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Abstract

Single Nucleotide Polymorphisms (SNPs) are the most common candidate mutations in

human beings that play a vital role in the genetic basis of certain diseases. Previous studies

revealed that Solute Carrier Family 26 Member 4 (SLC26A4) being an essential gene of the

multi-faceted transporter family SLC26 facilitates reflexive movement of Iodide into follicular

lumen through apical membrane of thyrocyte. SLC26A4 gene encodes Pendred protein, a

membrane glycoprotein, highly hydrophobic in nature, present at the apical membrane of

thyrocyte functioning as transporter of iodide for thyroid cells. A minor genetic variation in

SLC26A4 can cause Pendred syndrome, a syndrome associated with thyroid glands and

deafness. In this study, we performed in-silico analysis of 674 missense SNPs of SLC26A4

using different computational platforms. The bunch of tools including SNPNEXUS, SNAP-2,

PhD-SNP, SNPs&GO, I-Mutant, ConSurf, and ModPred were used to predict 23 highly con-

fident damaging and disease causing nsSNPs (G209V, G197R, L458P, S427P, Q101P,

W472R, N392Y, V359E, R409C, Q235R, R409P, G139V, G497S, H723R, D87G, Y127H,

F667C, G334A, G95R, S427C, R291W, Q383H and E384G) that could potentially alter the

SLC26A4 gene. Moreover, protein structure prediction, protein-ligand docking and Molecu-

lar Dynamics simulation were performed to confirm the impact of two evident alterations

(Y127H and G334A) on the protein structure and function.

Introduction

In last few years, genome-wide association studies (GWAS) tested a huge number of SNPs in

thousands of people and highlighted reproducibly distinguished numerous relationships

among the common genetic variants and diseases with their traits [1]. These studies have

advanced from measuring 100,000 SNPs to one million, and test sizes have increased signifi-

cantly as the need of variations that make the analysis of diseases easier has escalated [2]. The
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fast increment in the quantity of GWAS has given a phenomenal chance to look at the poten-

tial effect on the complex diseases of the common genetic variants by methodically recording

and condensing key attributes of the inferred associations and their associated SNPs respec-

tively [3].

Single nucleotide polymorphisms (SNPs) act as indicators in the association and linkage

studies for detecting the part of genome involved in a particular disease [4]. The polymor-

phisms present in the coding and the regulatory regions may themselves be embroiled in the

diseases [5]. A SNP that causes an amino acid substitution is termed as Non-Synonymous SNP

and is of great focus and interest due to the huge number of amino acid variations that are

known to lead towards the gene lesions that cause diseases [6]. The studies to detect SNPs

along with the mutagenesis analysis complement each other to identify the amino acid substi-

tutions in the protein coding regions, as each variation can potentially alter the function or

structure of a protein [7].

In the present world of genetics, a major goal remains to comprehend the substantial part

of the disease-causing genetic mutations and variants [8]. Characterizing the variants on the

basis of their nature, organizing an extensive study on analysis of SNPs associated with a gene

relating to a particular disease and carrying out in depth associative studies are a requirement

of the current era [9]. Until now, our understanding of human gene mutations and variations

remains elementary. According to Annotation Release 109, GRCh38.p12 of Homo sapiens, the

cytogenic location of SLC26A4 is 7q22.3, that means it is located at long arm of chromosome

known as q arm at position 222.3, whereas the gene is molecularly located at base pairs

107,660,635 to 107,717,809 on chromosome 7 [10].

The human population has moderately restricted genetic variations. Numerous uncommon

hereditary variations exist in the humans, yet the majority of the heterozygosity in the popu-

lace is inferable from commonly existing alleles [11]. The rare variations incorporate the essen-

tial drivers of uncommon, Mendelian diseases, having these alleles commonly being later in

root and exceptionally penetrant. Whereas, a few also believe that the basic variations may

contribute fundamentally to hereditary hazard for the common diseases to occur [12]. The

approach towards the common diseases caused by common variants leads to the Pendrin pro-

tein causing a set of abnormalities. SLC26A4 gene has some genetic variations that are identi-

fied to be involved in both non-syndromic deafness related with vestibular aqueduct

enlargement and Pendred syndrome, and it is necessary to study molecular confirmation of

Pendred Syndrome Gene in diagnosis of these diseases [13].

Pendrin protein produced by the translation of SLC26A4 gene, is a profoundly hydropho-

bic protein comprising of total 780 amino acids [14]. Along with 12 transmembrane domains

it has amino-and carboxyterminus located in it [15]. In one of the intracellular carboxytermi-

nus, pendrin protein comprises of a supposed sulfate transporter and a domain, antisigma

factor opponent,STAS [16] which has known to be involved along with pendrin in communi-

cating with cystic fibrosis conductance controller regulatory space (CFTR) in particular epithe-

lia [17]. By communicating the PDS gene in heterologous cell frameworks, it was exhibited

that pendrin was playing a role as a transporter of various chloride, anions, formate, iodide,

and bicarbonate, however not sulfate, notwithstanding a nearby homology between this pro-

tein and most of the sulfate transporters [18].

The study of candidate genes tends to decrease the quantity of SNPs to a set of mutations

from which the genes are destined to build up the genetic foundation of disease under consid-

eration [14]. Although, if extensive data sets of the candidate genes are viewed as, different test-

ing of hundreds or even thousand number of SNPs for our situation too makes the detection

of association troublesome[19]. A conceivable method to conquer the issue of testing overpow-

ering quantities of SNPs, particularly on account of the candidate gene studies, is to organize
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SNPs as per their priority of functional significance [12]. Prior natural information in the

existing databases can be utilized to lessen the quantity of SNPs by concentrating on particular

genomic regions, the computational methodologies and aptitude is utilized to segregate

between the neutral SNPs and the SNPs of likely functional importance [20].

