoid any clashes

between the a7-helix and other portion of the aA domain. The

energy-minimized system was then equilibrated for 6 ns with

temperature controlled at 310 K by Langevin dynamics with

damping coefficient ,1 ps21 and pressure controlled at 1 atm by

Lagevin piston method. At the end of equilibration, the RMSD of

the system converged and the a7-helix reached a position that

aligned well with that observed in the up position of the Mac-1 aA

domain structure 1JLM [10]. A 15-ns free dynamics simulation

was performed with the equilibrated structure to generate initial

conformations for SMD simulations. Two constant-force SMD

simulations were performed, starting respectively from 10 and

15 ns of the free dynamics simulations, with the Ca atoms of

residues 131–135, 167–172, 177–181 and 232–234 of the b1–b4

strands harmonically constrained by springs with a spring constant

,140 pN/Å. A 250-pN force was applied at the C-terminal

residue Val308 to pull the a7-helix along its axis to the down

position suggested by the Mac-1 aA domain structure 1IDO [10].

The backbone hydrogen-bonding atoms in the a7-helix were

constrained to prevent it from unfolding such that the constraint

forces would be added if the distance between the hydrogen-bond

pair exceeded 3.5 Å through a spring with a spring constant of

,700 pN/Å.

With the snapshots obtained from the SMD simulations at 0,

3.7, and 16 ns as respective starting points, we performed

additional 50-ns free dynamics simulations for each case, with

the Ca atoms of the a7-helix residues constrained. At 30 ns, the

PSF input file for NAMD was modified such that the point charges

of the two carboxyl oxygen atoms of residue D239 were changed

from 20.76e to 20.26e, and the point charge of one Na+ atom far
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away from the protein was changed to 0 to maintain charge

neutral of the system.

Mathematical modeling
We constructed a mathematical model to describe the coupled

kinetics of force-induced successive interstate transitions from the

three states of LFA-1/ICAM-1 bonds and dissociation from these

states (Fig. 4). The three states are denoted as C1, C2 and C3, with

interstate transition rates k12 and k23 (Fig. 4). Under tensile force,

each transition step is assumed to be unidirectional and

irreversible, for there was no observable reverse transition of the

a7-helix position when pulling force was applied (Fig. 2).

The dissociation of the LFA-1/ICAM-1 bond can occur at any

of the C1, C2 and C3 states, with intrinsic reverse-rates kr1, kr2 and

kr3, respectively. Dissociation from each state is also assumed

unidirectional and irreversible. This is reasonable because in the

BFP force-clamped experiments [9], once a bond was rupture by

tensile force, its component receptor and ligand were pulled apart

and no longer able to rebind under the applied force.

Let p1, p2 and p3 denote the respective probabilities of ICAM-1

bound with LFA-1 at C1, C2 and C3 states, respectively. The

kinetic equations governing the time evolution of the system can

be formulated as:

d

dt
p1~{(kr1zk12)p1 ð1Þ

d

dt
p2~k12p1{(kr2zk23)p2 ð2Þ

d

dt
p3~k23p2{kr3p3 ð3Þ

Equations 1–3 can be expressed in a matrix form:

d

dt
p~{Ap,

where p~

p1

p2

p3

0
@

1
A, A~

(kr1zk12) 0 0
{k12 (kr2zk23) 0

0 {k23 kr3

0
@

1
A

Let k1, k2, and k3 be the eigen-values of A with corresponding

eigen-vectors v1, v2 and v3, respectively. It can be found that:

k1~kr1zk12 ð4Þ

k2~kr2zk23 ð5Þ

k3~kr3 ð6Þ

and v21~v31~v32~0, where vij is the jth component of the vector

vi. Therefore, the general solution of equations 1–3 can be

expressed as:

p1~a1 exp({k1t) ð7Þ

p2~a2 exp({k1t)zb2 exp({k2t) ð8Þ

p3~a3 exp({k1t)zb3 exp({k2t)zc3 exp({k3t) ð9Þ

where a1, a2, a3, b2, b3, c3 are nonzero constants. By substituting

equations 7–9 into equations 1–3 and compare the corresponding

coefficients, we have:

a2~a1(
k12

k2{k1
) ð10Þ

a3~a2(
k23

k3{k1
) ð11Þ

b3~b2(
k23

k3{k2
) ð12Þ

In addition, because both the experimental data [9] and our SMD

simulations (Fig. 2) showed that the transition from C1 to C2 and

C3 did not happen without force applied, the initial condition can

be set as:

