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Understanding the mechanisms of cancer drug resistance is a 

critical challenge in cancer therapy. For many cancer drugs, 

various resistance mechanisms have been identified such as 

target alteration, alternative signaling pathways, epithelial–

mesenchymal transition, and epigenetic modulation. Resistance 

may arise via multiple mechanisms even for a single drug, 

making it necessary to investigate multiple independent mod-

els for comprehensive understanding and therapeutic applica-

tion. In particular, we hypothesize that different resistance 

processes result in distinct gene expression changes. Here, we 

present a web-based database, CDRgator (Cancer Drug Re-

sistance navigator) for comparative analysis of gene expres-

sion signatures of cancer drug resistance. Resistance signa-

tures were extracted from two different types of datasets. 

First, resistance signatures were extracted from transcriptomic 

profiles of cancer cells or patient samples and their resistance-

induced counterparts for >30 cancer drugs. Second, drug re-

sistance group signatures were also extracted from two large-

scale drug sensitivity datasets representing ~1,000 cancer cell 

lines. All the datasets are available for download, and are 

conveniently accessible based on drug class and cancer type, 

along with analytic features such as clustering analysis, multi-

dimensional scaling, and pathway analysis. CDRgator allows 

meta-analysis of independent resistance models for more 

comprehensive understanding of drug-resistance mechanisms 

that is difficult to accomplish with individual datasets alone 

(database URL: http://cdrgator.ewha.ac.kr). 
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INTRODUCTION 
 

Overcoming drug resistance is one of the most critical chal-

lenges in cancer therapy. Cancer drug resistance appears not 

only in patients who have genetic factors interfering with 

drug actions, but is also induced by long-term treatment 

even in initially responsive patients. Because such acquired 

resistance leads to significant survival disadvantages, it is 

important to understand the underlying mechanisms of drug 

resistance in different patients. 

In the early studies on resistance mechanisms, genetic mu-

tations that directly alter drug target proteins (i.e. T790M in 

EGFR and L1152R in ALK) received significant attention 

(Choi et al., 2010; Pao et al., 2005). These mutations at 

gatekeeper residues are a common mechanism of resistance 

to drugs targeting oncogenic kinases, and many patients 

develop resistance within a year (Holohan et al., 2013). Re-

cently, mutations other than those in the target protein have 

also been actively studied including alteration of regulatory 

regions (Leucci et al., 2018; Melton et al., 2017). Although a 

number of studies on drug resistance have focused on muta-

tions, it has become clear that various genetic events prior to  
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the acquisition of resistance also play an important role 

(Leucci et al., 2018). 

In addition to mutations in the target, other genetic or ep-

igenetic changes including copy number variation (CNV, 

Bean et al., 2007), activation of bypass signaling (Niederst 

and Engelman, 2013), and epigenetic modulations (Hu and 

Baeg, 2017; Nyce et al., 1993) have been identified as pri-

mary causes of resistance. Resistance mechanisms are not 

limited to alterations in only a few genes, but involve overall 

cellular changes, e.g. epithelial-mesenchymal–transition (EMT) 

or transition to cancer stem cells (CSCs), which seem to be 

important factors (Huang et al., 2015; Phi et al., 2018; 

Wang et al., 2016b). Because such major changes in cell 

state and physiology cannot be represented by a few genetic 

alterations, investigation of genome-scale signatures such as 

transcriptome profiles is likely to be more informative. Tran-

scriptome profiles reflect changes in both genetic and epi-

genetic conditions including disease progression, drug per-

turbation, and drug resistance. Therefore, gene expression 

signatures are useful markers to investigate drug resistance 

states, classify distinct resistance mechanisms, and predict 

treatment outcomes. 

Typically, there are two strategies to study genetic features 

associated with drug sensitivity. One is to use large-scale 

pharmacogenomic datasets of cancer cell lines as model 

systems, with the cells being divided into two groups, i.e. 

sensitive and resistant, and genomic features differentiating 

the two groups being identified. The other is to culture can-

cer cells in the presence of a drug, leading to selection of 

resistant cells. By comparing the molecular profiles of the 

resistance-induced cells with those of the original ones, the 

relevant genomic features can be analyzed more explicitly 

than by using the group-based method because the origins 

of the cells are the same in the former method. 