These days, more refined computational methods are bieng created, that help in developing

high-throughput, practical path in identification of change in structure, capacity and strength

of protein as result of some variation [7,21]. Keeping in view the essentialities, the current

study was carried out to identify and predict pathogenic SNPs in SLC26A4 gene, their disease

associations and the effect of deleterious nsSNPs in the protein structural behavior. For the

prediction of pathogenic nsSNPs in SLC26A4 gene, we used SNPNEXUS [22], SNAP2 [23],

SNPs&GO [24], PhD-SNP (Predictor of human deleterious single nucleotide polymorphisms)

[25], I-Mutant [26] and Mu-Pro [27]. For identifying amino acid residues conservation Con-

Surf [28] was used. ModPred [29] was used to identify post translational modification sites in

the protein. SPARK-X [30] provided platform for generating three dimensional structures of

mutant and native PDS protein and these srtructures were refined by using ModRefiner [31].

In order to see the structural variance and difference in interacting behaviors of native and

mutants we did protein-ligand docking where COACH was used for predicting ligand binding

sites. PyMOL [32] was used for protein-ligand docking to observe the structural variation of

native and mutant proteins with surrounding ligands. LigPlot was used for the visualization of

three dimensional structures of protein and for identifying the interactive behavior of both

native and mutated amino acids with ligands. For the clear depiction of structural variantions

with time, Molecular Dynamics simulation was done by GROMACS 5.1.2 [33].

Materials and methods

The schematic illustration of the methodology utilized in this study is given in Fig 1.

Dataset download

The nucleotide sequence in FASTA format (Accession number: NC_000007. 14), Pendrin pro-

tein amino acid sequence (NP_000432.1) were downloaded from NCBI (http://www.ncbi.nlm.

nih.gov) and datasets related to SNPs of SLC26A4 gene were obtained from NCBI database of

SNPs (dbSNP (http://www.ncbi.nlm.nih.gov/snp/). Whereas data regarding Pendrin gene and

protein were obtained from OMIM database (http://www.omim.org).

Prediction of functional impact of SNPs

The effects of SNPs were predicted using certain online tools and servers including

SNPNEXUS (https://www.snp-nexus.org) and SNAP2 (https://www.rostlab.org/servces/snap/

). server. Out of which SNPNEXUS has further embedded tools like SIFT and PolyPhen. Both

of the servers take into account different inputs and classify the possible SNPs on the basis of

their respective confidence scores. For non-synonymous single amino acid substitution,

SNPNEXUS provides the predicted effect on protein function (Tolerated or Damaging) based

on the SIFT and PolyPhen predictions [22]. SIFT classifies the variants based on a tolerance

index score and those with score�0.05 are considered to be deleterious. Whereas, the Poly-

Phen output consists of a score that ranges from 0 to 1, with zero indicating a neutral effect of

amino acid substitutions on protein function and 1 indicates the most damaging behavior.

SNAP2 enables a comparison across the genomes while predicting functional effect of changes

at amino acid level [23]. The common nsSNPs from both the servers were taken into account

for further analysis.
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Prediction of disease association of SNPs

PhD-SNP (http://snps.biofold.org/phd-snp/phd-snp.html) and SNPS&GO (http://snps-and-

go.biocomp.unibo.it/snps-and-go/) were used for determining association of filtered SNPs

with disease. PhD-SNP is an online tool used to predict the association of diseases with the

SNPs with an accuracy rate of 78%. Classifying the SNPs into disease associated or neutral it

ranks them on a scale of 0 to 9 [24]. SNPs&GO is an accurate tool which predicts disease asso-

ciated amino acid change at a single position in a specific protein including functional classifi-

cations with overall 82% prediction accuracy [25]. The inputs given to SNPs&GO were the

UniProt accession number (043511) of Pendrin protein and mutation position of both native

and mutated amino acid.

Impact on protein stability

The SNPs tend to affect protein strength by either decreasing or increasing the protein stabil-

ity. To predict these effects, a pair of tools was used to maximize the confidence of the

Fig 1. Schematic representation of the overall schema followed in the study.

https://doi.org/10.1371/journal.pone.0225368.g001
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alterations caused. I-Mutant (http://folding.biofold.org/i-mutant/i-mutant2.0.html), predicts

the impact of SNPs in changing stable state of a protein. The accuracy of the tool goes up to

77% [26]. The input for I-Mutant was pendrin protein amino acid sequence and mutations of

residues along with positions. MUpro, a group containing many machine learning programs,

identifies the differences in protein states and strength due to the impact of amino acid muta-

tion [27]. The inputs for MUpro was as that of I-Mutant but MUpro also takes positions of

substitutions along with original and mutated residue.

Sequence conservation analysis

ConSurf, an online tool was used for Pendrin protein conservation analysis (http://ConSurf.

tau.ac.il/). ConSurf is an efficient tool for predicting the high-throughput functionalities of the

target regions of the proteins. For every residue of the protein of interest, the conservation

analysis is shown on a scale of 1 to 9. On the scale, 1–3 score is referred as variable, 4–6 as aver-

age and 7–9 scores are showing highly conserved regions [28]. The tool takes FASTA protein

sequence as an input.

Post transcriptional modifications sites (PTMs) prediction

The Post-transcriptional modification sites comprise of numerous kinds of amino acid modifi-

cations which give rise to the broad spectrum of proteins being generated. Methylation, phos-

phorylation, acetylation and ubiquitination are some of the characterized PTM sites. These

sites play a vital role in important aspects of cellular organization like protein-protein interac-

tions and signaling pathways that are associated with diseases. Thus, predicting PTM informa-

tion helps understand the effect of variations in terms of disease association or pathogenicity.

