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Abstract

Intraventricular hemorrhage (IVH) of the preterm neonate is a complex developmental disorder, 

with contributions from both the environment and the genome. IVH, or hemorrhage into the 

germinal matrix of the developing brain with secondary periventricular infarction, occurs in that 

critical period of time before the 32nd – 33rd week post-conception and has been attributed to 

changes in cerebral blood flow to the immature germinal matrix microvasculature. Emerging data 

suggest that genes subserving coagulation, inflammatory and vascular pathways, and their 

interactions with environmental triggers may influence both the incidence and severity of cerebral 

injury and are the subject of this review.

Polymorphisms in the Factor V Leiden gene are associated with the atypical timing of IVH 

suggesting an as yet unknown environmental trigger. The methylenetetra-hydrofolate reeducates 

(MTHFR) variants render neonates more vulnerable to cerebral injury in the presence of perinatal 

hypoxia. The present study demonstrates that the MTHFR 677C>T polymorphism and low 5 

minute Apgar score additively increase the risk of IVH. Finally, review of published preclinical 

data suggests the stressors of delivery result in hemorrhage in the presence of mutations in 

collagen 4A1 (COL4A1), a major structural protein of the developing cerebral vasculature. 

Maternal genetics and fetal environment may also play a role.
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INTRODUCTION

Converging data suggest that intraventricular hemorrhage (IVH) of the preterm neonate is a 

complex developmental disorder, with contributions from both the environment and the 

genome of the child. IVH, or hemorrhage into the germinal matrix of the developing brain 

with secondary periventricular infarction as shown in Figure 1, occurs in that critical period 

of time before the 32nd – 33rd week post-conception and has been attributed to changes in 

cerebral blood flow to the immature germinal matrix microvasculature. Inflammation, 

coagulation and vascular factors may also play a role. The more severe grades are 

characterized by acute distension of the cerebral ventricular system with blood (Grade 3) 

and intraventricular hemorrhage with parenchymal venous infarction (Grade 4) (1). 

Mortality is high in infants with severe IVH, and one-quarter to one-half of surviving 

neonates develop cognitive disability and/or cerebral palsy (2,3). In addition, 20% of 

nondisabled survivors suffer executive function and neuropsychiatric disorders, confirming 

that severe IVH is a major pediatric public health problem (4,5).

Multiple lines of clinical data support the hypothesis that, similar to other preterm 

morbidities (6,7), the etiology of IVH is multifactorial. First, despite the development of 

sophisticated neonatal intensive care strategies, IVH remains a significant problem of 

prematurity. Maternal transport, antenatal steroid administration (ANS) and improved 

resuscitation techniques have become standard of care in neonatal tertiary care units 

worldwide (8–11), but the incidence of severe IVH has remained 13–15% for almost 20 

years (8,12).

Although the incidence of IVH is inversely related to gestational age (GA) at birth, the risk 

period for hemorrhage is independent of GA (13, 14). The incidence of severe IVH is 7% 

for those born at 28 weeks and 26% for neonates born 4 weeks earlier, but the critical period 

for hemorrhage is the first 4 – 5 days of life for both groups. These data suggest that either 

the transition to extra-uterine life and/or the triggers to which the neonates are exposed 

contribute to hemorrhage, and both hypoxemia and inflammation have been implicated in 

severe IVH of the prematurely-born.

Furthermore, both gender and twin studies support the hypothesis that IVH is a complex 

disorder. Preterm males are more likely than females to experience severe IVH (15). 

Similarly, studying 450 twin pairs, Bhandari reported that 41.3% of the variance in IVH risk 

is attributable to familial and environmental factors (16). Candidate gene studies implicate 

the inflammatory, coagulation and vascular pathways, and recent data suggest that time of 

hemorrhage may play a role (17–19).

The purpose of this review is to examine preclinical and clinical data supporting the 

hypothesis that severe IVH is attributable in part to the interaction of the environment with 

the neonatal genome. Based on the pathogenesis of hemorrhage, factors mediating 

coagulation, inflammation and vascular pathways have been chosen for review.
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Models for interaction between the environment and the genome

Although several investigators have hypothesized that IVH is secondary to the interaction of 

the environment and the genome (20), the mechanisms by which genetic predisposition and 

environmental exposures interact are just beginning to be described. Review of published 

literature interrogating vascular and environmental interactions suggest at least two different 

mechanisms. These include the impact of an environmental perturbation on a system 

harboring a known polymorphism, while the other stems from research addressing the 

influence of fetal programming on adult disorders postulating the role of epigenetics. 

