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Abstract 

Objective:  Aphids harbor a nutritional obligate endosymbiont in specialized cells called bacteriocytes, which 
aggregate to form an organ known as the bacteriome. Aphid bacteriomes display distinct gene expression profiles 
that facilitate the symbiotic relationship. Currently, the mechanisms that regulate these patterns of gene expression 
are unknown. Recently using computational pipelines, we identified miRNAs that are conserved in expression in the 
bacteriomes of two aphid species and proposed that they function as important regulators of bacteriocyte gene 
expression. Here using a dual luciferase assay in mouse NIH/3T3 cell culture, we aimed to experimentally validate the 
computationally predicted interaction between Myzus persicae miR-92a and the predicted target region of M. persicae 
bacteriocyte-specific secreted protein 1 (SP1) mRNA.

Results:  In the dual luciferase assay, miR-92a interacted with the SP1 target region resulting in a significant downreg-
ulation of the luciferase signal. Our results demonstrate that miR-92a interacts with SP1 to alter expression in a heter-
ologous expression system, thereby supporting our earlier assertion that miRNAs are regulators of the aphid/Buchnera 
symbiotic interaction.
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Introduction
Aphids are obligately dependent on their ancient endo-
symbiotic relationship with the gamma-proteobacterium 
Buchnera aphidicola [1, 2]. The symbiont, Buchnera, 
is housed in a specialized organ called the bacteriome, 
inside specialized host cells called bacteriocytes [1–4]. 
Bacteriomes are enriched in expression of genes asso-
ciated with functions that include amino acid biosyn-
thesis and metabolism, and transporters that mediate 
metabolite exchange between aphid and Buchnera 
[5–8]. Bacteriome gene expression profiles also feature 
expression of two groups of aphid orphan genes: bacte-
riocyte-specific cysteine-rich proteins and aphid-specific 
putative secreted proteins [9]. One putative secreted pro-
tein is secreted protein 1 (SP1), a gene whose expression 
is restricted to bacteriocytes. The lineage specificity of 

SP1, coupled with its tissue-specific expression suggests 
that this orphan gene may have contributed to the evolu-
tion of aphid-specific traits, i.e. the symbiosis with Buch-
nera [9].

Recently using two aphid species, the pea aphid, 
Acyrthosiphon pisum, and the green peach aphid, Myzus 
persicae, we identified 14 evolutionary conserved micro-
RNAs (miRNAs) that were bacteriome-specific and/or 
bacteriome-enriched and were predicted to regulate 103 
aphid genes, many of which have known importance to 
the aphid/Buchnera symbiosis [10]. Among those pre-
dictions, miR-92a was significantly upregulated in bacte-
riocytes and predicted to target the bacteriocyte-specific 
SP1 (Fig. 1) [10]. Remarkably, miR-92a has been shown to 
be important in a great diversity of host/microbe interac-
tions that include host/virus interactions in a mosquito 
[11] and a fall armyworm [12], and host/pathogen inter-
actions in a mosquito [13], marine filter feeders [14, 15], a 
spider mite [16], and a fish [17]. Here, we experimentally 
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interrogate our computationally predicted interaction of 
M. persicae mpe-miR-92a with SP1.

Main text
Methods
Target prediction
In our previous study we used miRanda [18], PITA [19] 
and RNAhybrid [20] to predict potential miRNA::mRNA 
interactions [10]. All three algorithms predicted the same 
seed region. The target site predicted by miRanda was the 
largest and spanned the target sites predicted by PITA 
and RNAhybrid (Additional file  1: Figure S1), thus, we 
designed our dual luciferase assay using the miRanda tar-
get site prediction.

Mus musculus embryonic fibroblast NIH/3T3 cell culture
We maintained NIH/3T3 cells under sterile conditions 
at 37 °C with 5% CO2. Cells were cultured in the ATCC-
formulated Dulbecco’s Modified Eagle’s Medium with 
bovine calf serum (Gibco, USA) at 10%, gentamycin at 
0.5% (v/v) and penicillin–streptomycin at 1% (v/v).