ModPred was used for predicting the overall PTMs (http://www.modpred.org/). ModPred by

using protein sequences predicts PTMs within them. It incorporates 34 gatherings of strategic

relapse abstractions that are prepared autonomously using a group of 126,036 non-excess prac-

tically confirmed sites for 23 distinct variations, accomplished by consulting open databases

[29].

Protein modelling

A structural analysis was performed to evaluate the structural stability of the native and mutant

proteins. As the structure of PDS protein is not reported yet so we predicted the native protein

structure using MODELLER 9.11 package. FOLDX was used for refinement, repairing, energy

minimization and mutant generation using native predicted structure of VHL protein. For the

verification of protein models SAVES server (http://servicesn.mbi.ucla.edu/SAVES/) was used.

It has a set of six integrated modules including RAMACHANDRAN plot which provides

information about conformation of residues in allowed and disallowed regions and is used for

structural evaluation of protein [34].

Prediction of binding sites for ligand & docking

Molecular docking analysis was performed to identify structural variations of native and wild

type PDS protein structures by comparing the binding affinities of six ligands (4KU, BCT,

DMU, IOD, MG, XAN) with these structures. In order to see the structural variations among

native and mutant structures, we first predicted the binding sites for ligands in the Pendrin

protein using COACH (http://zhanglab.ccmb.med.umich.edu/COACH/)which is a tool that

uses binding site approaches or interactions prediction, particularly binding sites of proteins

and ligands. COACH uses two comparative methods TM_SITE and SSITE for identification
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of binding sites for ligands [35]. PyMol was used for docking all three structures with ligands

separately. The interacting residues of native and mutant protein structures with neighbor

ligands were further analyzed by LigPlot and the resultant 2D depictions were compared to

identify any possible changes in interacting residues caused by the mutation.

Molecular dynamics simulations

In order to compare the structural changes with time, we performed Molecular Dynamics

(MD) simulation of native and mutant structures using GROMACS version 5.1.2 that was exe-

cuted on Z-book computing machine with 16 GB RAM and Ubuntu 18.04. Initial calculation

was performed using GROMACS-OPLS-AA force field. Systems were solvated in a cubic

box with water molecules at 1 nm (10 Å) marginal radius and electrical neutralize of systems

was done by adding 10 sodium Na+ to the simulation box using genion tool in the GROMACS.

Steepest descent minimization algorithm with energy step size 0.01 and maximum number of

iteration 50000 was used for the energy minimization. Berendsen temperature (tcouple) of

300K and Parrinello-Rahman (pcouple) pressure of 1 bar were used to keep the system in sta-

ble environment whereas the coupling constant was adjusted at 0.1 and 2.0 ps for temperature

and pressure respectively. Partial Mesh Ewald (PME) algorithm was used for all electrostatic

interactions. Short-range cut-off for van der wall (rvdw) and electrostatic (rcoulomb) was

fixed at 1.0 ns whereas; neighbor list (nstlist) was set at 10 ns. LINCS algorithm was used to

constrain all bonds including heavy atom-H bonds and the time step was set at 0.002 ps. Iso-

thermal compressibility was set at 4.5x10-5. Structures were equilibrated for 100 ps in NPT

(pcoupl) and NVT (tcouple). Lastly, 10-ns MDS was performed for both native and mutant

structures and trajectories were stored every 1 ps. We then computed the comparative analysis

of structural deviations among wild type and mutant structures. RMSD, RMSF, SASA, Rg,

temperature, pressure and density plot analysis were carried out using g_rms, g_rmsf, g_sasa,

g_Rg and g_density tools, respectively. All plots were generated using XMGRACE program.

Results

Human SLC2A46 gene contains a total number of 14473 single nucleotide polymorphisms).

Out of which 674 were non-synonymous SNPs (4.70%), 12494 lay in intronic regions

(86.30%), 240 were reported to be synonymous SNPs (1.80%), 872 lay in the UTR regions of

the protein (6.02%). The splice site mutations reported were 20 (0.14%), whereas 143 (0.99%)

were known to be frame shift and 30 (0.20%) as stop gained mutations. Fig 2 depicts the distri-

bution of SNPs under each category.

Prediction of nature of SNPs

SNPNEXUS and SNAP2 servers were simultaneously used to predict the nature of the SNPs to

get high confidence results. A total of 674 nsSNPs were the input for SNPNEXUS, it consults

the databases integrated to it and assigns an index score to each reported nsSNP. According to

SIFT indexing 298 (44.2%) of the nsSNPs were predicted to be deleterious with the score< =

0.05, out of these 189 nsSNPs were reported to be highly deleterious with a confidence score of

0.00. The PolyPhen indexing which is based on the structural information and Multiple

Sequence Alignment categorized 182 of the nsSNPs as ‘probably damaging’ and 112 as ‘possi-

bly damaging’. Hence, 294 (43.6%) of nsSNPs were predicted damaging by PolyPhen.

For the purpose of attaining the highest confident results, 46 nsSNPs were filtered out by

combining information from SIFT and PolyPhen. These 46 nsSNPs were then provided to

SNAP2 server for further validation. This reported 43 of the nsSNPs to be causing some
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“effect” on function of protein and only 3 were predicted to be “neutral”. A representation of

the results of functional consequences of nsSNPs is in Table 1.