Underlying both proposed mechanisms is the recognition that IVH is developmental 

disorder occurring within a critical period of time, and both the polymorphisms and 

environment events we describe may result in very different or even unremarkable 

phenotypes in the term infant or older child.

In the first model, a gene confers vulnerability to environmental triggers (21). A common 

example is hypercarbia. Hypercarbia occurs in association with apneic events, lung disease, 

pneumothoraces, pulmonary hemorrhage, and other events. Preterm neonates exhibit a 

narrow range of carbon dioxide over which cerebral blood flow (CBF) remains constant. In 

response to hypercarbia, CBF to the immature germinal matrix microvasculature markedly 

increases and, in the presence of a vascular structural polymorphism, may result in 

hemorrhage (22). Although the same genetic variant that results in germinal matrix vascular 

instability may predispose the proband to subsequent neurovascular disorders, there is no 

reported trans-generational change in DNA.

In contrast, epigenetics refers to an alteration in gene function without changes in the 

underlying DNA sequence (21). Epigenetic mechanisms involve DNA methylation, histone 

density and posttranslational modifications and the engagement of noncoding RNAs. Some 

alterations in the epigenome may be hereditable, resulting in trans-generational changes in 

genotype/phenotype correlations.

The programming of the epigenome is active during gestation, and epigenetic processes 

respond to environmental stimuli ranging from protein-calorie dietary restriction to hypoxia 

and fetal inflammatory exposures. Offspring of women experiencing pre-eclampsia, a 

putative marker for fetal hypoxia, have both hypertension and endothelial dysfunction 

during young adulthood (23). Similarly, in preclinical models, offspring of mothers exposed 

to protein-calorie deprivation during pregnancy also have vascular dysfunction, and these 

findings are reversed by maternal folate supplementation (24). Of note, folate deficiencies 

have also been associated with abnormalities in DNA methylation (25). Also in preclinical 

studies, the endothelium-dependent abnormalities in the offspring of restricted diet 

pregnancies are ameliorated by the administration of histone deacetylase inhibitors, 

suggesting a trans-generational etiology for the findings (26).

Finally, the interactions between genetic polymorphisms, epigenetic mechanisms such as 

DNA methylation and expression are complex. Emerging data suggest, however, that 

genetic variants regulate methylation, and methylation regulates gene expression. Thus a 

Ment et al. Page 3

Pediatr Res. Author manuscript; available in PMC 2014 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



genetic variant that creates or negates a DNA C-phosphate-G (CPG) methylation site in the 

promoter region of a gene may significantly impact expression of that gene (27).

Pathways for alteration of the IVH epigenome

Studies investigating mechanisms by which fetal or preterm exposures may alter the 

epigenome to promote or prevent IVH include the effects of hypoxia, inflammation, 

nutrition and oxidative stress.

IVH has long been associated with hypoxic ischemic events, and putative inflammatory, 

excitotoxic and apoptotic pathways are involved in the complex cascade following neonatal 

hypoxia ischemia. The hypoxia-inducible transcription factors (HIFs) are among the 

endogenous adaptive mechanisms modifying this cascade of events. HIFs are heterodimers 

of HIF-α and HIF-β subunits that belong to a family of basic helix-loop-helix transcription 

factors. HIF-1 and HIF-2 are important regulators of oxygen-dependent gene transcription 

that modulate oxygen and metabolic supply during hypoxia. HIF target genes include those 

with vasoactive and vasoproliferative effects including vascular endothelial growth factor 

(VEGF) and inducible NO synthase (iNOS). In a preclinical model of preterm hypoxia, 

HIF-1α was prominently found in vascular endothelial and glial cells of the subventricular 

zone (28). Similarly, its target, VEGF, mediates survival and tube stabilization of hypoxic 

brain microvascular endothelial cells in vitro (29). Finally, possibly acting via acetylation 

and methylation pathways, chronic hypoxia decreases global transcriptional activity (30). 

Thus, in preclinical fetal studies, chronic high-altitude hypoxia resulted in reduced histone 

acetylation and DNA methylation, fetal pulmonary arterial smooth muscle cell proliferation, 

vessel remodeling and vascular dysfunction (30).

