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Abstract

Parkinson’s disease (PD) patients regularly exhibit abnormal gait patterns. Automated dif-

ferentiation of abnormal gait from normal gait can serve as a potential tool for early diagnosis

as well as monitoring the effect of PD treatment. The aim of current study is to differentiate

PD patients from healthy controls, on the basis of features derived from plantar vertical

ground reaction force (VGRF) data during walking at normal pace. The current work pres-

ents a comprehensive study highlighting the efficacy of different machine learning classifiers

towards devising an accurate prediction system. Selection of meaningful feature based on

sequential forward feature selection, the swing time, stride time variability, and center of

pressure features facilitated successful classification of control and PD gaits. Support Vec-

tor Machine (SVM), K-nearest neighbor (KNN), random forest, and decision trees classifiers

were used to build the prediction model. We found that SVM with cubic kernel outperformed

other classifiers with an accuracy of 93.6%, the sensitivity of 93.1%, and specificity of

94.1%. In comparison to other studies, utilizing same dataset, our designed prediction sys-

tem improved the classification performance by approximately 10%. The results of the cur-

rent study underscore the ability of the VGRF data obtained non-invasively from wearable

devices, in combination with a SVM classifier trained on meticulously selected features, as a

tool for diagnosis of PD and monitoring effectiveness of therapy post pathology.

Introduction

Parkinson’s disease (PD), a highly concerning neurodegenerative disorder affects seven million

people worldwide including one million in US alone [1]. Motor symptoms such as tremor, slow-

ness of movements, rigidity, postural instability, and gait impairment are commonly observed in

PD patients [2]. Such altered dynamics of gait pattern in PD patients compared to their control

counterpart can potentially be exploited to diagnose and quantify longitudinal disease progression.

Gait pattern and characterstics are commonly characterized into three parameter types: 1)

spatiotemporal, 2) kinematic, and 3) kinetic [3]. Spatial parameters include stride length,

which measures the distance between successive points of heel contact. Cadence, duration of

swing, and stance phase are examples of temporal parameters, which provide information
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regarding abnormality or slowness in completing a gait cycle. Kinematic parameters describe

the motion of objects with no consideration to the source of the motion. For example, ankle,

knee, and hip angles at heel strike and toe off are kinematic parameters. Kinetic parameters,

such as ground reaction force during walking, measure the force that causes the motion.

Two types of sensors have been used in previous studies to analyze gait parameters, first, to

directly measure an event within a gait cycle; for example, foot-switch and force sensitive

insoles [4], second, to reconstruct the timing of different phases of a gait cycle; for example,

gyroscopes and accelerometers applied to the foot [5–6]. In this study, force sensitive insoles

were used to measure Vertical Ground Reaction Force (VGRF) data from PD patients and

controls during walking. Previous studies have shown alterations in VGRF characteristics

while walking in different clinical as well as condition requiring physical activity [7–25].

Besides investigating the gait pattern of PD patients, VGRF has also been used frequently to

study the gait of amyotrophic lateral sclerosis (ALS) [7], Huntington’s disease [8], and stroke

patients [10] and elderly people [19]. Table 1 summarizes previous studies based on VGRF

data as a primary signal along with their area of application and research methods.

Multiple methods have been used to differentiate normal and PD gait patterns using VGRF

data. A mathematical model of VGRF time series of PD gait based on an autoregressive model

has been proposed by Alkhatib et al. [4]. However, this model utilizes information from one

sensor, discarding potentially useful information from other force sensors integrated into the

shoe. Gait variability of PD patients based on VGRF has been investigated in other studies

[25–29], in which a significantly increased variability in duration of gait tasks, such as swing

time and stride time, has been observed in PD patients. This work accounts for such variability

by including the swing time and stride time variability obtained from the VGRF data.

Machine learning techniques have been employed for classification of normal and PD gait.

In Manp’s research [24], an artificial neural network (ANN) with one hidden and one output

layer was used to detect PD gait patterns. Basic, kinetic, and kinematic features were fed to the

ANN classifier for binary classification of normal and PD patient walking gait. Although they

demonstrated good accuracy, their experiment relied on an expensive camera setup, making it

cost prohibitive.

