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Abstract: Quick and effective detection of biothiols in biological fluids has gained increasing attention
due to its vital biological functions. In this paper, a novel reversible fluorescence chemosensor (L-Cu2+)
based on a benzocoumarin-Cu2+ ensemble has been developed for the detection of biothiols (Cys,
Hcy and GSH) in human urine. The chemosensing ensemble (L-Cu2+) contains a 2:1 stoichiometry
structure between fluorescent ligand L and paramagnetic Cu2+. L was found to exclusively bond with
Cu2+ ions accompanied with a dramatic fluorescence quenching maximum at 443 nm and an increase
of an absorbance band centered at 378 nm. Then, the in situ generated fluorescence sluggish ensemble,
L-Cu2+, was successfully used as a chemosensor for the detection of biothiols with a fluorescence
“OFF-ON” response modality. Upon the addition of biothiols, the decomplexation of L-Cu2+ led to
the liberation of the fluorescent ligand, L, resulting in the recovery of fluorescence and absorbance
spectra. Studies revealed that L-Cu2+ possesses simple synthesis, excellent stability, high sensitivity,
reliability at a broad pH range and desired renewability (at least 5 times). The practical application of
L-Cu2+ was then demonstrated by the detection of biothiols in human urine sample.
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1. Introduction

Biothiols, such as cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play critical roles
in cellular processes and are always involved in physiological and pathological actions [1–3]. It is
widely reported that cysteine (Cys) and homocysteine (Hcy) are associated with cellular growth, while
glutathione (GSH) is mainly related to cellular homeostasis [4]. Abnormal levels of cellular biothiols
are implicated in a variety of diseases, such as leucocyte loss, psoriasis, liver damage, slowed growth,
asthma, cancer and acquired immune deficiency syndrome (AIDS) [5]. For example, the deficiency of
Cys may lead to symptoms like hair depigmentation, muscle loss and slow growth [6–8]. Elevated level
of Hcy in human plasma can increase the risk of diseases like osteoporosis, neural tube defects and
even Alzheimer’s disease [9,10]. GSH, as the most abundant cellular biothiol, might cause oxidative
stress and some other serious illness including cancers and AIDS [11–13]. In view of their importance,
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developing safe, highly specific and sensitive detection methods for biothiols in living systems is
strongly desired in biochemistry and biomedicine research fields [14].

Among various conventional methods such as electrochemical approaches [15,16],
high-performance liquid chromatography (HPLC) [17,18], gas chromatography [19,20] and mass
spectrometry (MS) [21], fluorescence analysis using a responsive molecular probe or chemosensor has
been recognized as one of the most promising approaches due to its excellent sensitivity, selectivity,
and capability of detecting analytes in live biological specimens [22–26]. To date, a large number of
fluorescence chemosensors aiming to distinguish biothiols from other amino acids and bioactive species
have been developed based on several sensing mechanisms: (1) Michael addition [27–29]; (2) cyclization
with aldehyde [30,31]; (3) the cleavage of sulfonamide, sulfonate esters, selenium-nitrogen bonds and
disulfide bonds [32–38]; (4) intramolecular elimination [39,40]. However, most organic reaction-based
fluorescence chemodosimeters suffer several problems such as time-consuming synthesis and the
synthesis procedure commonly requires strict reaction condition, which somehow limit the practical
application in biosystems [41]. Moreover, to the best of our knowledge, few of them could achieve
analyzing biothiols in body fluids, such as human urine [42,43].

Recently, indicator displacement-based fluorescence chemosensor, as a new strategy, has emerged
for the detection of certain biomolecules in living systems. Among them, a Cu2+-ensemble based
fluorescence chemosensor features simple synthetic route, improved water solubility, a fluorescence
“OFF-ON” response pattern as well as desired reversibility [44–46]. By the way, our group has been
involved in longstanding exploration of the synthesis and application of this class of fluorescence
chemosensors [47–59]. Herein, we designed and synthesized a novel benzocoumarin-Cu2+ ensemble
based fluorescence chemosensor for the selective detection of biothiols under simulated physiological
conditions and in human urine. As described in Scheme 1, the fluorescent ligand (L), as expected,
could coordinate with Cu2+ to form L-Cu2+ which exhibited nearly no fluorescence owing to the
paramagnetic quenching effect of Cu2+ [50]. The subsequent ensemble L-Cu2+ would then be the
platform for the real-time detection of biothiols with “OFF–ON”response due to higher affinity between
biothiols and Cu2+. Additionally, the application of L-Cu2+ in the detection of biothiols in human
urine was successfully demonstrated.
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Scheme 1. The proposed sensing mechanism of L-Cu2+ towards biothiols (cysteine (Cys), homocysteine
(Hcy) and glutathione (GSH)).