Prediction of SNPs associated with disease

The filtered and reduced number of polymorphisms then subjected to the question that

whether they are disease associated or not. 46 high confidence nsSNPs were then provided to

Fig 2. Distribution of SNPs.

https://doi.org/10.1371/journal.pone.0225368.g002

Table 1. Impacts of changes in SLC26A4 gene due to amino acid substitution predicted by SNPNEXUS and SNAP2.

dbSNP Variant Protein Mutation SIFT Score Prediction PolyPhen Score Prediction SNAP2 Expected Accuracy %

rs111033303 G|T ENSP00000265715 G209V 0 deleterious 1 probably damaging effect 95

rs111033380 G|A ENSP00000265715 G197R 0 deleterious 1 probably damaging effect 95

rs773076588 T|C ENSP00000265715 L458P 0 deleterious 1 probably damaging effect 85

rs758015694 T|C ENSP00000265715 S427P 0 deleterious 0.999 probably damaging effect 85

rs529182720 A|C ENSP00000265715 Q101P 0 deleterious 0.999 probably damaging effect 91

rs373738509 T|C ENSP00000265715 W472R 0 deleterious 0.999 probably damaging effect 91

rs201562855 A|T ENSP00000265715 N392Y 0 deleterious 1 probably damaging effect 95

rs776063528 T|A ENSP00000265715 V359E 0 deleterious 0.999 probably damaging effect 80

rs147952620 C|T ENSP00000265715 R409C 0 deleterious 1 probably damaging effect 95

rs752485540 A|G ENSP00000265715 Q235R 0 deleterious 1 probably damaging effect 91

rs111033305 G|C ENSP00000265715 R409P 0 deleterious 1 probably damaging effect 95

rs756272252 G|T ENSP00000265715 G139V 0 deleterious 1 probably damaging effect 80

rs111033308 G|A ENSP00000265715 G497S 0 deleterious 1 probably damaging effect 85

rs121908362 A|G ENSP00000265715 H723R 0 deleterious 1 probably damaging effect 85

rs111033344 A|G ENSP00000394760 D87G 0 deleterious 1 probably damaging effect 95

rs773173756 T|C ENSP00000265715 Y127H 0 deleterious 1 probably damaging effect 85

rs121908360 T|G ENSP00000265715 F667C 0 deleterious 1 probably damaging effect 85

rs759264261 G|T ENSP00000265715 G334A 0 deleterious 1 probably damaging effect 85

rs111033398 G|A ENSP00000265715 G95R 0 deleterious 1 probably damaging effect 95

rs765939287 C|G ENSP00000265715 S427C 0 deleterious 0.999 probably damaging effect 57

rs775610413 C|T ENSP00000265715 R291W 0 deleterious 0.999 probably damaging effect 95

rs565382433 G|C ENSP00000265715 Q383H 0 deleterious 1 probably damaging effect 75

rs111033244 A|G ENSP00000394760 E384G 0 deleterious 1 probably damaging effect 95

https://doi.org/10.1371/journal.pone.0225368.t001
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the SNP&GO and PhD-SNP servers. Both of them calculated a score to declare each nsSNP as

neutral or disease associated. The prediction score <0.5 makes the SNP neutral and disease

causing if the score is >0.5. Among 46 nsSNPs only one (E303Q) was found to be neutral and

the rest 45 nsSNPs were disease causing. A cut off value (p> = 0.80) for PhD-SNP scores was

applied to narrow down the number of nsSNPs to 23. Table 2 represents the filtered results.

Prediction of effect of stability of protein

I-Mutant and Mu-Pro servers were used to predict the structural effect of 23 candidate

nsSNPs, of which only 1 nsSNP (G209V) was predicted by I-Mutant to be increasing the pro-

tein stability and rest 22 nsSNPs were suppressing the protein activity by decreasing its stabil-

ity. Whereas, Mu-Pro predicted none of the nsSNPs to be increasing the protein’s stability. A

representation of results is shown in Table 3.

Prediction of PTMs (Post Transcriptional Modifications)

Post Transcriptional Modifications associated with our candidate nsSNPs were predicted by

ModPred server by giving the protein sequence as an input. The results were downloaded as .

csv format and then analyzed all 23 nsSNPs. ModPred server reported that only 6 nsSNPs

(R409C, R409P, D87G, Y127H, G334A, S427C, R291W) located at Proteolytic Cleavage sites

and 2 nsSNPs (S427P and S427C) at O-Linked glycosylation sites. The description in given in

Table 4.

Table 2. Disease association of the SNPs as predicted by SNP & GO and PhD-SN.

dbSNP Variant Mutation PhD-SNP Prediction SNP&GO Prediction

rs111033303 G|T G209V 0.955 Disease 0.87 Disease

rs111033380 G|A G197R 0.953 Disease 0.834 Disease

rs773076588 T|C L458P 0.926 Disease 0.881 Disease

rs758015694 T|C S427P 0.922 Disease 0.926 Disease

rs529182720 A|C Q101P 0.911 Disease 0.841 Disease

rs373738509 T|C W472R 0.904 Disease 0.828 Disease

rs201562855 A|T N392Y 0.899 Disease 0.87 Disease

rs776063528 T|A V359E 0.892 Disease 0.911 Disease

rs147952620 C|T R409C 0.882 Disease 0.95 Disease

rs752485540 A|G Q235R 0.879 Disease 0.872 Disease

rs111033305 G|C R409P 0.876 Disease 0.802 Disease

rs756272252 G|T G139V 0.87 Disease 0.812 Disease

rs111033308 G|A G497S 0.865 Disease 0.801 Disease

rs121908362 A|G H723R 0.856 Disease 0.855 Disease

rs111033344 A|G D87G 0.855 Disease 0.864 Disease

rs773173756 T|C Y127H 0.846 Disease 0.885 Disease

rs121908360 T|G F667C 0.839 Disease 0.979 Disease

rs759264261 G|T G334A 0.839 Disease 0.862 Disease

rs111033398 G|A G95R 0.836 Disease 0.852 Disease

rs765939287 C|G S427C 0.807 Disease 0.84 Disease

rs775610413 C|T R291W 0.805 Disease 0.83 Disease

rs565382433 G|C Q383H 0.804 Disease 0.81 Disease

rs111033244 A|G E384G 0.801 Disease 0.80 Disease

https://doi.org/10.1371/journal.pone.0225368.t002
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Sequence conservation analysis

Any mutation that causes a disease usually resides in highly conserved region of the gene. In

order to see the conserved behavior of the 23 nsSNPs, ConSurf server was used. Of the 23

nsSNPs, 8 nsSNPs were highly conserved on the scale along with being structural and buried

and 7 were predicted to be highly conserved being functional and exposed.