The research by Zhang and colleagues [28] conducted machine learning analysis on data-

sets consisting of VGRF recordings along with SVM and sparse representation-based classifi-

ers to correctly classify PD and healthy gait patterns. Change of VGRF with time beneath heels

and toes were extracted as features, ignoring VGRF from other areas of the foot. Classification

accuracies of 83.44% and 81.53% were achieved using sparse representation and SVM classifi-

ers, respectively. However, use of additional features considering VGRF characteristics from

the whole area beneath the foot is expected to improve the classification performance. Classifi-

cation of normal and abnormal gait using the k-Nearest Neighbor (kNN) classifier was con-

ducted by Alkhatib et al. [29] on the same datasets used by Zhang [28]. In this research, VGRF

data from one sensor, instead of an array of sensors, was used to calculate features, and a classi-

fication accuracy of 83% was achieved.

This work addresses the shortcomings of previous work by including new features extracted

from VGRF sensors, objective feature selection, and determining the performance of different

classification methods. We analyzed VGRF time series signal of gait data from an array of

sensors on the left foot for both normal and PD patients during walking at normal pace. Dis-

tinguishing features were extracted using a feature selection algorithm to achieve the best clas-

sifier performance. Four different machine learning classifiers were used to classify the gait

pattern between normal and PD patients.

In the remainder of the paper, the experimental method and details of study data are

explained in the methodology, followed by the results section. Furthermore, we discuss the
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merits of our results along with future improvements in the discussion and conclusion

sections.

Methodology

Database description

The data was recorded by Yogev et al. [30] and was downloaded for analysis from Physionet

website [31, 32]. Time series of the VGRF signal recorded from 29 PD patients (Hoehn and

Yahr score = 2.3±0.40, UPDRS score = 39.31±12.38 mean age 71.1±8.05 years) and 18 age-

matched controls (mean age 71.6±6.6 years) during normal level ground walking were used

[31].

All the subjects were taking antiparkinsonian medications and their prescriptions were

unaltered at the time of experiment. Written consent was collected from all participants, and

Table 1. Related work of Gait Analysis using VGRF.

Related Work of Gait Analysis

Using VGRF Application Area

Features Used Method Used

ALS disease [7] Stride-stride fluctuality Statistical Analysis

(Kruskal-Wallis)

Huntington’s disease [8] Alpha, computed from DFA Detrended fluctuation

analysis

Bilateral coordination of gait [9] Gait asymmetry, phase coordination index Statistical Analysis

(General linear

models)

PD, Huntington’s, ALS [10] Coherence, Entropy Predictive analysis

Running performance [11] Vertical loading rate, impact/passive peak,

active peak

Statistical analysis

Concussion [12] Peak VGRF Statistical analysis

Foot ulcers [13] Total vertical ground reaction force Statistical analysis

Soccer players [14] Peak force at foot flat, peak force at toe off,

time between hell contact and foot flat, time

until toe off

Statistical analysis

Obese [15] Peak VGRF, VGRF loading rate Statistical analysis

Sclerosis [16] VGRF symmetry index Statistical analysis

Hip arthroplasty [17] Principal component Statistical analysis

Hemiplegic patients [18]

Young and elderly gait

recognition [19]

Peak force at foot flat, peak force at toe off,

time between hell contact and foot flat, time

until toe off

Basic, Kinetic and kinematic

Statistical analysis

Predictive analysis

Normal overground and

treadmill walking [20]

GRF maxima Statistical Analysis

Stroke patients [21] Swing time variability, stride time variability Statistical Analysis

Heap Arthroplasty patients [22] Total and average VGRF Statistical and

objective analysis

Lower limb fractures [23] Principal component Principal component

analysis

PD [24] Basic, kinetic and kinematic Predictive analysis

PD [25] Average gait speed, average stride time, stride

time variability, average swing time, average

stride length

Predictive analysis

ALS, amyotrophic lateral sclerosis; PD, Parkinson Disease.

https://doi.org/10.1371/journal.pone.0175951.t001
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the study was approved by the Tel-Aviv Sourasky Medical Center Human Studies Committee.