There are several publicly available pharmacogenomics da-

tabases such as Genomics of Drug Sensitivity in Cancer 

(GDSC, https://www.cancerrxgene.org/)(Yang et al., 2013), 

Cancer Cell Line Encyclopedia (CCLE, https://portals.broad-

institute.org/ccle)(Barretina et al., 2012), and Cancer Thera-

peutic Response Portal (CTRP, extended version of CCLE, 

https://portals.broadinstitute.org/ctrp.v2.1/)(Rees et al., 2016). 

From studies of these databases, mutations in or expression 

of individual genes associated with drug sensitivity have 

been characterized. These features have been found useful 

in predicting resistance based on the genetic background of 

patients (Iorio et al., 2016; Seashore-Ludlow et al., 2015). 

While these datasets are among the largest resources to 

study drug resistance mechanisms, the sparsity of individual 

mutations makes it difficult to extract genetic markers relat-

ed to resistance in a comprehensive manner. Only a small 

fraction of all acquired resistance events in patients may be 

explained using the markers extracted from GDSC, CCLE, 

CTRP, and the combination dataset. For example, though 

the T790M mutation in the EGFR gene has been well known 

as one of the most frequent alterations associated with ac-

quired resistance to EGFR-targeted drugs in patients (Ma et 

al., 2011), this mutation has been found in only two cancer 

cell lines in the above pharmacogenomics databases. Alt-

hough the Catalog of Somatic Mutations In Cancers 

(COSMIC, https://cancer.sanger.ac.uk/cosmic)(Forbes et al., 

2017) has some genetic features associated with acquired 

resistance, there is no systematic database of information 

regarding acquired resistance yet. In COSMIC, mutation 

information is available for only 13 genes associated with 

resistance to 23 drugs. There are other databases unrelated 

to cancer therapy such as databases of antibiotic or antimi-

crobial drug resistance such as CARD (Jia et al., 2017) and 

MEGARes (Lakin et al., 2017), respectively. Notably, can-

cerDR (Kumar et al., 2013) may be the only database dedi-

cated to cancer drug resistance. However, because the re-

sistance-related features in cancerDR mostly originate from 

CCLE and COSMIC, it is likely to have limitations similar to 

those of its original resources. 

In the present study, we present a web platform, CDRga-

tor (Cancer Drug Resistance signature navigator), which is 

among the most comprehensive databases of acquired can-

cer drug resistance because it amasses both resistance-
induced signatures (Sind) and group-based signatures (Sgrp) 

of drug sensitivity, with the Sind defined as the differential 

gene expression in resistant cells of the same lineage in-

duced due to prolonged culture of a cell line in the presence 

of drug, and Sgrp is defined as that in resistant or sensitive 

groups of cells from different origins. Due to the limitations 

in genomic features due to sparse mutations, we focused on 

extracting gene expression signatures of cancer drug re-

sistance to obtain a comprehensive view of resistance mech-

anisms. For constructing resistance signatures of resistance-

induced cells (Sind), we performed extensive manual cura-

tions of literature as well as data depositories such as Gene 

express omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) 

(Barrett et al., 2013) and ArrayExpress (https://www.ebi.ac. 

uk/arrayexpress/)(Kolesnikov et al., 2015). Alternatively, we 

also extracted group-based resistance signatures for cancer 

drugs from CCLE and CTRP; we refer to these resistance 

signatures extracted from the two large-scale phar-

macogenomics databases as group-based signatures (Sgrp). 

These two types of signatures are complementary to each 

other, and are expected to provide a more comprehensive 

view on drug resistance, particularly when there are multiple, 

independent mechanisms involved in developing resistance 

to a single drug. 

Currently, CDRgator provides 603 resistance signatures for 

37 cancer drugs representing more than 26 cancer types in 

total, and the number of signatures will grow as more data 

are collected. It allows users to browse resistance signatures 

based on on drugs or cancer types, and to analyze the simi-

larity between resistance signatures. Additionally, CDRgator 

has a tool to identify resistance signature-matched gene sets 

from Kyoto Encyclopedia of Genes and Genomes (KEGG, 

(Kanehisa, 2004) or Gene ontology (GO) (Carbon et al., 

2017) to characterize the biological processes involved in 

resistance. CDRgator also has the ability to compare the 

resistance signatures in a database with signatures input by 

users to filter out drugs expected to be resistant or ineffec-

tive. Using an illustrative analysis of EGFR inhibitors, we 

show the utility of CDRgator in understanding the diverse 

mechanisms of cancer drug resistance. 
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Fig. 1. The process of extracting drug resistance 

signatures. Left, resistance-induced signatures; 

Right, resistance group signatures. 