2. Materials and Methods

2.1. Materials and Instruments

Diethyl malonate, 2-hydroxy-1-naphthaldehyde, pyridin-2-ylmethanamine, 1-(3-dimethylamino
propyl)-3-ethylcarbodimide hydrochloride (EDCI) and 4-(dimethylamino) pyridine (DMAP) were
purchased from Aladdin reagent Co. (Shanghai, China). Metal ions (nitrate salts), biothiols and amino
acids were obtained from Sinopharm Chemical Reagent Co., Ltd. (China). Slow qualitative filter paper
(Φ 9 cm) was purchased from commercial source. Unless otherwise stated, solvents and reagents were
of analytical grade from commercial suppliers and were used without further purification. Deionized
water was used throughout.
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1H nuclear magnetic resonance (NMR) and 13C NMR spectra were recorded with an
AVANCE600MHZ spectrometer (BRUKER) with chemical shifts reported as ppm (in CDCl3, TMS as
internal standard). Coupling constants (J values) are reported in hertz. API mass spectra were recorded
on an Agilent 6530 QTOF spectrometer. Absorption spectra were recorded with a Perkin Elmer Lambda
900 ultraviolet/visible/near-infrared (UV/VIS/NIR) spectrophotometer (USA). Fluorescence spectra
were measured with Perkin Elmer LS55 luminescence spectrometer (USA). All pH measurements were
made with an OHAUS Starter 3100/f meter (USA).

2.2. Synthesis of Fluorescent Ligand L

L was gained through a typical amidation reaction [51–54]. To a solution of benzocoumarin-3-
carboxylic acid [55–57] (0.239 g, 1 mmol) in 20 mL CH2Cl2, pyridin-2-ylmethanamine (0.108 g, 1 mmol),
1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) (0.383 g, 1 mmol) and a catalytic
amount of 4-(dimethylamino)pyridine (DMAP) (12 mg) were added sequentially and the mixture was
stirred for 8 h. The solution was washed with water (2 × 8 mL) and dried over anhydrous sodium
sulfate, and the solvent was removed under a pressure-reducing condition. The crude product was
further purified by column chromatography to obtain L in 89% yield. 1H-NMR (600 MHz, CDCl3)
ó(ppm): 9.67 (s, 2H), 8.63 (d, J = 6.72 Hz, 1H), 8.42 (d, J = 12.6 Hz, 1H), 8.10 (d, J = 13.56 Hz, 1H), 7.93 (d,
J = 12.12 Hz, 1H), 7.74 (t, J = 11.49 Hz, 1H), 7.68 (t, J = 11.46 Hz, 1H), 7.61 (t, J = 11.22 Hz, 1H), 7.50 (d,
J = 13.5 Hz, 1H), 7.37 (d, J = 11.7 Hz, 1H), 7.21 (t, J = 9.18 Hz, 1H), 4.86 (d, J = 8.16 Hz, 2H). 13C NMR
(150 MHz, CDCl3): 162.1, 161.3, 156.9, 154.9, 149.5, 143.8, 136.7, 135.8, 130.3, 129.5, 129.1, 126.7, 122.3,
121.9, 121.7, 116.9, 116.3, 113.2, 45.5. High-resolution mass spectrometry (HRMS)-API (positive mode,
m/z) for [L+H]+: calcd 331.1077, found: 331.1074. Mp: 184.4-185.2 ◦C.