Likewise, biomarkers of inflammation such as interleukin 1-β (IL1- β) and IL6 activate the 

hypothalamic-pituitary-adrenal (HPA) axis, with putative long-term neurobehavioral 

sequelae (32). An example of such an epigenetic event is second trimester maternal 

exposure to type A2/Singapore influenza that significantly increased risk for adult 

psychiatric disorders (33).

Finally, as discussed above, preclinical studies suggest that, acting via metabolic, vascular 

and stress-mediated pathways, maternal nutrition may have profound effects on the 

developing fetus (24, 26, 34).

Pathophysiology of IVH: Preclinical candidates

IVH begins in the germinal matrix (GM), a site of active angiogenesis in the developing 

brain (20,13) (Figure 2). Endothelial growth and sprouting are critical for angiogenesis, and 

the emerging blood brain barrier is characterized by endothelial tight junctions, basement 

membrane proteins, perivascular pericytes and glial endfeet. These processes are regulated 

by assorted growth factors, cell surface receptors and intracellular signaling pathways.

While preclinical studies postulate that it is the developmental stage of the GM microvessels 

that results in IVH, more recent studies suggest that mutations in one or more microvascular 

proteins confer vulnerability to environmental triggers (Table 1). Mice with targeted 
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mutations in the basement membrane proteins, fibronectin, laminin, collagen 4A1 

(COL4A1) and/or perlecan, demonstrate all are necessary for vascular stabilization. Those 

with mutations in COL4A1 experience IVH following the stress accompanying vaginal 

delivery. In the murine model, these hemorrhages are preventable by surgical delivery, 

suggesting an interaction between an environmental trigger and the genome (35).

Similarly, although preclinical “risk factor” studies are not available, mice with mutations in 

activin receptor-like kinase 5 (Alk5) (36), alpha v integrins (37), annexin 7 (anx7) (38), 

CREB binding protein (CBP)(39), death receptor 6 (DR6) (40), Id proteins 1 and 3 (Id1, Id3, 

respectively) (41) or Tgfbr2 (36) also develop intracerebral hemorrhage mimicking Gr 4 

IVH.

Transforming growth factor- β (TGF-β) activation and signaling is essential for normal 

blood vessel growth and sprouting in developing brain, and αvβ8 integrin mediates TGF-β 

activation. Mouse embryos genetically null for integrin β8 develop severe intracerebral 

hemorrhage beginning at embryonic day E 11.5 (42). Similarly, TGF-β signals are 

transduced by both TGF-β type II and the TGF-β type I receptors (Tgfbr2 and Alk5, 

respectively), and in murine systems, selective deletion of Tgfbr2 or Alk5 in endothelial 

cells results in lethal intracerebral hemorrhage (36). In humans, mutations in Tgfbr2 and 

Alk5 cause Loeys-Dietz syndrome, characterized by multiple arterial aneurysms and 

dissections. Men with Alk5 mutations more commonly present with thoracic aortic 

aneurysm and die earlier than women with this disorder, suggesting a gender predilection for 

this polymorphism (43).

IVH is also found in mice with genetic alterations in the transcription factors inhibitors of 

differentiation (Id) 1/3 (41), Friend leukemia integration (Fli) (39,44), and cAMP response 

element binding protein (CBP) (39). Id1 and Id3 prevent transcription by direct physical 

interaction with the basic helix-loop-helix transcription factors, are expressed in cerebral 

endothelial cells and play an essential role in angiogenesis (45). The CREB-binding protein 

is a transcriptional co-activator and Fli, which is a member of the Ets family of transcription 

factors, is a key regulator of vascular maturation (46). Finally, DR6 is required for VEGF-

mediated endothelial sprouting, is enriched in CNS vasculature and drives barrier-genesis in 

developing brain (38). Facing environmental triggers including hypoxia, hypercarbia and 

hypertension, polymorphisms in some or all of these factors may result in hemorrhage.

