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Abstract: Neutrophils and platelets exhibit a diverse repertoire of functions in thromboinflammatory
conditions such as stroke. Most cerebral ischemic events result from longstanding chronic inflamma-
tion secondary to underlying pathogenic conditions, e.g., hypertension, diabetes mellitus, obstructive
sleep apnea, coronary artery disease, atrial fibrillation, morbid obesity, dyslipidemia, and sickle cell
disease. Neutrophils can enable, as well as resolve, cerebrovascular inflammation via many effector
functions including neutrophil extracellular traps, serine proteases and reactive oxygen species, and
pro-resolving endogenous molecules such as Annexin A1. Like neutrophils, platelets also engage in
pro- as well as anti-inflammatory roles in regulating cerebrovascular inflammation. These anucleated
cells are at the core of stroke pathogenesis and can trigger an ischemic event via adherence to the
hypoxic cerebral endothelial cells culminating in aggregation and clot formation. In this article, we
review and highlight the evolving role of neutrophils and platelets in ischemic stroke and discuss
ongoing preclinical and clinical strategies that may produce viable therapeutics for prevention and
management of stroke.
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1. Introduction

The understanding and the therapeutic approach to stroke has remarkably trans-
formed in the past few decades [1]. Globally, there were approximately 6.6 million deaths
attributable to stroke in 2019, which increased by 12.2% since 2010 [2]. Approximately
800,000 Americans annually suffer from stroke-related morbidity, and mortality with is-
chemic stroke (IS) being the most common etiology followed by hemorrhagic stroke type [2].
The recent advent of hyper-acute endovascular therapy (EVT) for large vessel occlusion
in IS in the form of mechanical thrombectomy has further enhanced the neurological care
and recovery [3]. The hyperacute time for the critical management of IS relies on prompt
recognition of the diagnosis and urgent reperfusion/recanalization strategies. Secondary
prevention strategies focus on cardiovascular and metabolic risk management such as
blood pressure, glucose, cholesterol, and antithrombotic therapies.

Neutrophils and platelets are key players in ischemic brain injury and its resolution [4–7].
Resolution is the physiological ability of the body to achieve homeostasis after infection
or inflammation. However, in chronic inflammation, where there is an excessive and
persistent inflammatory response, the process of resolution is hampered [8,9]. Acute
cerebral ischemia induces a strong immune response resulting in recruitment of several
subsets of leukocytes (mainly neutrophils), activation of platelets, and coagulation cascade
and upregulation of cell adhesion molecules and cytokines [10]. Neutrophils and platelets
are known for their ability to produce proinflammatory/prothrombotic mediators, thereby
forming an important link between inflammation and thrombosis, a phenomenon referred
to as “thromboinflammation” [4,11,12]. The concept of thromboinflammation in stroke
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pathophysiology has gained considerable attention and traction in the last decade [4,12].
Furthermore, understanding the complex and important roles that both neutrophils and
platelets play in the pathophysiology of IS continues to be a main research focus for drug
discovery programs focused on finding potential therapeutics to protect against IS and for
the management post-IS [10,13].