2.3. Preparation of the Stock Solutions of L

L (16.5 mg, 0.05 mmol) was dissolved in 100 mL of N,N-dimethylformamide (DMF) to prepare a
high concentration of the stock solution (0.5 mM). Before spectroscopic measurements, the solution of
L (10 µM, DMF/HEPES, 7:3, v/v, pH = 7.4) was freshly prepared by diluting the high concentration
stock solution of L using HEPES buffer (20 mM, pH = 7.4). The solutions of various testing biothiols
(20 mM) and amino acid (20 mM) were prepared in distilled water.

2.4. Quantum Yield Measurement

The fluorescence quantum yields have been measured referring to a reported method [58].

2.5. The Study of Reversibility of L-Cu2+

The reversibility of L-Cu2+ was investigated by repeating the processes of binding and release [59].
The experimental process by sequentially adding Cu2+ and biothiols to the same solutions was repeated
five times, and the volume ratios of Cu2+ and biothiols were: Cu2+/Cys. 0:0, 10:0, 10:10, 20:10, 20:20,
30:20; 30:30, 40:30, 40:40, 50:40; Cu2+/Hcy. 0:0, 10:0, 10:10, 20:10, 20:20, 30:20; 30:30, 40:30, 40:40, 50:40;
Cu2+/GSH. 0:0, 10:0, 10:5, 20:5, 20:10, 30:10; 30:20, 40:20, 40:30, 50:30, respectively.

2.6. Visualization of Biothiols in Human Urine

To 50 mL acetonitrile solution of L (0.5 mM, 100 mL), filter papers (25 mm × 75 mm) were
immersed for 30 min, followed by dipping into Cu2+ solution (0.2 mM, 100 mL) for another 30 min.
Then, L-Cu2+-coated test papers were dried using the blower.

Human urine samples were collected from a healthy volunteer and informed consent was obtained
from the volunteer prior to sample collection. All experiments were performed in compliance with
the relevant laws and institutional guidelines. For “naked-eye” analysis of biothiols in human urine
samples, L-Cu2+-coated test paper was immersed in urine samples and was photographed under 365
nm UV light.
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3. Results

3.1. Design, Synthesis of Fluorescent Ligand (L)

The fluorescent ligand (L) was designed by introducing pyridin-2-ylmethanamine to
benzocoumarin-3-carboxylic acid skeleton to provide efficient metal binding sites via the disposal
of nitrogen and oxygen heteroatoms. Coumarin derivative was chosen as the fluorophore due to its
excellent photochemical and photophysical properties, such as high fluorescence quantum yield and
high stability against light [60]. The structure of L was confirmed by NMR and HRMS.

3.2. Spectroscopic Properties of L-Cu2+ Ensemble

The specific complexation of L with Cu2+ was firstly verified in detail through UV-vis absorption
spectra. L exhibited a major absorption band centered at 378 nm in the DMF/HEPES mixed solution
(7:3, v/v, pH = 7.4). Upon gradual addition of Cu2+ (0–60 µM) to the solution of L, the absorption peak
at 378 nm steadily increased, indicating the formation of the L-Cu2+ ensemble (Figure S4A). To verify
the specific coordination property of ligand L to Cu2+, equal amounts of other common metal ions
including Pb2+, Ba2+, Ag+, Al3+, Cd2+, Ca2+, Mg2+, Co2+, Fe3+, Cr2+, Ni2+, Hg2+, Li+, Na+, K+, Zn2+,
were added to the solution of L, respectively. It was exciting to observe that there were no obvious
changes on absorption at 378 nm (Figure S4B), indicating the specific bond of L to Cu2+.

In the DMF/HEPES mixed solution (7:3, v/v, pH = 7.4), L exhibited strong blue fluorescence
(Φ1 = 0.42) and could remain stable for at least 12 h (Figure S5), while the fluorescence intensity
decreased gradually when certain amounts of paramagnetic Cu2+ were added. As shown in Figure 1A,
the fluorescence intensity of L maximum at 443 nm quenched and reached a constant value accompanied
by 88% fluorescence quenched (Φ2 = 0.052) when 60 µM Cu2+ was added. Job’s plots of the fluorescence
emission variation at443 nm against the mole fraction of fluorescent ligand L clearly showed the
inflection point at 0.67 (Figure S6), suggesting the formation of L-Cu2+ ensemble with a 2:1 binding
stoichiometry [61]. It is speculated that one [62–64]. According to 2:1 binding mode, the association
constant (Ka) of L with Cu2+ was determined to be 7.28 × 109 M−2 using a Benesi–Hildebrand plot
(Figure 1B) [65].
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Figure 1. (A) Fluorescence spectra of L (10 µM) in the presence of different amounts of Cu2+ (0–60 µM)
in the N,N-dimethylformamide (DMF)/HEPES mixed solution (7:3, v/v, Ph = 7.4). Insert: normalized
fluorescence intensities of L at 443 nm as a function of Cu2+ concentration, and the changes of
fluorescence colour in the absence and presence of Cu2+. (B) Benesi–Hildebrand linear analysis plot
of L at different Cu2+ concentration. F0 and F represent the maximum emission of L at 443 nm in the
absence and in the presence of Cu2+. Excitation was performed at 378 nm.