ConSurf results showed the level of confidence for the sequence conservation in the form of

color codes starting from the blue to purple, where blue color indicates the variability and the

purple color indicates the highly conserved position. ConSurf predicted the variations to be bur-

ied (b) or exposed (e) as well as functional (f) or structural (s) on a range of score 1–9 as

depicted by Fig 3. Table 4 depicts a summary for the high confidence 23 nsSNPs including their

functional and structural consequences, the PTM sites and Phylogenetic conservation scores.

Protein modeling

Literature revealed that mutations at Y127H and G334A in PDS protein, phenotypically cause

diffuse goiter, impaired Thyroid Function Test (TFT) with positive Perchlorate Discharge Test

(PDT) and Enlarged Vestibular Aqueduct (EVA). Based on the prediction scores we chose two

highly conserved mutations Y127H and G334A to see the protein structural modifications

being caused by them. The coiling and recoiling of the predicted structure resulted in the for-

mation of PDS native 3-D structure using threading approaches. By running MODELLER 9.2,

we got 7 templates from which 6rtc.1.A and 5da0.1.A showed 38.37% and 37.71% identity with

query sequence. We used these templates for the backbone building of our model and struc-

ture prediction. The comparative models were generated using Discrete Optimised protein

Table 3. Effects of SNPs on the Protein Stability, Increasing or Decreasing.

dbSNP Protein Mutation I-Mutant Mu-Pro

rs111033303 ENSP00000265715 G209V Increase Decrease

rs111033380 ENSP00000265715 G197R Decrease Decrease

rs773076588 ENSP00000265715 L458P Decrease Decrease

rs758015694 ENSP00000265715 S427P Decrease Decrease

rs529182720 ENSP00000265715 Q101P Decrease Decrease

rs373738509 ENSP00000265715 W472R Decrease Decrease

rs201562855 ENSP00000265715 N392Y Decrease Decrease

rs776063528 ENSP00000265715 V359E Decrease Decrease

rs147952620 ENSP00000265715 R409C Decrease Decrease

rs752485540 ENSP00000265715 Q235R Decrease Decrease

rs111033305 ENSP00000265715 R409P Decrease Decrease

rs756272252 ENSP00000265715 G139V Decrease Decrease

rs111033308 ENSP00000265715 G497S Decrease Decrease

rs121908362 ENSP00000265715 H723R Decrease Decrease

rs111033344 ENSP00000394760 D87G Decrease Decrease

rs773173756 ENSP00000265715 Y127H Decrease Decrease

rs121908360 ENSP00000265715 F667C Decrease Decrease

rs759264261 ENSP00000265715 G334A Decrease Decrease

rs111033398 ENSP00000265715 G95R Decrease Decrease

rs765939287 ENSP00000265715 S427C Decrease Decrease

rs775610413 ENSP00000265715 R291W Decrease Decrease

rs565382433 ENSP00000265715 Q383H Decrease Decrease

rs111033244 ENSP00000394760 E384G Decrease Decrease

https://doi.org/10.1371/journal.pone.0225368.t003
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energy (DOPE) assessment score for distinguishing a “good” model from “bad “model. Fig 4

showed the protein structure of PDS native protein. After the prediction of PDS native protein

structure via MODELLER, mutant (Y127H and G334A) structures were built using FOLDX.

Structure validation done by RAMACHANDRAN plot depicted that 84.5% of the residues of

the predicted native structure occupy space in the most favored region, whereas 12.8% occupy

space in the additionally favored region. The mutations affect the formation of coiling and

angles between folding that cause change in overall structure of proteins. To identify the

changes, the mutant structures were superimposed with native structure using structural align-

ment tool that illustrated the change in formation of 3D domains at point of mutations (Fig 5).

The superimposition showed significant change in structure at position Y127H and G334A.

The distinct overlapping structures can be seen clearly while the change caused by mutation at

position 127 was perceived to be minor. The change in structure also leads to change in func-

tionality that affects the active sites and binding sites of the protein.

Prediction of binding sites for ligands

Interaction sites present in the protein were firstly identified using COACH along with their

binding affinity. For further verification and analysis of the interactions of our native and

Table 4. Detailed summary of most important SNPs identified.