Neutrophil–platelet aggregate (NPA) formation is a well-known phenomenon and is
the center of the pathogenesis of cerebral thrombus formation (Figure 1) [14]. Neutrophil-
derived P-selectin glycoprotein ligand-1 (PSGL-1) and platelet P-selectin drive NPA devel-
opment resulting in the activation Mac-1and LFA-1 (Mac-1 and LFA-1 are two β2 integrins
expressed on neutrophils and mediate the recruitment cascade by binding to intercellular
adhesive molecule 1 (ICAM-1)) [15,16]. In vivo, NPAs are also facilitated by margination of
platelets and neutrophils to the periphery of blood vessels as a consequence of displacement
of erythrocytes to the central part of the vessels [17]. Ischemia-reperfusion injury (I/RI),
which is one of the main underlying causes of IS pathogenesis [5,18,19], further enables
NPA formation and amplifies thromboinflammatory responses in IS [7,20] (Figure 2).
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Figure 1. Neutrophil–platelet interactions in cerebral thromboinflammation. This figure shows the
major neutrophil–platelet interactions (P-selectin glycoprotein ligand-1 [PSGL]-1-P-selectin, Mac-1-
GPIbα, and Mac-1-αIIbβ3) in cerebral thromboinflammation. Neutrophils also interact with platelets
via productions of NETs, which are laden with various pro-thrombotic mediators such as neutrophil
elastase (NE), cathepsin G (CG) and H3cit+ (citrullinated histone H3).
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Figure 2. Role of neutrophil–platelet interactions in pathogenesis of stroke. (I) Cellular activation and recruitment. Under
thromboinflammatory stress with underlying chronic inflammation there is increased recruitment and activation of cellular
milieu including neutrophils and platelets into the cerebral blood vessels. This is further assisted by activation and release
of cell adhesion molecules (CAMs), such as intracellular adhesion molecule and vascular adhesion molecule, and P and E
selectin resulting in neutrophil activation, adherence, and rolling along the activated endothelium. Neutrophils on activation
start producing various pro-thrombotic mediators such as neutrophil extracellular traps, cathepsin G, and neutrophil
elastase. (II) Thrombus formation. The above activation and recruitment results in continuous accumulation of stimulated
neutrophils, platelets, and red blood cells, and activation of the coagulation cascade. Reactive oxygen species can also
enhance the coagulation cascade by inhibiting the tissue factor pathway inhibitor (TFPI). Neutrophil elastase degradation
of TFPI by colocalization on NET surface. (III) Reperfusion injury. Reperfusion results in excessive production of pro-
inflammatory and thrombotic mediators into the vessel distal to the occlusion site, resulting in microvascular dysfunction.
Mainly, neutrophils produce reactive oxygen species, which further damage the endothelium and enhance neutrophil
transendothelial migration. Additional tissue injury is inflicted by continuous platelet and complement system activation.

2. Neutrophils in Stroke

Neutrophils are key players in thromboinflammatory disorders including cardio- and
cerebrovascular diseases [21]. These multi-lobed immune cells are amongst the first respon-
ders to migrate to the ischemic brain tissue with the zenith of invasion achieved between
48 to 72 h after ictus [13]. Here, they interact with surrounding cellular milieu includ-
ing platelets, endothelial cells, microglial cells, and other brain resident cells, producing
numerous pro-thrombotic mediators at the local inflammatory tissue.
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The central nervous system is an immune-privileged sanctuary in which inflammatory
milieu is tightly regulated to protect the neural cells from any immune response, injury,
and/or death [22,23]. Neutrophils are usually restricted from trafficking into the brain
parenchyma and cerebrospinal fluid (CSF) by the presence of the blood–brain barrier
(BBB) [24]. Neuroinflammation seen in acute IS results in damage of BBB, making it easier
for immune cells to transmigrate into the brain, with cytokines such as interleukin-1 playing
significant roles in the recruitment and transmigration of neutrophils across the damaged
BBB [25].

Early neutrophilia and an increased neutrophil to lymphocyte ratio in patients with
IS are associated with larger infarct volumes [26] and worse functional outcomes [27,28].
Neutrophil infiltration to the infarct site is known to further dampen the sterile cerebral
environment by increasing the BBB disruption [29]. Additionally, matrix-metalloproteinase
(MMP)-9-positive neutrophils in IS are associated with basal lamina type IV collagen
degradation and blood extravasation during hemorrhagic transformation [30].

3. Neutrophil Serine Proteases and Thromboinflammation

Neutrophil granule serine proteases (NSPs) have been extensively studied in inflam-
matory pathologies. Amongst NSPs, cathepsin G (CatG) and neutrophil elastase (NE) are
particularly known to have thromboinflammatory phenotypes in various inflammatory
pathologies [31–35]. NSPs can initiate and promote thromboinflammation in stroke by
interacting with platelets and coagulation factors [11] and binding with formyl peptide
receptors (FPRs) on neutrophils and platelets [32,36].