Likewise, changes in CBF may contribute to hemorrhage. Autoregulation relies on smooth 

muscle cells, pericytes and proteins ranging from Ca++ and K+ channels, phospholipase A1, 

arachidonic acid and adenosine to nitric oxide and cytokines among others (20). Notably, 

mice with mutations in annexin 7 (anx7), a gene encoding a Ca++-activated GTPase 

supporting Ca++ channel activity, experience IVH, suggesting that, in the presence of 

environmental perturbations, mutations in genes controlling CBF may contribute to 

hemorrhage (38).
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Evidence for gene-by-environment interactions: Clinical studies of severe 

hemorrhage

Studies in preterm neonates have implicated an array of candidate genes spanning the 

coagulation, inflammatory and vascular pathways. For this review, we compare and contrast 

the studies of Harteman (17), Ryckman (18), and Baier (19) and our Gene Targets study. As 

shown in Table 2, the numbers of subjects, their BW and GA as well as their racial and 

ethnic backgrounds were quite varied, as were the years in which they were born and, 

presumptively, the neonatal intensive care the neonates received (17).

Coagulation Candidates

Coagulation factors have long been considered candidate genes for IVH, both because of the 

pathophysiology of hemorrhage and because of their putative role in perinatal stroke (47) 

(Table 3). The most widely studied include the factor V Leiden (F5) variant, polymorphisms 

of the methylenetetrahydrofolate reductase (MTHFR) gene and the prothrombin 20210G>A 

variant (F2).

The contribution of the F5 polymorphism to IVH has been interrogated in different 

populations. A point mutation results in replacement of amino acid 506 arginine to 

glutamine in an activated protein C cleavage site. Activated protein C cleaves the peptide 

bonds in activated F5, resulting in inhibition of the coagulation pathway, and the variant 

presents with hypercoagulability. Gopel (48) reported this polymorphism was associated 

with Gr 1–2 IVH but protected against parenchymal hemorrhage. In contrast, Ryckman 

found that the heterozygous genotype was associated with Gr 1–2 but not Gr 3–4 IVH (18).

Similarly, Harteman (17) studied 17 preterm neonates with atypical presentation of Gr 4 

IVH; atypical hemorrhages were defined as occurring in the absence of provoking clinical 

factors more than 96 hours following birth (Figure 3). Seven of 17 were heterozygous for 

the F5 variant, suggesting an association between this hypercoagulable state and atypical 

hemorrhage. Recent studies suggest that related or unrelated thrombophilia in the mothers 

increase the risk of perinatal stroke (47), and 6 of 7 mothers of F5 infants harbored this 

variant. Although the incidence of variant status in the patients in this manuscript is 

significantly higher than that for the Dutch population, no data are provided for neonates 

with typical onset Gr 4 hemorrhage.

Finally, Baier found no association between F5 and IVH in his cohort of 99 mostly African 

American ELBW neonates (19).

Of note, IVH is more common in male preterm neonates, and although no gender-by-F5 data 

are currently available for neonates with IVH, males with the F5 polymorphism are more 

likely than F5 females to experience recurrence of peripheral venous thrombosis suggesting 

a possible gender effect for this mutation (49).

A second leading candidate is MTHFR. MTHFR catalyzes the reduction of 5,10-

methylenetrahydrofolate to 5-methyltetrahydrofolate, which is necessary for the conversion 

of homocysteine to methionine. Hyperhomocysteinemia is associated with polymorphisms 
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at −677 and −1298, and, especially the 677 TT variant, results in endothelial cell injury and 

alterations in coagulation including stroke, thrombosis, migraine and vascular disorders (50, 

51). Hyperhomocysteinemia is exacerbated under conditions of low folate, and this increases 

the susceptibility to experimental brain damage.

MTHFR may additionally play an important role in neonatal brain injury. Studying the 

prevalence of the 677C>T variant in 11 neonates with hypoxic ischemic encephalopathy and 

their mothers, Dodelson de Kremer (52) found that compared to a 68% incidence of the T 

allele in the control population, all 11 carried this polymorphism. The variant was more 

common in mothers of affected offspring and was associated with an increase in maternal 

homocysteine, suggesting a profound alteration in the fetal environment. The mothers in this 

study exhibited poor nutrition and the authors postulated that underlying folate deficiency 

during pregnancy may have exacerbated the influence of hypoxic injury in neonates 

harboring the MTHFR variant.

More recently, Harteman evaluated 118 infants with hypoxic ischemic encephalopathy and 

reported that the MRI white matter/watershed pattern of injury was associated with MTHFR 

CT or TT 677 polymorphisms and plasma homocysteine levels in the upper quartile (53). In 

this study, neonatal MTHFR polymorphisms were not associated with homocysteine levels, 

consistent with findings of other observers (54). Of interest, Molloy demonstrated that 

maternal homocysteine levels are the best predictors of fetal values, emphasizing the 

importance of the fetal environment (55).