The Cu2+-specific bond of L over various competitive metal ions was also verified under the
same experimental conditions. As shown in Figure 2, nearly no emission changes were found after
the addition of Pb2+, Ba2+, Ag2+, Al3+, Cd2+, Zn2+, Ca2+, Mg2+, Co2+, Mn2+, Fe3+, Cr2+, Ni2+, Hg2+,
Li+, Na+, K+. The specific bond of L to Cu2+ was also confirmed by a “naked-eye” fluorescence
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colorimetric assay. It was found that the blue fluorescent colour quenched exclusively in the presence
of Cu2+ (Figure 2, inset). The results indicated that L specifically binds to Cu2+ over other common
metal ions.The effect of pH on the bonding ability between L and Cu2+ was then evaluated. Figure S7
showed that the fluorescence intensity of L was stable over a broad pH range from 4.5 to 11.5. However,
after coordination with Cu2+, the fluorescence intensity decreased significantly to being very weak
despite the negligible effect of acid (pH = 5.0) and alkali (pH = 11.0). It deserved to point out that
the emission intensity of L-Cu2+ remained constant in the pH range of 5.0-11.0, which ensured the
L-Cu2+ ensemble can be used as a potential fluorescence chemosensor for the detection of biothiols in
the following experiments.
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3.3. Spectroscopic Responses of L-Cu2+ towards Biothiols

On the basis of displacement strategy, the fluorescence sluggish L-Cu2+ ensemble, could be
used as a platform for the real-time detection of biothiols by virtue of high affinity of sulfur towards
copper [66,67]. The chemosensing ensemble, L-Cu2+ was prepared in situ by mixing L and Cu2+ in
a 2:1 ratio in the DMF/HEPES mixed solution (7:3, v/v, pH = 7.4) solution. The absorption titration
experiments of biothiols were firstly investigated. The changes in absorbance values (A0-A) of L–Cu2+

promoted by the addition of 70 µM of various amino acids and biothiols including valine (Val), alanine
(Ala), methionine (Met), proline (Pro), threonine (Thr), tryptophan (Trp), glycine (Gly), lysine (Lys),
phenylalanine (Phe), serine (Ser), asparagine (Asn), histidine (His), glutamine (Gln), leucine (Leu),
tryptophan (Try), arginine (Arg), acetylcysteine, thiophenol, sulfide, bisulfate and glutathione (GSH),
homocysteine (Hcy), cysteine (Cys), were evaluated. As shown in Figure 3, Cys, Hcy and GSH
displayed remarkable responses in the absorption spectra. However, no obvious changes in UV–vis
spectra were observed after the addition of other competitive species, demonstrating that L-Cu2+ has an
excellent selectivity toward Cys, Hcy and GSH over other competitive small biological molecules. The
sensing properties of L-Cu2+ towards biothiols were further studied by UV-vis titration experiments.
As shown in Figure S8, upon the addition of Cys, Hcy and GSH to the solution of L-Cu2+ ensemble led
to remarkable decrease of the absorption band centered at 378 nm. The final absorption spectra of
the titration solutions were similar to free ligand L under the identical condition, indicating that the
proposed displacement strategy for biothiols sensing was successfully achieved.
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Furthermore, fluorescence titration analysis of Cys, Hcy and GSH with L-Cu2+ ensemble was 
also studied. It can be clearly shown in Figure 5A–C that L-Cu2+ maintained an emission “OFF” state 
in the DMF/HEPES mixed solution (7:3, v/v, pH = 7.4). With increasing amounts of biothiols, the 
emission of L-Cu2+ maximum at 443 nm progressively intensified when 70 μM Cys, 40 μM Hcy and 
35 μM GSH were added.The fluorescence spectra of L-Cu2+ with biothiols were similar to that of the 
free ligand L, which could prove the sensing mechanism that ligand L was released from the 
chemosensing ensemble (L-Cu2+) owing to the strong affinity of biothiols with Cu2+. And,the 
fluorescence quantum yields of L-Cu2+ upon the addition of Cys, Hcy and GSH were calculated to be 
Φ3 = 0.33, Φ4 = 0.39 and Φ5 = 0.40, respectively. Additionally, a good linearity was found between 