MATERIALS AND METHODS 
 

Data sources and processing 
To obtain induced drug resistance signatures (Sind), we man-

ually collected datasets containing transcriptomic profiles of 

resistance-induced cells in GEO and ArrayExpress (Fig. 1). 

The datasets were filtered based on the following criteria; (1) 

the presence of matched pairs of sensitive and resistant cells, 

(2) treatment with monotherapy but not combinational 

therapy for a specific period of time, (3) gene transcription 

quantification using RNA-seq or microarray (4) in human 

cells and not in mouse cells or xenografted mouse cells. The 

RNA-seq data (.fastq file) were mapped using STAR aligner 

(Dobin et al., 2013) and quantified using HTSeq (Anders et 

al., 2015). The list of the collected datasets is available with 

detailed information in Additional file 1. 

For identifying the resistant group signature (Sgrp), we used 

drug sensitivity data and gene expression data of cancer cell 

lines from CTRP and CCLE, respectively. To designate the 

resistant cell line group for a given drug, we grouped cancer 

cell lines based on their drug responses. The drug responses 

were represented as area under curve (AUC) of cell growth 

at different drug concentrations, and normalized with the 

maximum area calculated assuming 100% response in given 

concentration ranges. Then, we performed Z-transformation 

of logged AUC values (Z-AUC) to specify resistant or sensi-

tive cells. We defined cells as a resistant cell group if their Z-

AUC was less than -0.5. For all drugs, we generated signa-

tures only in cases with at least three cells in the resistant 

group. 

The expression data were downloaded from GEO or Ar-

rayExpress, and were processed using our protocols for mi-

croarray and RNAseq analyses. Background correction and 

normalization was performed using R. For RNAseq, raw 

fastq files were downloaded and aligned to the reference 

genome (GRCh37) using STAR aligner. For RANseq of can-

cer cell lines, BAM files were downloaded from Genomic 

Data Commons (GDC). To estimate expression, RNAseq read 

count was calculated using HTseq. The gene expression sig-

nature was obtained using differentially expressed gene 
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Fig. 2. Web interface design of CDRga-

tor. (A) selection of drug class (left 

circle) and cancer type (right circle); (B) 

selection of individual datasets; (C) 

hierarchical clustering of resistance 

signatures; (D) 2D mapping of re-

sistance signatures via multidimension-

al scaling (MDS); (E) pathway analysis 

of resistance signatures using gene set 

analysis (GSA). 

(DEG) analysis of the resistant cell group or the resistance-

induced cells. For datasets containing biological replicates, 

genes with adjusted p-values less than 0.05 were selected as 

DEGs using the limma package (Ritchie et al., 2015) for mi-

croarray, and the DESeq2 package (Love et al., 2014) for 

RNAseq. For datasets with no biological replicates, we calcu-

lated fold change in gene expression values and transformed 

them to z-score. Genes with absolute fold change in z-score 

of more than 2 were selected as DEGs. 

 

Data statistics 
CDRgator contains a total of 143 Sind for 37 anti-cancer 

drugs and 30 cell lines from 16 tissue origins. A set of 499 

Sgrp in our study represented 19 drugs which were also in-

cluded in Sind; in terms of details, 267 Sgrp were from 20 tis-

sue-level cancer types (e.g. blood cancer) and 232 Sgrp were 

from 23 disease level-cancer types (e.g. acute lymphoblastic 

leukemia). 

 

Signature similarity 
CDRgator provides similarity analysis which explores how 

similar two signatures are; an enrichment factor (EF) was  

developed to measure significance of overlap between the 

signatures compared to a random occurrence. It represents 

the number of genes common between two sets divided by 

the expected overlap. At this time, every gene set is restrict-

ed to gene spaces common to respective platforms of a sig-

nature pair. EF is calculated using the following equation: 

 

where A and B indicate a set of signature genes, and N rep-

resents the number of total genes common to both plat-

forms used; pc is a pseudo count that makes the EF robust 

at small count levels (5 in this study), similar to additive 

smoothing. EF has the particular advantage of being robust 

despite differences in signature size. 