As per experimental protocol, the subjects walked at their natural pace on level ground for two

minutes, and data was acquired with a sampling frequency of 100 Hz. The system used to col-

lect gait data consisted of eight sensors beneath each foot and a recording unit. A small and

light (19 x 14 x 4.5 cm; 1.5 kg) recording unit was carried at the waist. A memory card con-

tained in the unit stored the measurement data during the test, which was later transferred to

a computer for analysis. To accurately describe the sensor location inside the insole, it was

assumed that the subject was in a comfortable standing position with both legs parallel to each

other. Then, coordinates of the sensor location can be displayed as shown in Fig 1. It was

assumed that (0, 0) is the origin and lies just between the legs and the person was facing

towards the positive side of the Y-axis.

Data preprocessing and gait cycle segmentation

The gait data were processed to remove any extraneous noise or spurious signal. Usually,

VGRF values less than 20N are generated from noise; thus, even when the leg is in the swing

phase and not exerting any force, there may be some small sensor readout. Therefore, the

VGRF time series were filtered such that the VGRF data less than 20N were set to zero in order

to reduce the noise and make it easier to segment the gait cycle [33]. As shown in Fig 2, there

were several noise signals as circled in red, which were removed after the filtering step.

For gait cycle segmentation, to eliminate the effect of gait initiation, the first 20 seconds of

VGRF data was discarded. Then, the time series was divided into individual stride cycles. A

stride cycle is the period of time during which a foot touches the ground, goes off the ground,

and again makes contact with the ground. It was calculated by taking a sequence of non-zero

total VGRF values from all eight sensors followed by a sequence of zero VGRF values in all the

sensors. Each gait cycle was further divided into stance phases and swing phases to simplify

feature extraction from a particular phase. The foot remains touching the ground during the

Fig 1. Sensor locations of insoles on the right and left insoles. X- and Y-axes reflect an arbitrary

coordinate system to scale the positions of the sensors within each insole.

https://doi.org/10.1371/journal.pone.0175951.g001
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stance phase; then the foot swings through the air without touching the ground in the swing

phase, thus completing a gait cycle.

Feature extraction

As evident from previous research [21], [27] stride time variability and swing time variability

are important parameters in distinguishing a PD patient’s gait from normal gait. Usually, an

increased variability of stride time and swing time is observed in PD patients compared to con-

trol subjects. The stride time and swing time of each gait cycle were calculated to capture this

variability. The time of the combined VGRF value was tracked to separate gait signal into mul-

tiple stride cycles. When the combined filtered VGRF value goes to zero after a non-zero

value, new gait cycle begins. Therefore, each gait cycle consists of a sequence of zero values

(swing phase) followed by a sequence of non-zero values (stance phase).

The coefficient of variation was calculated using the following formula:

CV ¼ ða=bÞ � 100 ð1Þ

where a is the mean of a feature calculated from VGRF values among all eight sensors of either

the left or right foot and b is the standard deviation of the feature.

As PD patients tend to put less pressure during placing the heel strike and toe off than con-

trol subjects [29], maximum VGRF at heel strike and toe off for each gait cycle was computed.

The mean and standard deviation of the VGRF overall gait cycles were taken as features for

classification.

Healthy individuals present a characteristic weight distribution where the center of pressure

(CoP) shifts from heel to toe over the course of a stance phase. As PD patients tend to be more

flat footed, a transition in CoP shows variation from normal CoP. For this reason, mean and

standard deviation of x- and y-coordinates of CoP were computed and extracted as features

for machine learning classifier. Mean skew and kurtosis values of VGRF gait cycle were also

computed. Another feature was the mean peak power of VGRF signal over all the gait cycles in

the frequency domain. All features used are listed in Table 2.

Feature selection

Sequential forward selection. A sequential forward selection algorithm was applied to

select an optimal subset of features that provide the best accuracy to detect PD gait. Stride time

variability was first added to the empty feature set. For this feature, subsequent cross-validation

accuracy to classify PD and control gait was determined. All the other features were added

Fig 2. VGRF Signal During Walking. (A) Unfiltered VGRF data. Unwanted VGRF data is circled in red. Right

circle represent small amount of VGRF noise value between two stance phases. VGRF noise can also be

seen at the end and beginning of stance phase (middle red circle). (B) Filtered VGRF data.

https://doi.org/10.1371/journal.pone.0175951.g002
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sequentially to the feature vector, and performance of the model was evaluated. If adding extra

features resulted in a decrease of classification accuracy, then those features were omitted from

final analysis. For optimal feature selection, SVM with linear kernel was selected to predict the

model accuracy.