Figure 3. Ultraviolet-visible (UV-vis) absorption spectra of L-Cu2+ (10 µM) in the DMF/HEPES mixed
solution (7:3, v/v, pH = 7.4) upon addition of various analytes (70 µM): 0. Blank, 1. Cys, 2. Hcy, 3. GSH,
4. acetylcysteine, 5. thiophenol, 6. sulfide, 7. bisulfate, 8. Val, 9. Ala, 10. Met, 11. Pro, 12. Thr, 13. Trp,
14. Gly, 15. Lys, 16. Phe, 17. Ser, 18. Asn, 19. His, 20. Gln, 21. Leu, 22. Try, 23. Arg. The absorbance
values of L-Cu2+ were recorded at 378 nm.

The selectivity of L-Cu2+ towards biothiols was further ensured by the measurement of fluorescence
spectra. Figure 4 showed the ratio of fluorescence intensities enhancement ((F-F0)/F0) at 443 nm upon
addition of various bioactive species. The addition of Cys, Hcy and GSH into L-Cu2+ solution in
HEPES buffer led to 5.3-fold, 5.5-fold and 5.9-fold fluorescence enhancement, respectively. In contrast,
other competitive species such as II-Leu, Ala, Arg, Asn, Asp, Gln, Glu, Gly, His, Leu, Lys, Met, Phe,
Pro, Ser, Thr, Try, Val, and acetylcysteine, thiophenol, sulfide, bisulfate induced negligible fluorescence
intensity changes.
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Figure 4. Normalized fluorescence responses of L-Cu2+ (10 µM) in the DMF/HEPES mixed solution
(7:3, v/v, Ph = 7.4) in the presence of various analytes (70 µM): 1. GSH, 2. Hcy, 3. Cys, 4. acetylcysteine,
5. thiophenol, 6. sulfide, 7. bisulfate, 8. Val, 9. Ala, 10. Met, 11. Pro, 12. Thr, 13. Trp, 14. Gly, 15. Lys, 16.
Phe, 17. Ser, 18. Asn, 19. His, 20. Gln, 21. Leu, 22. Try, 23. Arg. The intensities were recorded at 443 nm,
excitation at 378 nm. Inset: the fluorescence colour responses of L-Cu2+ (10 µM) in the presence of
various analytes (70 µM) under 365 nm UV light.