 

Functional annotation analysis 
To annotate the biological functions of gene signatures, an 

over-representation test was conducted using the ‘cluster-

Profiler’ in the R package (Yu et al., 2012), which imple-

ments a hypergeometric test of overrepresentation of a gene  
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Fig. 3. Analysis of resistance-induced signatures 

for EGFR inhibitors Illustrative case results avail-

able in the ‘Analysis’ menu of CDRgator, gener-

ated using resistance-induced signatures for 

five EGFR inhibitors. Color legends of drug and 

cancer type are described in Fig. 3C; (A) signa-

ture similarity analysis; heat represents all pair-

wise similarities; hierarchical clustering of simi-

larity is shown at the top and left; (B) multidi-

mensional scaling plot of similarity metrics; 

outer circles are colored cancer types, and inner 

circle are drugs; the dashed line indicates a 

cluster including primarily head and neck can-

cer signatures; (C) KEGG pathway enrichment 

analysis; up (red) or down (green) regulated 

gene sets in individual signatures were tested 

using each pathway term on the left; heat indi-

cates –log p-value of hypergeometric testing 

between each pathway gene set and signa-

tures; hierarchical clustering is shown on the 

top and left. 

set against background. Each signature analysis was per-

formed with pathway terms consisting of 10-500 genes 

among the KEGG pathways or GO biological processes. As 

the size of the signature set decreases, the number of signif-

icantly enriched pathways decreases. Thus, CDRgator also 

generates a p-value representing the significance of func-

tional enrichment. 

 

User interface 
The CDRgator web service is freely available at http://cdrgator. 

ewha.ac.kr. Extraction of signatures from expression data 

and analysis of CDRgator web platform are implemented in 

R script (R version 3.4.4). All the generated data were stored 

in the MySql database (v5.7.22). Control of the data from a 

database has been implemented in Java (JRE 1.8.0) and we 

built a user-friendly web interface using JSP and jQuery to 

conveniently provide the data to the user. In addition, the 

CDRgator web interface uses html5, css3, SASS, and jQuery 

to load content intuitively and quickly on a variety of plat-

forms, including desktop and mobile. For rich and intuitive 

visualization of data, it uses the clustergrammer (Fernandez 

et al., 2017) which is based on the D3.js JavaScript library to 

build an advanced web interface with animation. The help 

documentation provides a video and a brief description of 

the CDRgator guide. 

CDRgator is primarily composed of ‘Browse’ and ‘Analysis’ 

menus. The ‘Browse’ menu provides the ability to search 

and browse information regarding resistance signatures. The 

‘Analysis’ menu performs signature similarity and functional 

analysis. Signature similarity analysis calculates how similar 

resistance signatures are, so that users can identify if signa-

tures of specific cancers, drugs, or their classes show a signif-

icant tendency in original spaces or two dimensions through 

multidimensional scaling. A functional analysis shows a 

heatmap that is generated from an over-representation test 

to identify genetic and biological functions of signatures. 

Finally, significant genes can be visualized using KEGG 

pathways (Supplementary Fig. S1). 

 

RESULTS 
 

Analysis of EGFR inhibitor resistance-induced signatures 
To demonstrate the utility of CDRgator, we performed a 

case study of induced EGFR inhibitor resistance signatures. 
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There were 22 induced resistance signatures for five differ-

ent EGFR inhibitors. Because these signatures were generat-

ed independent of each other, the following questions could 

be asked; i) is the resistance pattern dependent on the drug, 

the cancer type, or both; and ii) do drugs with similar mode-

of-action (e.g. EGFR inhibitors) share changes in tran-

scriptomic profiles. 

Similarity clustering analysis of the 22 Sind for EGFR inhibi-

tors showed a tight cluster, with mostly erlotinib resistance 

signatures from head and neck cancer (Fig. 3A). This sug-

gests distinct and reproducible patterns of resistance mech-

anisms specific to a drug and cancer type, because similar 

signature patterns were generated from multiple independ-

ent experiments. This trend was also confirmed in 2D map-

ping of the signatures using multidimensional scaling (Fig. 

3B). These signatures were distinguishable from those of 

other cancer types. Overall, the resistance patterns collected 

in CDRgator appear to be heterogeneous even for the same 

drug and cancer type (e.g. erlotinib (center green) in non-

small cell lung cancinoma (NSCLC, green outer ring) in Fig. 