Plasmid preparation and miRNA mimic synthesis
To validate the predicted miRNA::mRNA interaction, we 
utilized pmirGLO Dual-Luciferase miRNA target expres-
sion vector (pmirGLO) (Promega, USA) and miRNA 
mimics. The pmirGLO vector expresses two luciferases: 
the firefly luciferase (an experimental reporter that can be 
subject to the effect of miRNA regulation) and the Renilla 
luciferase (an internal control). Using pmirGLO, we pre-
pared an experimental plasmid, a negative and a positive 
control plasmid. The experimental plasmid, pmirGLO-
SP1, contained a synthesized miR-92a::SP1 target region 
corresponding to the miR-92a binding site on the SP1 3′ 
UTR of M. persicae (Additional file 2: Table S1) [10]. The 
negative control plasmid, pmirGLO-ΔSP1, contained a 

synthesized mutated SP1 (ΔSP1) that was designed based 
on the M. persicae miR-92a::SP1 target region using 
the Illegitimate microRNA predictor (Additional file  2: 
Table S1) [21]. We obtained the positive control plasmid, 
pmirGLO-miR21T, that includes the M. musculus miR-
21 target site from Promega, USA. Our experiments used 
two miRNA mimics, a miR-92a mimic (Fig. 1) and a non-
specific negative control siRNA i.e. AllStars Negative 
Control siRNA from QIAGEN, USA (Cat#: SI03650318). 
AllStars Negative Control siRNA has a proprietary 
sequence with no homology to any known mammalian 
gene.

Cell transfection
We performed the transient cell transfection experiment 
three times. For the first two experiments, we used the 
Effectene Transfection Reagent (Qiagen, USA). Briefly, 
400  ng DNA plasmid and/or 300  nM miRNA mim-
ics were used to transfect/co-transfect 4 × 105  cells/
well in 6-well plates for 24  h. Then, we harvested cells 
at 48 h for the dual luciferase assay. In the third experi-
ment, we used the Attractene Transfection Reagent (Qia-
gen, USA). Briefly, 400 ng DNA plasmids and/or 6 pmol 
miRNA mimics were used to transfect/co-transfect 
1.6 × 105  cells/well in 24-well plates. Cells were trans-
fected for 48 h and harvested for the dual luciferase assay.

Dual luciferase assay
Transfected cells were assayed using the Dual-GLO® 
Luciferase Assay System (Promega, USA). For each 
sample, the firefly and Renilla luciferase activities were 
measured sequentially by collecting emitted lumines-
cence from the entire visible spectrum (300–700 nm) on 
a Synergy H1 Multi-Mode Reader (BioTek, USA). Briefly, 
the firefly luciferase activity was measured 10  min after 
induction of cell lysis and provision of the firefly lucif-
erase substrate. Then, we quenched the firefly luciferase 
reaction and provided the Renilla luciferase substrate. 
Ten minutes later we captured the Renilla luciferase 
activity. The luminescence measurement for each well 
represents the average of 12 serial luminescence readings.

Each plate included four technical replicates of each 
treatment, plus four control technical replicates (cells 
were exposed only to the transfection reagents) to 
allow background luminescence subtraction. Follow-
ing background subtraction, we calculated the ratios of 
firefly/Renilla luminescences. To compare data across the 
three experiments we normalized data within each exper-
iment to the empty pmirGLO control treatment by divid-
ing each firefly/Renilla ratio by the mean firefly/Renilla 
ratio of the empty pmirGLO control treatment.

Fig. 1  Mpe-miR-92a is predicted to regulate secreted protein 1 
(SP1). The predicted base pairing between mpe-miR-92a and the 
target region in the 3′ UTR of the SP1 transcript. The seed regions 
of mpe-miR-92a are indicated; the mutated target regions are 
highlighted in red
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Statistical analyses
We tested for differences in the normalized firefly/Renilla 
ratios among treatments using one-way ANOVA with 
a fixed factor of treatment and a block effect of experi-
ment, followed by a Tukey HSD post hoc test for multiple 
comparisons in SPSS v.24.

Results
miR‑92a interacts with the predicted target region of SP1 
mRNA in NIH/3T3 cells
To test the predicted miR-92a::SP1 interaction, we per-
formed a dual luciferase assay in NIH/3T3 cells that we 
transfected with a pmirGLO-SP1 construct together 
with mature miR-92a (pmirGLO-SP1 + miR-92a, treat-
ment 3 in Fig.  2). In parallel we performed a series 
of controls that included (i) cells transfected with an 
NIH/3T3 endogenous miRNA construct: pmirGLO-
miR21T (treatment 1, Fig.  2), (ii) a pmirGLO-miR21T 
construct + miR-92a (treatment 2, Fig.  2), (iii) a pmir-
GLO empty construct (treatment 4, Fig.  2), (iv) a pmir-
GLO empty construct + miR-92a (treatment 5, Fig.  2), 
(v) a pmirGLO-SP1 construct (treatment 6, Fig.  2), (vi) 
a pmirGLO-ΔSP1 construct (treatment 7, Fig.  2), (vii) 
a pmirGLO-ΔSP1 construct + miR-92a (treatment 8, 
Fig.  2), and (viii) a pmirGLO-SP1 construct + siRNA 
(treatment 9, Fig. 2).