Acute hypoxia ischemia results in thrombosis in subjects lacking known polymorphisms 

(56), and hypoxia exacerbates the effect of a folate-deficient diet on homocysteine 

metabolism (57, 58). Blaise demonstrated that in rat pups exposed prenatally to diets 

deficient in vitamins B12, B2, folate and choline through weaning, hypoxia increased 

plasma homocysteine levels. MTHFR activity was attenuated by hypoxia. Further, hypoxia 

enhanced the deficiency-induced drop of the S-adenosylmethionine/S-

adenosylhomocysteine ratio, known to influence DNA methylation and gene expression 

(59). Taken together, these data suggest the potential interaction between maternal and fetal 

MTHFR polymorphisms, folate and hypoxic ischemic injury to preterm brain.

Co-inheritance of more than one thrombophilia variant is associated with a greater risk of 

thrombotic events than with a single polymorphism. Thus, in addition to assessing F5, 

Harteman investigated the 677C>T and 1298A>C polymorphisms in 16/17 preterms with 

atypical PVHI (Table 3). Six had the −677 T allele, 4 had the −1298 C variant and 4 were 

compound heterozygous suggesting that 14/16 neonates had potentially deleterious 

polymorphisms. In contrast, there were no significant differences in genotypes for case and 

control neonates studied by Ryckman or Baier.

Based on our previous work demonstrating a difference in the MTHFR −1298C 

polymorphism between severe IVH cases and controls and the putative role of hypoxia in 

MTHFR-mediated brain injury (60), we tested the hypothesis that there would be a gene-by-

environment interaction for these two factors. For this preliminary analysis, we interrogated 

only the MTHFR 1298A>C variant in the Gene Targets for IVH Consortium (NS053865) 
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database. (Institutional review board approval was obtained from all participating 

institutions.) This Consortium has both environmental data and DNA from over 1400 inborn 

appropriate for gestational age preterm neonates with antenatal steroid exposure, BW 500–

1250 g and centrally read cranial ultrasounds. Only the 705 European subjects were included 

in this analysis to avoid racial admixture.

Three hundred sixteen infants had Gr 2– 4 IVH; 389 neonates had no evidence for IVH. 

Cases had lower BW and GA than controls, and their mothers were more likely to have 

experienced chorioamnionitis and multiple gestation pregnancies (Table 4). In contrast, case 

mothers had less preeclampsia and fewer cesarean section deliveries. Cases were more likely 

to have 5 minute Apgar scores < 3 and require intubation for delivery room resuscitation.

An analysis of generalized linear mixed model with site as a random effect and all 

significant variables from Table 4 as fixed effects was performed to measure the relationship 

between IVH status and those independent variables including GA, preeclampsia, clinical 

chorioamnionitis, complete ANS within 7 days prior to delivery, multiple gestation, 

cesarean section, Apgar 1 minute < 3, Apgar 5 minutes < 3, intubation for resuscitation and 

the MTHFR 1298A>C variant. Similar to previous reports [for review see Volpe, 2008 

(61)], this analysis demonstrated that increasing GA, cesarean delivery and a complete 

course of ANS in the week prior to delivery were protective for Gr 2–4 IVH; in contrast, 

multiple gestation pregnancy and chorioamnionitis were independent and important risk 

factors for Gr 2–4 IVH. In addition, the MTHFR variant and the interaction term (Apgar5<3-

by-MTHFR allele) were independent and important predictors of Gr 2–4 IVH in our 

population (Table 5).

The F2 variant is the last leading coagulation candidate we are discussing. It results in 

increased thrombin and secondary thrombosis, and in the studies of Baier, Harteman and 

Ryckman it was not associated with a risk for IVH.

Inflammatory factors

Cytokines are also postulated to play a role in perinatal brain injury, and both Ryckman and 

Baier explored the role of interleukins in preterm IVH. Hypoxia results in the loss of blood 

brain barrier function and impaired tight junction protein synthesis (62), permitting 

cytokines from the peripheral circulation to directly enter preterm brain. In addition, 

cytokines secreted by cells of the immune system may also be synthesized by CNS glial to 

act as signal transmitters in the developing brain (63).