3B). 

Pathway analysis showed the heterogeneity in resistance 

signatures in more detail. In head and neck cancers, biologi-

cal pathways previously known to be associated with drug 

resistance were also enriched in our signatures, such as up-

regulation of NF-kB, NOD-like receptor, TNF, and FoxO sig-

naling pathways. NF-kB signaling is well-known among the 

survival and resistance pathways against many anticancer 

drugs including EGFR-targeted drugs (Bentires-Alj et al., 

2003; Hertlein and Byrd, 2010; Lagunas and Meléndez-

Zajgla, 2008; Wang et al., 2018). It is known that the NF-kB 

activating complex drives cancer cells to become resistant 

against EGFR inhibitors (Blakely et al., 2015), and this signal-

ing pathway could also lead to resistance against EGFR in-

hibitors designed to target mutated forms of EGFR (Galvani 

et al., 2015). In colon cancers, activated NF-kB induces drug 

resistance through the regulation of MDR1 gene expression 

(Bentires-Alj et al., 2003). EGFR triggers proto-oncogenic 

signals such as RAS and mitogen activated protein kinase 

(MAPK) signaling (Wee and Wang, 2017). NOD-like recep-

tors are known to regulate innate immunity by forming in-

flammasomes, and also by activating MAPK and NF-kB sig-

naling (Saxena and Yeretssian, 2014; Shaw et al., 2010). 

NOD1/2 downstream signaling was reported to confer drug 

resistance through RIP2-PAX5 interaction by activating 

MAPK and NF-kB signaling (Wang et al., 2016a). AKT-PI3K 

signaling is also known to be activated in EGFR drug-

resistant cancer cells (Jacobsen et al., 2017; Ma et al., 2016). 

FOXO is among the downstream genes playing a role in cell 

survival and apoptosis. Drug sensitivity was restored via inhi-

bition of FOXO in AKT-mediated EGFR inhibitor-resistant 

lung cancers (Sangodkar et al., 2012). Several of these 

pathways (i.e. NF-kB, NOD-like receptor, and FOXO signal-

ing) were also frequently upregulated in other resistance 

signatures (Fig. 3B). 

In NSCLC, additional pathways (i.e. PI3K-Akt, ECM-

receptor interaction, and focal adhesion) were strongly en-

riched. These pathways were found to be associated with 

epithelial–mesenchymal transition (EMT), which has been 

recently highlighted as major resistance mechanism in both 

chemotherapy and targeted cancer drug therapy (Chen et al., 

2013; Huang et al., 2015; Larue and Bellacosa, 2005; Le 

Bras et al., 2012; Wang et al., 2016b). As shown in the ex-

ample with EGFR inhibitors, CDRgator provides rich infor-

mation on the drug resistance processes in terms of hetero-

geneity, and dependence on cancer type and drug class. 

 

DISCUSSION 
 

The development of technology coupled with bioinformatics 

and system biology approaches has enabled the identifica-

tion of genomic and transcriptome features to predict re-

sponse and resistance to specific drugs. The wide range of 

molecular mechanisms involving these features has im-

portant implications for understanding and treating re-

sistance. However, inhibiting one pathway can result in a 

relatively simple escape route for the tumor, and an inte-

grated analysis approach involving various features to over-

come or circumvent drug resistance is needed. 

CDRgator was developed for studying the acquired re-

sistance mechanisms against cancer drugs. Gene expression 

signatures were generated from manually collected data 

regarding cancer drug resistance-induced cells in public da-

tasets. CDRgator allows inspection and comparison of these 

acquired resistance transcriptomic signatures. Pathway anal-

ysis enables functional interpretation of multiple signatures 

simultaneously. While the datasets available in CDRgator are 

still sparse and insufficient to provide comprehensive infor-

mation on drug resistance mechanisms, it may provide a 

useful clue to investigate drug resistance mechanisms, and 

to develop the right therapeutic strategy. For example, an 

analysis of genome-scale transcript signatures provided by 

CDRgator and recurrent mutations in the regulatory region 

may provide a variety of data enabling resistance marker 

identification or mechanistic analysis. The complete datasets 

in CDRgator are accessible at http://cdrgator.ewha.ac.kr and 

are also downloadable as mysql database dump. 

 

Note: Supplementary information is available on the Mole-
cules and Cells website (www.molcells.org). 
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