dbSNP Mutation Functional Consequence Disease Association Phylogenetics PTMs

SIFT PolyPhen SNAP2 SNP&

GO

PhD-SNP ConSurf ModPred

rs111033303 G209V � � � �� �� 9,9,b,s -

rs111033380 G197R � � � �� �� 9,9,b,s -

rs773076588 L458P � � � �� �� 7,6,b -

rs758015694 S427P � � � �� �� 8,8,b O-linked glycosylation

rs529182720 Q101P � � � �� �� 9,9,e,f -

rs373738509 W472R � � � �� �� 3,1,e -

rs201562855 N392Y � � � �� �� 9,9,b,s -

rs776063528 V359E � � � �� �� 9,9,b,s -

rs147952620 R409C � � � �� �� 9,9,e,f Proteolytic cleavage

rs752485540 Q235R � � � �� �� 9,9,e,f -

rs111033305 R409P � � � �� �� 9,9,e,f Proteolytic cleavage

rs756272252 G139V � � � �� �� 9,9,b,s -

rs111033308 G497S � � � �� �� 8,7,b -

rs121908362 H723R � � � �� �� 8,8,b -

rs111033344 D87G � � � �� �� 9,9,b,s Proteolytic cleavage

rs773173756 Y127H � � � �� �� 9,9,b,s Proteolytic cleavage

rs121908360 F667C � � � �� �� 6,5,b -

rs759264261 G334A � � � �� �� 9,9,e,f Proteolytic cleavage

rs111033398 G95R � � � �� �� 9,9,b,s -

rs765939287 S427C � � � �� �� 8,8,b O-linked glycosylation

rs775610413 R291W � � � �� �� 9,9,e,f Proteolytic cleavage

rs565382433 Q383H � � � �� �� 9,9,e,f -

rs111033244 E384G � � � �� �� 9,9,e,f -

functional consequences, disease association, PTMs, phylogenetic conservation and minor allele frequency.

(�deleterious

�� disease associated, b-buried, e-exposed, f-functional, s-structural).

https://doi.org/10.1371/journal.pone.0225368.t004
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mutant protein structures with their most suitable ligands, we selected six molecules 4KU,

BCT, DMU, IOD, MG, XAN and docked with all the three, native and mutant, structures. The

docking interactions were studied with LigPlot that shows the 2D representation of all interac-

tions in particular docking system. From possible binding sites predicted, the positions 622,

674, 704 and 707 carrying amino acids GLU, ARG, GLU and GLY respectively were found to

be present in the docking interactions out of which position 674 carrying ARG, position 707

carrying GLY and position 704 carrying GLU were also present in mutants. The interacting

residues obtained from docking are presented in Table 5.

Fig 3. ConSurf results for residues conservation. Colors of ConSurf results showing the level of confidence for the

sequence conservation where sky-blue color indicates variables, and dark purple color indicates highly conserved

residues.

https://doi.org/10.1371/journal.pone.0225368.g003

Fig 4. Model structure of SLC26A4. (Pendrin) protein containing 780 a.a. with solid ribbon display style (red, blue

and green color: alpha helix, beta sheets and coil, respectively).

https://doi.org/10.1371/journal.pone.0225368.g004
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The interactions among ligand and protein residues in mutants were found to be different

from the ones in native that indicates the change in functional properties caused by mutations

(Fig 6). Here it can be seen that not only the number of interacting residues of protein differs

but also the hydrogen bonds and hydrophilic interactions were affected which gives the con-

formational change of mutation (Table 6).

Molecular dynamics simulation

Temperature, pressure & density. After energy minimization, we equilibrated solvents

and ions around our protein structures and in order to establish the proper orientation of mol-

ecules in our structures, we performed NVT (thermostat) and NPT (bariostat) equilibration;

the two phases to stabilize the temperature and pressure of the systems in isothermal-isobaric

ensemble respectively. “gms grompp” tool was used to calculate NVT and NPT of the system.

Due to the involvement of temperature, pressure and density in equilibrated process, we estab-

lished density plot from NPT. Fig 7A showed the temperature plots of native and mutant

Fig 5. Structure superimposition. Superimposition of native and mutant structures for the two hotspot mutations;

native with mutant-1 at point G334A, native with mutant-2 at point Y127H.

https://doi.org/10.1371/journal.pone.0225368.g005

Table 5. The binding sites predicted at different amino acid residues along with their position and binding

affinities.

Position Amino Acid Binding Affinity

2 ALA -0.258

4 PRO -0.397

320 GLU -0.307

321 LYS -0.026

373 THR -0.039

560 ASP 0.214

564 LYS -0.044

586 ARG 0.015

590 LYS -0.114

622 GLU -0.053

626 GLU 0.058

674 ARG 0.062

704 GLU -0.392

707 GLY -0.177

https://doi.org/10.1371/journal.pone.0225368.t005
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protein systems at 300K. This plot showed a great fluctuation in temperature for the conforma-

tions over the course of 100-ps equilibrium phase. However, this behavior was not much unex-

pected as the average temperature of most of the conformations was in favorable region where

native structure had average temperature of 300.05K while that of mutant Y127H and G334A

was 299.97K and 300.74 respectively. Similarly pressure-time graph (Fig 7B) and density-time

graph (Fig 7C) were plotted against 100-ps time scale. Pressure-time graph showed that wild

type structure had higher peaks above 61.44 bars whereas higher peaks of Y127H and G334A

mutant structures were 84.5 bars and 72.3 bars. Local minima in plot for Y127H is -319.5

which was different from the native structure (-309.7 bars) and G334A (-302.1 bars). The pres-

sure-time graph also revealed that the average value of pressure for all conformations for native

structure was -0.5 bars but that of Y127H and G334A was -2.56 bars and -1 bar respectively.

The average density value of native structure over the course of 100 ps was 1001.4 kgm-3 which

was very close to the experimental value of 1000 kgm-3 while that of mutant Y127H and

G334A was more than 1002.6 kgm-3.

RMSD. Structural and functional behavior of wild type SLC gene and its two mutant

G334A and Y127H was compared and visualized using Molecular Dynamics Simulation

approach. The main chain root mean square deviations were calculated for the trajectories of

native and mutants of RIPK4 protein structures. The RMSD graphs (Fig 8A) were built using

the trajectory file for C-alpha backbone least square fit model using g_rms. All the three struc-

tures were very close in the starting confirmations and a sudden variation was recorded after

0.15 ns where the RMSD value was 0.15 nm.