p(t~0)~

1

0

0

0
B@

1
CA

Applying this initial condition to equations 7–9, we have:

a1~1 ð13Þ

a2zb2~0 ð14Þ

a3zb3zc3~0 ð15Þ

Taking equations 10–15 together, each of a1, a2, a3, b2, b3, c3 can

be solved as a function of k12, k23, k1, k2 and k3. From this, by

letting v1~a1za2za3, v2~b2zb3, v3~c3, and taking equa-

tions 4–6 into account, we got:

v1~1z
k12

k2{k1
z

k12k23

(k2{k1)(k3{k1)
ð16Þ

v2~
{k12

k2{k1
{

k12k23

(k2{k1)(k3{k2)
ð17Þ

v3~
k12k23

(k3{k1)(k3{k2)
ð18Þ

Summing equations 7–9 yields:

X3

i~1
pi~

X3

i~1
vi exp({kit) ð19Þ
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The left hand side of the equation 19 is the total survival

probability of the LFA-1/ICAM-1 bond in all states, which

corresponds to the measurements from the BFP force-clamped

experiments [9]. The format at the right-hand side indicated that

k1, k2, k3 should be the apparent off-rates and v1, v2, v3 should be

the associated apparent fractions of the three bond states analyzed

from the experimental data [9].

With the apparent off-rates k1, k2, k3 and the apparent associated

fractions v1, v2, v3 obtained from fitting the experimental data

(summarized in Table S1,S2,S3,S4,S5,S6) [9], the intrinsic kinetic

parameters k12, k23, kr1, kr2 and kr3 can be obtained by solving

equations 4–6 and 16–18 and expressed as functions of the known

apparent kinetic parameters:

k12~v2(k1{k2)zv3(k1{k3) ð20Þ

k23~
v3(k3{k2)(k3{k1)

v2(k1{k2)zv3(k1{k3)
ð21Þ

kr1~k1{v2(k1{k2){v3(k1{k3) ð22Þ

kr2~k2{
v3(k3{k2)(k3{k1)

v2(k1{k2)zv3(k1{k3)
ð23Þ

kr3~k3 ð24Þ

Supporting Information

Figure S1 RMSD time courses of several key elements
between the simulated structure and the equilibrated
closed (blue) or proposed open (red) conformations of
LFA-1 aA domain. (A) a7-helix; (B) MIDAS metal ion Mg2+; (C)

S139; (D) S141; (E) T206; (F) D239; (G) L289; (H) F292; and (I)

L295. The RMSD between the simulated a7-helix structure and

the equilibrated structure shown in Fig. 2A is redrawn in (A).

S139, S141, T206 and D239 are key residues that coordinate the

metal ion. L289, F292 and L295 are ‘‘ratchet’’ residues that locate

on b6-a7 loop or on a7-helix. They have been proposed to be

important to the a7-helix position.

(TIF)

Table S1 Model parameters from BFP experiments
measured in Mg2+/EGTA condition.

(DOC)

Table S2 Model parameters from BFP experiments
measured in Ca2+/Mg2+ condition.

(DOC)

Table S3 Model parameters from BFP experiments
measured in Mn2+ condition.

(DOC)

Table S4 Model parameters from BFP experiments
measured in Mg2+/EGTA plus XVA143 condition.

(DOC)

Table S5 Model parameters from BFP experiments
measured in Ca2+/Mg2+ plus XVA143 condition.

(DOC)

Table S6 Model parameters from BFP experiments
measured in Mn2+ plus XVA143 condition.

(DOC)

Video S1 SMD simulation of pulling the a7-helix of the
LFA-1 aA domain. The simulated structures were shown in cyan

with the a7-helix shown in green. The equilibrated a7-helix at the

up (blue) and down (red) positions are superimposed for

comparison. The Mg2+ ion is shown as golden spheres. A 250-

pN force was applied to the Ca atom of the residue 308 at the C-

terminal of the a7-helix. At 15 ns, the force was released to allow

the system to relax. The Ca atoms of residues 131–135, 167–172,

177–181 and 232–234 of the b1–b4 strands were constrained to

prevent the rigid body motion of the aA domain. The backbone

hydrogen-bonding atoms in the a7-helix were constrained to

prevent it from unfolding.
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