Furthermore, fluorescence titration analysis of Cys, Hcy and GSH with L-Cu2+ ensemble was also
studied. It can be clearly shown in Figure 5A–C that L-Cu2+ maintained an emission “OFF” state in
the DMF/HEPES mixed solution (7:3, v/v, pH = 7.4). With increasing amounts of biothiols, the emission
of L-Cu2+ maximum at 443 nm progressively intensified when 70 µM Cys, 40 µM Hcy and 35 µM
GSH were added.The fluorescence spectra of L-Cu2+ with biothiols were similar to that of the free
ligand L, which could prove the sensing mechanism that ligand L was released from the chemosensing
ensemble (L-Cu2+) owing to the strong affinity of biothiols with Cu2+. And, the fluorescence quantum
yields of L-Cu2+ upon the addition of Cys, Hcy and GSH were calculated to be Φ3 = 0.33, Φ4 = 0.39
and Φ5 = 0.40, respectively. Additionally, a good linearity was found between fluorescence intensity
of L-Cu2+ at 443 nm versus the concentrations of Cys, Hcy and GSH (Figure S9), and the detection
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limits were determined to be 0.96 µM, 0.68 µM and 0.44 µM based on 3σ/slope according to reported
method [68,69]. Fluorescence responses times of L-Cu2+ towards biothiols were also discussed in
Figure 5D. It took around 15 s for GSH to displace Cu2+, while this process lasted for around 20 s when
it came to Cys and Hcy. In a brief summary, the results indicated that L-Cu2+ can be used for real-time
detection of biothiols.
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7.4) upon incremental addition of (A) Cys (0-70 μM), (B) Hcy (0-40 μM) and (C) GSH (0-35 μM). 
Inset: the plots of the fluorescence intensity of L-Cu2+ at 443 nm as the function of biothiols 
concentrations, respectively. (D) Time-dependent fluorescence intensity of L-Cu2+ (10 μM) at 443 nm 
upon incremental addition of Cys (0-70 μM), Hcy (0-40 μM) and GSH (0-35 μM) in the DMF/HEPES 
mixed solution (7:3, v/v, pH = 7.4). The intensities were recorded at 443 nm, excitation was performed 
at 378 nm. 

Since regeneration is a key factor to evaluate ensemble based chemosensor, the reversible 
“OFF-ON-OFF” fluorescence responses of L-Cu2+ were conducted by alternative addition of biothiols 
and Cu2+ in the DMF/HEPES mixed solution (7:3, v/v, pH = 7.4). As can be seen in (Figure 6A–C), 
switchable changes in the emission intensity at 443 nm could be repeated 5 times at least, implying 
L-Cu2+ was a reversible chemosensor for the detection of biothiols under physiological conditions. 
Figure 6D discussed the effect of pH on sensing performance of L-Cu2+ towards biothiols. It was 
clearly found that the fluorescence intensities of L-Cu2+ at 443 nm kept constant values at a pH range 
of 5.0–11.0, indicating its reliability under the test condition. The addition of biothiols in 
L-Cu2+aqueous solution, as expected, led to remarkable fluorescence enhancement from pH 5.0 to 
pH 11.0. The result indicated that L-Cu2+ can be used for the detection of biothiols in a broad pH 
range. 

Figure 5. Fluorescence spectra of L-Cu2+ (10 µM) in the DMF/HEPES mixed solution (7:3, v/v, pH = 7.4)
upon incremental addition of (A) Cys (0-70 µM), (B) Hcy (0-40 µM) and (C) GSH (0-35 µM). Inset:
the plots of the fluorescence intensity of L-Cu2+ at 443 nm as the function of biothiols concentrations,
respectively. (D) Time-dependent fluorescence intensity of L-Cu2+ (10 µM) at 443 nm upon incremental
addition of Cys (0-70 µM), Hcy (0-40 µM) and GSH (0-35 µM) in the DMF/HEPES mixed solution (7:3,
v/v, pH = 7.4). The intensities were recorded at 443 nm, excitation was performed at 378 nm.

Since regeneration is a key factor to evaluate ensemble based chemosensor, the reversible
“OFF-ON-OFF” fluorescence responses of L-Cu2+ were conducted by alternative addition of biothiols
and Cu2+ in the DMF/HEPES mixed solution (7:3, v/v, pH = 7.4). As can be seen in (Figure 6A–C),
switchable changes in the emission intensity at 443 nm could be repeated 5 times at least, implying
L-Cu2+ was a reversible chemosensor for the detection of biothiols under physiological conditions.
Figure 6D discussed the effect of pH on sensing performance of L-Cu2+ towards biothiols. It was
clearly found that the fluorescence intensities of L-Cu2+ at 443 nm kept constant values at a pH range of
5.0–11.0, indicating its reliability under the test condition. The addition of biothiols in L-Cu2+aqueous
solution, as expected, led to remarkable fluorescence enhancement from pH 5.0 to pH 11.0. The result
indicated that L-Cu2+ can be used for the detection of biothiols in a broad pH range.
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Figure 6. Fluorescence changes of L-Cu2+ (10 µM) at 443 nm in the DMF/HEPES mixed solution (7:3,
v/v, pH = 7.4) upon the alternate addition of (A) Cu2+/Cys, (B) Cu2+/Hcy and (C) Cu2+/GSH with
several concentration ratios. Cu2+/Cys: 0:0, 10:0, 10:10, 20:10, 20:20, 30:20; 30:30, 40:30, 40:40, 50:40.
Cu2+/Hcy: 0:0, 10:0, 10:10, 20:10, 20:20, 30:20; 30:30, 40:30, 40:40, 50:40. Cu2+/GSH: 0:0, 10:0, 10:5, 20:5,
20:10, 30:10; 30:20, 40:20, 40:30, 50:30. (D) Influence of pH on the fluorescence intensities of L-Cu2+