Fig 6. Graphical depiction of protein ligand docking: Native, mutant-Y127H and mutant-G334A protein structures with ligands DMU, MG, 4KU, BCT,

XAN show the interactive deviations of mutant1 and mutant 2 from the native structure.

https://doi.org/10.1371/journal.pone.0225368.g006

Table 6. Interacting residues obtained from docking. Protein structures Wild, MutantY127H and MutantG334A with ligands 4KU, BCT, DMU, MG and XAN includ-

ing their binding residues and surrounding hydrophobic interactions.

Receptor—Ligand Hydrogen Bond Interactions Hydrophobic Interactions

Receptor Ligand

Wild- 4KU Glu701, Ile713, Lys715,

Asp716

4KU Asp697, Ile700, Phe719, Leu763, Arg719, Asp711, Asp710

MutantY127H – 4KU Ser28, Leu13, Pro11 4KU Gly5, Glu29, Ala31, Leu30, Tyr27, Pro14, Gln12, Cys54, Gly6

MutantG334A – 4KU Ile71, Gln41, Lys66 4KU Arg47, Glu42, Pro76, Leu72, Trp74, Lys419, Tyr377.

Wild- BCT Gln383, Arg134, Tyr377 BCT Thr132

MutantY127H –BCT Arg39, Phe128, Gly131 BCT Phe130, Ile129, Trp74, Gln421

MutantG334A –BCT Asn712, Asp710, Asp711. BCT Phe708, Asp495, Leu492, Leu496.

Wild- DMU Leu108, Ser234, Ser154 DMU Ala451, Lys447, Gln235, Ile238, Leu107, Lys237, Leu153, Ser150, Gly149, Gln230

MutantY127H –

DMU

Phe719, Arg674, Arg677 DMU Phe719, Leu727, Val673, Val670, Ile487, Leu492, Lys715, Val488, Phe709, Arg714, Ile491.

MutantG334A –

DMU

Leu146, Gln230 DMU Ile713, Gly493, Phe719, Phe708, Leu108, Ser234, Lys237, Leu153, Arg714, Ser150, Asn712, Cys706,

Leu492, Gly707, Ala351, Asp495.

Wild- MG Gln732, Tyr728, Arg674 MG -----

MutantY127H –MG Ile713, Asn712, Asp710 MG -----

MutantG334A –MG Asp711, Asp710, Asn712,

Ile713

MG -----

Wild- XAN Glu625, Glu622, Asp573 XAN Leu627, Arg576, Ala574

MutantY127H –XAN Glu73, Gln383, Gly131,

Arg39

XAN Gln41, Ile129, Trp74, Gln421, Phe128

MutantG334A –XAN Gln705 XAN Phe709, Phe718, His723, Ile700, Glu704, Leu703.

https://doi.org/10.1371/journal.pone.0225368.t006
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Wild type structure attained maximum RMSD value after 3.3 ns whereas the mutants

G334A and Y127H attained the maximum values at 3.75 ns and 4.55 ns respectively. The

RMSD graph of wild type SLC and its mutants G334A and Y127H that were aligned to the

backbone suggested that the wild type SLC gene was steadier than the mutants Y127H and

G334A. Secondly these mutants affected the protein dynamics of wild type SLC leading to

changes in RMSD graph of backbone of the mutants thus giving an appropriate foundation for

further analysis. In order to determine the effect of mutations on dynamic behavior of residues

at atomic level, RMSF (Root Mean Square Fluctuation) values of native and mutants were ana-

lyzed (Fig 8B). RMSF value of native residues was observed between 0.0602 nm to 1.0602 nm

and their average value was 0.2093 nm. The RMSF values of Y127H and G334G residues were

observed between 0.0541 to 0.998 with an average of 0.2155 and 0.0561 to 1.2502 with an aver-

age of 0.2161 respectively.

Fig 7. Temperature, pressure and density versus time graph of wildtype and mutants of SLC simulated through GROMACS. Wildtype is shown in blue, G334A

mutant is shown in grey and Y127H is shown in orange.

https://doi.org/10.1371/journal.pone.0225368.g007

Fig 8. RMSD and RMSF graphs of backbone atoms of wildtype and mutants of SLC simulated through GROMACS version 5.1.2. Wildtype is shown in black,

G334A mutant is shown in red and Y127H is shown in green.

https://doi.org/10.1371/journal.pone.0225368.g008
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Radius of gyration and SASA. The radius of gyration (Rg) is defined as root-mean square

distance of all atoms from their common center on the basis of mass-weight. It provides an

understanding to study the overall dimensions of protein. Radius of gyration plot for alpha

carbon atoms (with respect to time) of native and mutant protein structures at 300 K is shown

in Fig 9A. At the end of simulation, mutant G334A structure showed a very abnormal behavior

with a very low Rg value (< 3.85) for most of the time, whereas native and mutant Y127H

structures showed Rg values in a range of 3.85 nm to 3.98 nm.

Solvent accessibility surface area (SASA) is bio-molecular surface area accessibility to sol-

vent molecules. A decrease in the SASA value indicates that the structure is shrunken and the

surface area is reduced. Fig 9B showed that the SASA value of native structure was very high

ranging from 447 nm2 to 484.5 nm2 with an average of 473 nm2. The SASA value of Y127H

and G334A was noted between 445 nm2 to 480 nm2 with an average of 467 nm2 and 453 nm2

to 472.5 nm2 with an average of 465 nm2 respectively.