In the dual luciferase assay, we validated that mpe-
miR-92a specifically interacts with the predicted SP1 
target region. After we removed any random block 
effects (Table  1: experiment, F(2) = 0.948, p = 0.391), we 
observed significant differences in firefly/Renilla ratios 
between groups under different treatment conditions 
(Table 1: treatment, F(8, 11) = 114.567, p < 0.0001; Fig. 2). 
First, the significant difference between the pmirGLO-
miR21T treatments and the empty pmirGLO (p < 0.0001) 
indicated that the dual luciferase assay was working prop-
erly (Fig. 2, treatments 1 vs 4, 2 vs 4). Second, the treat-
ment of pmirGLO-SP1 + miR-92a was also significantly 
different from empty pmirGLO (p < 0.0001, Fig. 2, treat-
ments 3 vs 4) and pmirGLO-SP1 only (p = 0.001, Fig. 2, 
treatments 3 vs 6), indicating that mpe-miR-92a spe-
cifically interacted with the predicted SP1 target region, 
resulting in significant downregulation of the luciferase 
signal. Third, we found no difference between treatments 
of pmirGLO-SP1 only and empty pmirGLO (p = 0.976, 
Fig. 2, treatments 4 vs 6) indicating an absence of endog-
enous NIH/3T3 miRNA interactions with the predicted 
SP1 target region. Fourth, we observed a significant dif-
ference between the pmirGLO-SP1 + miR-92a and the 
pmirGLO + miR-92a (p = 0.003, Fig.  2, treatments 3 vs 
5) indicating that the miR-92a downregulation of pmir-
GLO-SP1 was not the result of interactions between 

miR-92a and the pmirGLO vector. Fifth, we found no sig-
nificant difference between the pmirGLO-SP1 + miR-92a 
and pmirGLO-ΔSP1 + miR-92a treatments (p = 0.072, 
Fig.  2, treatments 3 vs 8), suggesting that miR-92a can 
interact with ΔSP1. However, we found no significant 
difference between the pmirGLO-ΔSP1 and pmirGLO-
ΔSP1 + miR-92a (p = 0.973, Fig.  2, treatments 7 vs 8), 
suggesting that the interaction between miR-92a and 
ΔSP1 was not as strong as the interaction between miR-
92a and the bona fide SP1 target region (Fig. 2). We sus-
pect that the interactions between miR-92a and ΔSP1 
may result from (i) possible G-U wobble base-pairings 
between the mutated nucleotides and miR-92a; and (ii) 
extensive base-pairing in the non-seed region of miR-92a 
(Fig. 1), because the non-seed region of miRNAs (nucleo-
tides 12–17) have been shown in mammalian cells to be 
important for miRNA targeting [22, 23]. Lastly, we found 
a significant difference in signal between the pmirGLO-
SP1 + miR-92a and pmirGLO-SP1 + siRNA (Fig.  2, 
Treatments 3 vs 9), and no difference in signal between 
the pmirGLO-SP1 + siRNA, empty pmirGLO, and pmir-
GLO-SP1 treatments (Fig. 2, Treatments 4 vs 6; 4 vs 9; 6 
vs 9), suggesting that the interaction between miR-92a 
and SP1 is sequence specific.

Discussion
Aphid miR‑92a interacts with SP1
In our dual luciferase assay in NIH/3T3 cells, mpe-miR-
92a physically interacted with the predicted SP1 target 
region, resulting in significant downregulation of gene 
expression (Fig. 2). This assay validates our earlier com-
putational prediction that SP1 is regulated by miR-92a 
[10] and further, highlights both the role of miRNAs as 
regulators of gene expression in aphid bacteriomes, and 
the potential of targeting the miR-92a::SP1 interaction for 
pest aphid control [24, 25].

miRNAs regulate gene expression in aphid bacteriocytes
Aphid gene expression in bacteriomes is crucial to the 
function of the aphid/Buchnera symbiosis. What remains 
elusive are the mechanisms by which the expression of 
these bacteriocyte-specific genes are regulated.