Minimum redundancy maximum relevancy feature selection (MRMR). The minimal-

redundancy-maximal-relevance (MRMR) method proposed by Peng et al. was used for opti-

mum selection of features for classification [34]. Unlike other top ranking feature selection

methods, this method considers relationships among features. Here feature sets, which satisfy

maximum relevancy criteria by analyzing mutual information between the features, are

selected. Simultaneously, a minimal redundancy condition is added to selected feature sets

that are mutually exclusive.

Mutual information based feature ranking method. The mutual information based fea-

ture ranking algorithm described in Pohjalainen’s work [35] was also tested in this study for

feature selection. The algorithm assigns weight to each feature, thus forming a ranking of

more relevant feature subsets.

Classification

In order to differentiate PD gait patterns from normal gait patterns, different machine learning

classification techniques were tested to ensure the best accuracy. As a result, we evaluated

Table 2. List of features extracted from the vertical ground reaction force data.

Features Description

Coefficient of Variation (CV) of swing time CVswing = (mean/standard deviation) * 100

Coefficient of Variation (CV) of stride time CVstride = (mean/standard deviation) * 100

Mean Center of Pressure (CoP) of x-coordinate (Newton)
Mean of COPx ¼

Pn
i six�fðsix ÞPn
i fðsix Þ

where n is the number of sensors, six is x-coordinate of that sensor, and f(six) is the VGRF

value of sensor i in N

Standard deviation of Center of Pressure (CoP) of x-

coordinate (Newton)
Standard Deviation of COPx ¼

Pn
i six�fðsixÞPn
i fðsixÞ

where n is the number of sensors, six is x-coordinate of that sensor, and f(six) is the VGRF

value of sensor i in N

Mean Center of Pressure (CoP) of y-coordinate (Newton)
Mean of COPy ¼

Pn
i siy�fðsiy ÞPn

i
fðsiy Þ

where n is the number of sensors, siy is y-coordinate of that sensor and f(siy) is the VGRF

value of sensor i in N

Standard deviation of Center of Pressure (CoP) of y-

coordinate (Newton)
Standard Deviation of COPy ¼

Pn
i siy�fðsiy ÞPn

i
fðsiy Þ

where n is the number of sensors, sjy is y-coordinate of that sensor, and f(siy) is the VGRF

value of sensor i in N

Mean peak force at heel strike (Newton) Mean of maximum value of VGRF force of sensors beneath heel for first five sample points in

stance phase

Mean peak force at toe strike (Newton) Mean of maximum value of VGRF force of sensors beneath toe for last five sample points in

stance phase

Standard deviation of peak forces at heel strike (Newton) STD of maximum value of VGRF force of sensors beneath heel for first five sample points in

stance phase

Standard deviation of peak forces at toe strike (Newton) STD of maximum value of VGRF force of sensors beneath heel for first five sample points in

stance phase

Mean kurtosis (Second) Mean kurtosis of the gait cycle duration

Mean skewness (Second) Mean skewness of the gait cycle duration

Mean Peak power of VGRF signal (Decibel) Mean maximum power from Power Spectral Density analysis of a VGRF gait cycle

https://doi.org/10.1371/journal.pone.0175951.t002
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classification methods, including supervised learning with support vector machines (SVM), an

instance-based learning technique called k-nearest neighbor (kNN), random forest, and deci-

sion trees to classify the gait patterns of normal and PD patients. Accuracy, sensitivity, specific-

ity, and area under the curve of receiving operator characteristics (ROC) were compared for

each classifier.

Support vector machine. First, we have applied a state-of-the-art SVM-based classifier. In

binary classification, SVM creates a hyperplane that separates data from two different classes.

The largest possible distance is established between the separating hyperplane by maximizing

the margin, thus creating the separation [36].

The choice of kernel determines the separation boundary of the classes. Radial Basis Func-

tion (RBF) or Gaussian kernel are popular algorithms to use as default kernels for any non-lin-

ear model. RBF is defined as [37]:

Kðx; x0Þ ¼ expð� gjjx � x0jj2 ð2Þ

where x and x0 are two training samples of the feature space and γ determines the influence of

the squared Euclidian distance between the feature vectors x and x’ to build the hyperplane

[37]. Quadratic and cubic kernels are polynomial kernels with degrees of 2 and 3, respectively.