Interleukin-1β (Il-1β) is the major cytokine involved in activation of the hypothalamic-

pituitary-adrenal (HPA) axis (31). In addition, although the exact mechanisms by which 

Il-1β is involved in hypoxia ischemia, IVH and perinatal brain injury remain unknown, Il-1β 

has been implicated in the progression of injury in the developing brain (64). Of importance 

to the understanding of critical period injuries such as IVH, expression of Il-1β is both 

developmentally and regionally regulated in the brains of typically developing fetuses and 

neonates (65). Similarly, in response to hypoxic ischemic injury, Il-1β differentially 

increases across the brain, suggesting regional vulnerability to cytokine-mediated injury.
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Preclinical studies demonstrate that perinatal Il-1β exposure induces acute white matter 

injury with subsequent ventriculomegaly, loss of mature oligodendrocytes, impaired 

myelination, decreased myelin basic protein and axonal and dendritic injury (66). In 

addition, acting via the COX-2 pathway (67), perinatal bacterial infection significantly 

increases Il-1β, interleukin 6 (IL-6) and corticosterone production in rat pups a few hours 

after infection, suggesting involvement of both the central inflammatory and HPA pathways 

(68). Such perinatal immune activation has been associated not only with change in behavior 

in neonatal animals but also disrupted avoidance learning in male, but not female subjects in 

adulthood (69). Taken together, these data suggest that early Il-1β-mediated immune 

activation results in long term changes in both structure and function in developing brain.

When Baier evaluated the role of Il-1β 511C>T polymorphisms in 215 ventilated VLBW 

infants, the Il-1β -511 T allele was associated with increased risk for IVH. One third of 

infants with the T allele experienced IVH, compared to 14% with the C allele. There was 

also a significant difference in Gr 3–4 IVH between the groups. Periventricular 

leukomalacia (PVL) was also increased, mainly in those infants with the CT genotype. 

Because of the association of chorioamnionitis and periventricular leukomalacia, Baier 

interrogated the interaction of ureaplasma urealyticum (UU) colonization and Il-1β 511T 

allele on the incidence and severity of both IVH and PVL. Consistent with the report of 

Leviton (70), there was no interaction for these triggers in neonates with IVH. In contrast, 

infants with both the 511T allele and UU were at greater risk of PVL than infants with one 

or none of these triggers, suggesting a gene-by-environment interaction.

Ryckman validated this result by finding that the Il-1β-31 C allele was associated with an 

increased risk for hemorrhage. The C allele of Il-1β-31 is in strong linkage disequilibrium 

with the T allele of Il-1β -511, and both increase the production of Il-1β in vivo (71).

Similarly, IL-6 has also been implicated in injury in developing brain (65, 72), and has also 

been shown to activate the HPA axis (73). Thus IL-6 is also believed to be a strong 

candidate to modify risk for preterm brain injury. Harding reported that in 151 preterm 

neonates the CC genotype of IL-6–174 significantly increased risk for IVH and 

neurodevelopmental disability at age 2 years (74). In contrast, interrogating the same 

polymorphism, neither Baier nor Ryckman found any relationship between IL-6 and IVH in 

the prematurely-born.

TNF-α plays a pivotal role in the acute phase pro-inflammatory cytokine cascade and is also 

postulated to be a central mediator of brain injury in the prematurely-born (75). The TNF-α 

gene is polymorphic, and there are numerous polymorphisms in the promoter region. 

Studying 178 ventilated VLBW infants, Adcock reported that the −308 A allele in the TNF-

α promoter region was associated with IVH in preterm neonates (75). Baier also found that 

in infants with the TNF-α −308 A allele, the incidence of IVH was 40% compared to 24% in 

those with GG (19). However, Ryckman found no association between this polymorphism 

and IVH in her population.
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Vascular genes

Proteins both contributing to the integrity of the developing CNS vasculature and those 

mediating cerebral blood flow are excellent targets for IVH. COL4A1 encodes type IV 

collagen alpha chain 1. This is one of 6 alpha chains that contribute to type IV collagen, a 

principal component of basement membranes ubiquitously expressed during development. 

Truncating mutations in murine Col4a1 result in cerebral hemorrhage in both neonatal and 

adult mice, and mutations have been reported in infants with congenital porencephaly, fetal 

IVH and adults with cerebral small vessel disease (35,76). More recently, mutations have 

also been reported in preterm neonates with IVH (77,78). Studying 41 PT infants with IVH, 

Bilguvar identified a rare heterozygous duplication within a highly conserved residue in 

COL4A1 in dizygotic twins with Gr 4 IVH (79).