in the DMF/HEPES mixed solution (7:3, v/v, pH = 7.4) in the absence and presence of biothiols. The
intensities were recorded at 443 nm, excitation was performed at 378 nm.

3.4. ‘Naked-Eye’ Detection of Biothiols in Human Urine Samples

In regards to the excellent properties of L-Cu2+ for the detection of biothiols (Table S1), the
practical application of L-Cu2+ for the “naked-eye” detection of biothiols in human urine sample
levels was then verified by using L-Cu2+-coated filter paper. The tests were prepared by putting filter
papers into the acetonitrile solution of L, followed by dipping into Cu2+ solution. Then, L-Cu2+-coated
test papers were dried using the blower. We firstly studied the feasibility of the test paper for the
“naked-eye” detection of biothiols in pure water. The papers were immersed in the test aqueous
solution containing different concentrations of Cys, Hcy and GSH. As shown in Figure 7A, strong blue
fluorescence emerged and became brighter with increasing biothiols concentrations under 365 nm
UV light. The results indicated that the L-Cu2+-coated test paper has the potential to be used for the
“naked-eye” detection of biothiols levels in practical body fluid samples. Clinically, patients are always
supposed to do uroscopy for diagnosing diseases and biothiols content was one of key indexes due
to their easily oxidizable nature. Therefore, we hypothesized about the possibility of L-Cu2+-coated
test paper on the detection of biothiols in human urines. To eliminate the possible impact of urine
self-fluorescence, urine immersed filter paper was photographed first under 365 UV light. Although
weak fluorescence emitted from urine-immersed L-Cu2+-blank test paper, it still can be neglected when
compared to those L-Cu2+-coated test paper immersed in normal urine (Figure 7B). Consequently,
L-Cu2+-coated test paper has the potential for “naked-eye” detection of biothiols in real body fluids.
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Figure 7. (A) Photographs of fluorescence colour responses of the L-Cu2+-coated test papers immersed
to different concentration of Cys, Hcy and GSH in water under 365 nm UV light: (1) 0 mM, (2) 0.05 mM,
(3) 0.5 mM, (4) 5 mM. (B) Photographs of the fluorescence colour responses in human urine sample:
(1) L-Cu2+-coated test paper only, (2) Free filter paper exposed to pure urine, (3) L-Cu2+-coated test
paper when immersed to human urine under 365 nm UV light. All the filter paper was exposed to the
samples for 30 seconds.

4. Conclusions

In summary, a novel fluorescence chemosensor (L-Cu2+) based on a benzocoumarin-Cu2+ ensemble
has been developed for the detection of biothiols (Cys, Hcy and GSH). The 2:1 stoichiometry structure
of L-Cu2+ was demonstrated by Job’s plot and the Benesi–Hildebrand plot. L-Cu2+ was successfully
used as an “OFF-ON” chemosensor for the detection of Cys, Hcy and GSH based on the displacement
approach, giving a remarkable recovery of fluorescence and UV-Vis spectra. The presented L-Cu2+

ensemble exhibited the advantages of simple synthesis, excellent stability under broad pH, and high
selectivity. The fluorescence “OFF–ON” circles can be repeated more than 5 times by the alternative
addition of biothiols and Cu2+, implying that L-Cu2+ is a renewable chemosensor. The practical
application of L-Cu2+ for the “naked-eye” detection of biothiol levels in human urine sample was
verified by using L-Cu2+-coated test paper. The successful investigations of L-Cu2+ ensemble in a
practical body fluids indicated that the application has potential in the rapid disease diagnosis and
monitoring treatment fields in the future.
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