Polynomial kernels are defined by [38] as follows:

Kðx; yÞ ¼ ðx:y þ 1Þ
d

ð3Þ

where x and y are vectors in the input space (i.e., vectors of features computed from training or

test samples) and d is the degree of the polynomial. It is generally not advised to consider

higher order polynomials because they tend to over-fit the data.

K-Nearest neighbour. The next classification technique applied was an instance-based

statistical method, kNN. This method is based on the principle that the instances of a dataset

will remain in close proximity with the other instances that have similar properties [39]. In this

method, a test example is classified by observing the class label of its adjacent neighbors. The

kNN find outs the k nearest instances to the query instance and identifies its class by finding

the single most common class label [40].

Decision tree. Decision trees, a hierarchical classifier method, is the simplest and most

widely used logic-based classification technique [41]. In this approach, the test data is classified

by sorting as trees based on their feature values. The node of the decision tree is the feature of

the test data to be classified, and the branches represent a value that the node can predict. Vari-

ous efficient algorithms have been developed to construct a reasonably accurate decision tree

such as Hunt’s algorithm [42], Gini’s diversity index method [43], and relief algorithm [44].

Random forest. A random forest [45] is composed of a large number of decision trees

which are mainly used to correct the overfitting problem of decision trees. In this technique,

multiple decision trees, trained from different subsets of the same training set, are averaged,

and overfitting is avoided by reducing the variance of the system, which eventually increases

the performance of the final model. The training algorithm works by applying bootstrap aggre-

gating, or bagging techniques, to tree learners.

Classification experiment

The accuracy of a classification technique is judged based on prediction accuracy. There are

three standard methods to evaluate prediction accuracy. The first technique is to split a certain

ratio (generally 2/3) of the whole dataset to use as a training set to train the classifier while

using the rest of the data as a test set to evaluate the prediction performance. Another tech-

nique, cross-validation, divides the dataset into equal-sized mutually exclusive subsets; for one
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subset, the classifier is trained by the union of other subsets. The average error rate is then

used as the error rate of the classifier. The third technique is the leave one out method, which

is mainly used for small datasets. This is a particular form of cross-validation where only one

instance is used as the test set while all other data are used for training the classifier. For our

system, we used the leave one out method to predict the accuracy.

SVM employs kernels to map the data into a higher-dimensional feature space where data

can be separated by a hyperplane [46]. As swing time variability and stride time variability are

two of the essential features, the model was build first with training the classifier with two fea-

tures. Additional features were added individually, and the accuracy of the model was tested.

When adding a new feature decreased the model performance, it was removed for best model

prediction accuracy.

Next, the model was trained with different SVM kernels. In addition to a linear kernel,

Gaussian, quadratic and cubic kernels were used to predict the model accuracy with leave one

out validation. For kNN, different values for k were tested; the system operated best when the

number of neighbors was ten (k = 10). The distance matrix calculation approach was Euclid-

ean, and the distance weight was kept equal. For decision tree, the maximum number of splits

was twenty for best performance. The split criterion used were Gini’s diversity index method.

Similarly, for random forest technique, for best performance the ensemble method chosen for

the proposed system was AdaBoost with the maximum number of splits selected as twenty.

The number of learners set at thirty with a learning rate of 0.1.

After selecting the best model for kNN, decision trees, and random forest, all the classifica-

tion models were trained with the chosen features, and leave one out validation was done on

the training model to calculate the prediction accuracy. We also analyzed the system perfor-

mance by applying dimensionality reduction based feature selection using Principle Compo-

nent Analysis (PCA). PCA mainly used for retaining most significant features with highest

between group variance [47]. Principle components which account for 95% of the variance in

the feature matrix were retained during the calculation.