In addition to inhibiting platelet and leukocyte adhesion to vascular endothelium, NO 

promotes cerebral vasodilatation (80). Several allelic variants have been reported in 

promoter of the endothelial NO synthase (eNOS) gene that have been associated with 

decreased eNOS activity and reductions in NO. Investigating 124 AA preterm neonates, 

Vannemreddy (81) reported the association of the eNOS gene promoter polymorphism 

786T>C with IVH, suggesting that the vascular actions of eNOS are critical for prevention 

of hemorrhage in the developing brain.

Finally, oxidative stress may also play a role, and Poggi (82) reported that the rs8192287 

superoxide dismutase 3 (SOD3) polymorphism is an independent protective factor for IVH 

in 152 neonates of < 28 weeks GA. Although the mechanism is not yet known, Poggi 

postulates protection of the cerebral microvessels against oxidative injury.

Implications of the science: Future approaches for decreasing the 

incidence of IVH

Further understanding of the genetic contributions to IVH, including genome wide 

association studies and/or whole exome sequencing data, will permit the rationale design of 

randomized clinical trials. These might include delivery mode trials for fetuses harboring 

vascular structural polymorphisms and strategies to lower homocysteine in mothers and/or 

neonates with MTHFR variants. Equally important avenues of molecular investigation might 

include inhibiting disease-causing pathways, such as the proposed use of rapamycin for 

subependymal giant cell astrocytomas in children with tuberous sclerosis;(83) upregulating 

affected proteins from homologous genes as in models of spinal muscular atrophy (84); or 

counteracting the downstream effects of a deficient protein, such as the proposed use of 

IGF1 in children with Duchenne’s dystrophy [for review, please see Liew, 2012 (85)].

Available preclinical genetic studies and clinical candidate gene reports suggest that IVH 

may be attributable to numerous genes with small effect sizes and the environmental factors 

that interact with them. Because these common variants have small to moderate effects on 

disease risk, individual risk variants are neither necessary nor sufficient to produce disease, 

and there are consequently individuals with disease without risk variants and, conversely, 

individuals without disease who harbor risk variants. A hope is that identification of genes 

and pathways underlying IVH will permit the development of prenatal diagnostics and/or 
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preventive therapeutics. To address these issues, a large-scale neonatal genomic medicine 

network must be developed with infrastructural capacity to both host an accessible database 

of sequence variants and their phenotypic associations and support a framework for defining 

and cataloging clinically actionable variants (86).

Conclusion

If a major focus of perinatal care is to prevent brain injury and abnormal development (87), 

then physicians and scientists must better understand those factors that contribute to severe 

IVH in the prematurely-born. Emerging data suggest an important role of genes subserving 

coagulation, inflammatory and vascular pathways, and interactions with maternal and 

neonatal environmental triggers may influence both the incidence and severity of cerebral 

injury and have long term implications.
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Figure 1. 
Severe intraventricular hemorrhage. Coronal ultrasounds at postnatal ages 1 and 4 days 

(Panels A and B, respectively) from a 28 week gestation neonate with IVH. In panel A, 

blood is seen in the germinal matrix and filling the right lateral ventricle; at postnatal day 4, 

the ventricular system is dilated, and blood is seen both filling and distending the right 

lateral ventricle as well as in the parenchyma of the right hemisphere, consistent with Grade 

4 IVH.
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Figure 2. 
Germinal matrix, a densely cellular region located adjacent to the ependyma of the lateral 

ventricles. It is composed of immature neural precursor cells and vessels. Magnification 

40X; scale bar = 1 mm. (Figure courtesy of A. Huttner, MD, Department of Pathology, 

Section of Neuropathology, Yale University School of Medicine, New Haven, CT.)
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Figure 3. 
Atypical intraventricular hemorrhage. Axial (Panel A) and coronal (Panel B) images of a 

one day old 34 week gestation infant with the atypical (fetal) onset of germinal matrix and 

intraventricular hemorrhage. Note the hemorrhage into the right germinal matrix, 

intraventricular blood and ventriculomegaly characteristic of posthemorrhagic 

hydrocephalus. (Figure courtesy of C.C. Duncan, MD, Department of Neurosurgery, Yale 

University School of Medicine, New Haven, CT.)
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