Discussion

Pendrin protein like all other proteins of the body holds an important role in the efficient func-

tioning of the human body. It acts as an essential ion exchanger located in many types of cells

of the body. Though in the inner ear and thyroid areas, high level of Pendrin expression is

known to date. In the areas of expression Pendrin mediates the efflux of Iodide ions across the

membranes, which is essential for the secretion or development of hormones including thy-

roid [36]. Moreover, it has an important role in the acid-base balance, regulation of volume

homeostasis and even the mediation of calcium concentration in the endolymph [37]. Any

Fig 9. A) Rg of Cα atoms of native and mutant type SLC protein. B) Solvent accessible surface area of wildtype and mutant type SLC protein Wildtype is shown in

black, G334A mutant is shown in red and Y127H is shown in green.

https://doi.org/10.1371/journal.pone.0225368.g009
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variation, polymorphism, mutation at nucleotide or amino acid level can directly affect the

working of the body and thus causing diseases [38].

Among all types of mutations, nsSNPs have the greatest impact on protein structure and

function [39]. In Pendrin protein, a total of 14473 SNPs has been reported, and very less work

has been done to study the impact of these SNPs, their disease associations, their phylogenetic

conservations or their impact on the protein stability or the functional impact. This study

aimed at fulfilling this gap, different in-silico techniques and tools were used to study the

impact and association of the 674 reported nsSNPs. Web based tools including SNPNEXUS,

SNAP2, SNP&GO, PhD-SNP, I-Mutant, Mu-Pro, ConSurf and ModPred were used. Each tool

was provided with the required input and they helped for extracting useful findings. The meth-

ods used in the study basically focus upon the correlation between the variations and their

effects on the protein at the molecular level. A variety of tools used for a single purpose make

the results confident as each program/tool runs on a different algorithm. Thus, the results

obtained from the consensus of all the tools are believed to have the highest accuracy [14].

After the in-silico study, 23 nsSNP were found to be most deleterious as per the consensus

results of all the tools. The mutations at these particular residues were also found to alter the

protein stability. The Post Transcriptional modifications were observed on 8 out of 23 resi-

dues. Among deleterious nsSNPs of SLC26A4, two mutations Y127H and G334A were found

causing diffuse goiter, impaired TFT with positive PDT and EVA. To examine the impact of

these two mutations in the structure of PDS protein (SLC26A4) we built protein model of

native and mutants and found that there is variation in structure at secondary and tertiary

level. Superimposition of mutants with native PDS indicated a significant change in structure

at positions G334A and Y127H. To support our conclusion, we carried out protein-ligand

docking and Molecular Dynamics simulation of all three structures. The binding poses of the

native and mutants with six ligands (4KU, BCT, DMU, IOD, MG, and XAN) were determined

and the fitness score of each pose was generated based on the binding affinity of ligand-recep-

tor complexes. The purpose of docking was to see the binding affinity, hydrogen bonds and

hydrophobic interactions of the ligands with the protein 3D structures. The results showed

that mutation at G334A reduced the hydrogen binding interaction with all six ligands. It was

highlighted that, on binding with ligands, the mutation at Y127H and G334A not only affected

the binding residues but also the hydrogen bonds and hydrophilic interactions. It has been

clearly illustrated that the binding pockets of PDS native protein was accommodating the

ligands in a very well manner by making a number of H-bonds and hydrophobic contacts with

the active site residues as compared to Y127H and G334A mutants where the residues W500,

L323 and R157 were also identified to be present in ligand binding sites. To compare protein

dynamics of wild type and mutant SLC, Molecular Dynamics simulation was performed where

RMSD, RMSF, SASA, Rg, temperature, pressure and density plots were compared and ana-

lyzed at 10 ns MDS.

All these comparisons were performed to observe the conformational behaviors of all struc-

tures towards structure stability. After the minimization, we found a little difference between

the temperature, pressure and density among native and mutants confirmations over the time.

RMSD plots of backbone atoms depicted that wild type structure was much steadier than the

mutants. RMSF plots showed that the greatest degree of flexibility was shown by native and

mutant structures. The RMSF calculated over the trajectories and averaged over the residual

elements showed that the fluctuation of atoms in structures was greater in last quartile. We

also examined the radius of gyration and solvent accessibility of surface area analysis to deter-

mine that how the unfolding of the mutant protein structure reduces the surface area solubility

and how the protein activity is reduced. Higher the Rg value indicates lower the stability [40].

We observed that native structure has less Rg range as compare to the mutants which proved
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that both mutations Y127H and G334A decrease the stability of protein and hence reduce the

protein functionality.

Thus, our study not only presented powerful platform for performing virtual screening of

SLC via a consistent and comprehensive procedure, but also revealed the molecular platform

for acknowledgment of changes in activity, stability, binding and other properties.

The mutations in the SLC26A4 gene or Pendrin protein are the leading causes for the most

common form of Syndromic deafness, Pendred Syndrome [41]. Moreover, little-known role

of Pendrin stays in the airway inflammation or hyperactivity, leading to asthma attacks or

allergies [42]. The lesser known facts and findings of the study can help understand and inter-

pret the role of these mutations and a step ahead can be taken to cure these diseases or the

related ones by other approaches like drug designing etc.

Conclusion

Current study comprising in-silico analysis of nsSNPs of SLC26A4 gene highlighted that 23

nsSNPs (G209V, G197R, L458P, S427P, Q101P, W472R, N392Y, V359E, R409C, Q235R,

R409P, G139V, G497S, H723R, D87G, Y127H, F667C, G334A, G95R, S427C, R291W, Q383H

and E384G) were the most deleterious among all known and reported SLC26A4 gene nsSNPs.

All predicted nsSNPs were both, disease associated and pathological playing significant roles

in causing different diseases like deafness, goiter diffusion, and thyroid functional impairment.

These nsSNPs were also involved in affecting stability and function of protein. All of them

being highly conserved residues also showed post transcriptional modification sites where the

residues W500, L323 and R157 were also identified to be present in ligand binding sites.
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