Results

From the feature selection algorithm, a subset of ten features was selected out of a total of 13

computed features. On applying the sequential forward feature selection algorithm, skewness,

kurtosis, and peak power of VGRF features were excluded as adding these features did not

improve the classifier performance. On the other hand, MRMR and mutual information based

feature ranking methods excluded mean COP of y-coordinate, standard deviation of peak

force at toe strike and peak power of VGRF. From Table 3, it can be seen that sequential for-

ward selection performs best when these features are tested with SVM classifier with a linear

kernel. So features selected with this approach were used for testing with other classifiers

The results regarding the comparison of different classifiers are listed in Table 4. The met-

rics used in the study to evaluate the classifier performance are leave-one-out cross-validation

accuracy, sensitivity, specificity, and area under the curve (AUC) of ROC.

Within SVM, results of evaluation metrics with respect to different kernels are shown in

Table 5. The accuracy of PCA-based feature selection on the best performing kernel is also

reported in Table 5.

Table 6 illustrates the comparison of the best performing classifier to other two studies that

reported classification results on the same dataset. Since sensitivity, specificity, or AUC was not

reported in these papers, the classification performance comparison was only based on classifi-

cation accuracy. As shown in Table 6, the higher classification accuracy between the two other

studies is 83.44%, i.e., about 12% less than the results obtained by our proposed method.

Vertical ground reaction force marker for Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0175951 May 11, 2017 8 / 13

https://doi.org/10.1371/journal.pone.0175951


Discussion

The goal of this study was to develop an algorithm for VGRF-based gait measurement to dis-

tinguish between gait from PD patients and healthy individuals. In contrast with previous

studies, the proposed study tested a combination of different classifiers and features to find the

optimal set to classify gait of normal and PD patients accurately. Features related to the charac-

teristics of normal and PD gait were obtained by an in-depth study of a PD patient’s foot strike

pattern. Features used in previous studies were also taken into account. The classification accu-

racy was used to assess differences in gait patterns between healthy and PD patients to demon-

strate the potential of the extracted features.

As illustrated in Table 4, among various classification techniques, the SVM classifier can

differentiate PD from normal gait with the highest accuracy. SVM with linear kernel shows

about 2% better performance than the second best classifier, kNN. Several kernels were evalu-

ated to optimize the performance further. Performance metrics of SVM classifier in response

to different kernels are shown in Table 5. It is seen from Table 5 that the polynomial kernels

performed better than the more popular Gaussian kernel. Among polynomial kernels, cubic

kernel shows the best accuracy at 95.7% on training model with 94.4% sensitivity, 96.6% speci-

ficity, and an AUC of 0.980. After applying PCA on selected features, subset accuracy dropped

about 2.1%. Since the number of features in feature subset is only 10, further dimensionality

reduction using principal component analysis results in decreased classification accuracy.

Since the accuracy was reduced, we would suggest running the algorithm without PCA. As the

dataset was not large enough, instead of dividing it into the train and test sets, leave one out

cross-validation accuracy was performed on the feature vector.

Compared to Manap’s results [24], our analysis achieved a similar classification rate

(approx. 95%). However, in their study, basic, kinetic, and kinematic parameters of gait were

considered, which led to significant increases in cost and computational complexity. When

only VGRF data have been taken into account in their study, classification accuracy was

reduced to 81%. On the other hand, we obtained 95% accuracy while extracting information

from the VGRF time series only.

Table 3. Comparison of different feature selection methods.

Feature selection method Selected Features Accuracy AUC

Forward Feature Selection CV swing time, CV stride time, Mean COPx, SD COPx, Mean COPy, SD COPy, Mean PF

at heal strike, Mean PF at toe strike, SD PF at heal strike, SD PF at toe strike

91.6% 0.94

Minimum Redundancy Maximum Relevancy

Feature Selection (MRMR)

CV swing time, CV stride time, Mean COPx, SD COPx, SD COPy, Mean PF at heal

strike, Mean PF at toe strike, SD PF at heal strike, Mean kurtosis, Mean skewness

83.1% 0.86

Mutual information based feature ranking

method

CV swing time, CV stride time, Mean COPx, SD COPx, SD COPy, Mean PF at heal

strike, Mean PF at toe strike, SD PF at heal strike, Mean kurtosis, Mean skewness

83.1% 0.86

CV, Coefficient of Variation; COPx, Center of Pressure (CoP) of x-coordinate; COPy, Center of Pressure (CoP) of y-coordinate; SD, Standard Deviation; PF,

Peak Force.

https://doi.org/10.1371/journal.pone.0175951.t003

Table 4. Comparison of different classifiers.