The abundance of proteins in a cell results from the 
dynamic interplay of transcriptional, post-transcrip-
tional (e.g. miRNA regulation), translational, and post-
translational regulation [26–28]. The identification of 
transcriptional regulation in aphids has been limited 
to studies of aphid development and regulation of 
Buchnera gene expression. Three transcription factors: 
Distal-less, Engrailed, and Ultrabithorax/Abdominal-
A have been implicated in bacteriocyte specification 
and development in aphids [29]. While in Buchnera, 
studies have demonstrated limited transcriptional 
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Fig. 2  Dual luciferase assay of mpe-miR-92a::SP1 interactions. The ratios of the firefly luciferase versus the Renilla luciferase activities were 
compared across different treatments. “+” means the presence of the element in the treatment and “−” means the absence of the element in the 
treatment. Expt.: Experimental treatment. The data was tested using 1-way ANOVA, controlling for random block effects, followed by Tukey HSD 
post hoc analysis. The lowercase letters above each whisker (a, b, bc, c, cd, d) denote statistically significant differences between treatments. Error 
bar = ± standard error (n = 12) from three experimental replicates
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regulation of the expression of heat shock [30–33] and 
amino acid biosynthesis genes [34, 35]. More recently, 
a remarkable example of post-translational regula-
tion of amino acid biosynthesis in bacteriocytes has 
been proposed in A. pisum by glutamine transporter, 
ApGLNT1 [36]. ApGLNT1 localizes to the bacterio-
cyte plasma membrane where it transports glutamine 
from aphid hemolymph into bacteriocyte cells. Impor-
tantly, glutamine transport is competitively inhib-
ited by a Buchnera-synthesized essential amino acid 
end-product, arginine. Thus ApGLNT1 regulates the 
transport of glutamine, a host-supplied amino acid 
precursor, by an endosymbiont-synthesized end-prod-
uct via substrate feedback inhibition at the post-trans-
lational level [36].

In other work, post-transcriptional regulation of 
gene expression has been suggested to be important 
for regulation of the aphid/Buchnera endosymbiosis. 
For example, comparison of Buchnera gene expres-
sion in embryonic and maternal bacteriocytes found 
no differences in mRNA abundance, but differences 
in protein abundance that have been attributed to a 
Buchnera encoded set of conserved small RNAs [37, 
38]. In addition, we recently identified a set of evo-
lutionarily conserved aphid miRNAs that are bac-
teriome-specific and/or bacteriome-enriched in M. 
persicae and A. pisum. Notably, many of the conserved 
miRNAs were predicted to target bacteriocyte-specific 
genes of known importance to aphid/Buchnera sym-
biosis [10]. Here using a heterologous expression sys-
tem, we validated one of our predicted miRNA::mRNA 
interactions, the miR-92a::SP1 interaction. Our valida-
tion of the miR-92a::SP1 interaction, coupled with our 
earlier genome-wide analyses, highlight miRNAs as 
post-transcriptional regulators in the aphid/Buchnera 
symbiosis.

miR‑92a and its targets are potential targets for aphid 
control
Recent attempts have been made to develop miRNAs as 
tools for pest control (reviewed in [25]), either by engi-
neering miRNAs for insecticidal activities [39] or by 
silencing insect defensive miRNAs [40]. Here we have 
validated the role of miR-92a in regulation of the orphan, 
bacteriocyte-expressed gene SP1, a gene that encodes a 
secreted protein that has been argued to be important for 
symbiotic function. Since aphids lacking a stable Buch-
nera symbiosis fail to reproduce [41–43], it follows that 
miR-92a offers promise as a target for control of pest 
aphid populations.

Limitations
We validated the M. persicae miR-92a::SP1 interaction 
in a heterologous expression system, the interaction 
remains elusive in vivo.
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Table 1  ANOVA statistics of  mpe-miR-92a and  SP1 dual 
luciferase assays

a  R Squared = 0.904 (Adjusted R Squared = 0.895)

Source Type III
Sum 
of squares

df Mean square F Sig.

Corrected 
model

15.156a 10 1.516 91.843 0.000

Intercept 57.933 1 57.933 3510.743 0.000
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