Classifier Accuracy Sensitivity Specificity AUC

SVM (Linear) 91.6% 93.1% 90.1% 0.94

Random forest 89.4% 88.9% 89.7% 0.89

kNN 85.1% 83.3% 86.2% 0.85

Decision tree 87.21% 88.9% 86.2% 0.88

https://doi.org/10.1371/journal.pone.0175951.t004
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Table 6 shows that our method outperforms two other studies on the same dataset on each

of the evaluation metrics. The better performance of our algorithm is due to the unique selec-

tion of features and classifier. None of the other studies considered CoP of PD patient during

walking as a discriminative feature to classify PD gait. Also, maximum force during foot place-

ment at the ground and off the ground was not considered in those studies. Our study demon-

strated that CoP during the stance phase in combination with gait variability and maximum

VGRF feature achieved good classification accuracy. Alkhatib et al. achieved 83% classification

accuracy by proposing ANN for classifying normal and pathological gait, ignoring SVM [29].

Zhang et al. investigated sparse representation based classification algorithm LC-KSVD and

SVM [24], [28] and achieved an 83.3% and 81% classification accuracy, respectively, from fea-

tures extracted from force data of heel and toe from the left and right foot (LRHT). On the

other hand, a range of machine learning classifiers with different kernel functions was applied

to classify the normal and PD VGRF time series. Also, a large set of features were computed

from the dataset, and a subset of useful features was selected to feed into the classifier, which

resulted in significantly improved classification accuracy in our study.

It is worth noting that the present study is limited in the disproportionate sample size of

control and pathological groups. Furthermore, only vertical component of ground reaction

force (GRF) was investigated in our study as the system did not capture GRF in other direc-

tions. However, it is evident from our work that vertical component of GRF alone is able to

separate the gait pattern of PD and control with reasonable accuracy with the advantage of

lower computational complexity.

Our study demonstrated that VGRF time series along with an SVM classifier could lead to

accurate prediction of PD gait. Sensors used in the study can be easily integrated with shoes so

that the system is very unobtrusive, which would facilitate PD progression monitoring on a

daily basis. The pressure insoles which record VGRF signals are low cost, reducing the overall

cost of the system.

Conclusion

In this study, an extensive machine learning approach was investigated on a publicly available

dataset of gait data of PD patients and control subjects. By using VGRF, this work proposed a

set of meaningful features which can successfully differentiate healthy and pathological gaits.

The most suitable classifier was found by testing SVM, random forest, kNN, and decision tree.

Table 5. Comparison of different kernels.

Kernel Accuracy Sensitivity Specificity AUC

Linear 91.6% 93.1% 90.1% 0.944

Gaussian 91.5% 88.9% 93.1% 0.973

Quadratic 89.4% 88.9% 89.7% 0.952

Cubic 95.7% 94.4% 96.6% 0.980

Cubic with PCA features 93.6% 88.9% 96.6% 0.973

https://doi.org/10.1371/journal.pone.0175951.t005

Table 6. Comparison with other works on the same database.

Research Classifier Used Classification Accuracy

Zhang [19] LC-KSVD 83.44%

Alkhatib [20] KNN 83.00%

Proposed method SVM 95.70%

https://doi.org/10.1371/journal.pone.0175951.t006

Vertical ground reaction force marker for Parkinson’s disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0175951 May 11, 2017 10 / 13

https://doi.org/10.1371/journal.pone.0175951.t005
https://doi.org/10.1371/journal.pone.0175951.t006
https://doi.org/10.1371/journal.pone.0175951


The best classification performance was obtained from features based on stride and swing

phase variability, maximum force at heel strike and toe off, and location of the center of pres-

sure during walking. The results demonstrated by the classification accuracy showed the effec-

tiveness of the proposed approach. Overall, it is believed that the proposed VGRF features-

based machine learning approach has the potential for application in clinical diagnosis and

longitudinal monitoring.

It is already proved in Ota et al.’s study [48] that non-linear properties like fractal properties

of PD gait contain significant information. In our future work, non-linear properties of PD

gait will be analyzed, and fusion of non-linear and linear features will be investigated to see

whether this leads to improvement in classification accuracy for PD diagnosis.
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