4. Neutrophil Extracellular Traps (NETs) and Stroke

NETosis describes a physiological response of neutrophils, when activated, to produce
and extrude complexes of decondensed DNA, termed NETs [37,38]. These NETs are known
to not only play a protective role in the immune response against invading pathogens, but
they have also been shown to possess pro-inflammatory properties that can promote coag-
ulation and thrombosis leading to and further exacerbating IS [5,39]. NETs are laden with
prothrombotic mediators such as H3cit+ (citrullinated histone H3), CatG, NE and myeloper-
oxidase (MPO) [4,34]. Under chronic inflammatory milieu, NETosis can be detrimental and
promote acute thromboinflammatory events such as IS [40–43]. Experimental studies in
animal models have shown NETs can promote thromboinflammation via different NET
components including H3cit+ and NSPs [44]. H3cit+ neutrophils, a pathophysiological
hallmark of NETs, have been observed in all ischemic thrombi and more abundant in
thrombi of cardioembolic origin compared to other etiologies [41]. Notably, a recent study
revealed NETs were significantly higher in the carotid lesion site and were decorated with
phosphatidylserine in thrombi [45].

Peptidylarginine deiminase 4 (PAD4) is an enzyme essential for NET formation and is
known to be upregulated in thromboinflammatory disorders including IS [46]. In a model
of accelerated thromboinflammation such as sickle cell disease (SCD), we found neutrophils
from SCD patients increased H3Cit+ NETs compared to controls [4]. Furthermore, targeting
SCD neutrophils with a pro-resolution molecule Annexin A1(AnxA1)Ac2-26 resulted in
decreased H3Cit+ NETs from SCD neutrophils and reduced cerebral thrombosis in sickle
transgenic mice [4].

5. Neutrophil-Dependent Oxidative Stress and IS

Neutrophils are rich sources of reactive oxygen species (ROS) and can contribute
to harmful oxidative stress, which can further accelerate thromboinflammation. ROS
production in the peri-infarct area has a major role in the pathogenesis of ischemic- and
reperfusion-related brain injury [47,48]. ROS regulates neutrophil recruitment during
inflammation by mainly inducing expression of adhesion molecules, such as vascular cell
adhesion molecule-1 (VCAM-1), and can facilitate the opening of intercellular passageways
to help neutrophils transmigrate to the inflammatory tissue [49]. There are multiple
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studies that have shown that targeting ROS production may attenuate oxidative stress
and inflammation, reduce edema, and help to maintain the function and integrity of the
BBB [50]. Remote ischemic conditioning and hypothermia can also attenuate oxidant
stress-induced inflammation, and non-pharmacologic adjunctive ROS-targeting therapies
are currently being tested to augment neurovascular protection in IS [51,52]. ROS can also
enhance thromboinflammation by inhibiting the tissue factor pathway inhibitor (TFPI),
which is the only physiologic inhibitor of TF activity [53].

6. Platelets in Stroke

Platelets are small anucleated multifaceted cells that are released from megakary-
ocytes [54,55], and from the bone marrow and lungs [56,57]. Their primary function is
regulating hemostasis and thrombosis [58], although more recently they have been shown
to play important roles in inflammation [59]. However, there is a delicate balance between
the physiological and pathophysiological role of platelets due to their mediation of complex
vascular responses in innate and adaptive immunity [60]. Therefore, over the years the
pathophysiologic role of platelets has been studied extensively in thrombotic disorders
such as myocardial infarction (MI), IS, and venous thromboembolism. This has led to
the advancement of antiplatelets and anticoagulant therapies in thromboinflammatory
conditions such as coronary artery disease, atrial fibrillation, and stroke [61]. Platelet
production from the bone marrow is regulated by physiological homeostasis but can be
adversely affected in pathophysiological conditions [59]. Thrombopoietin, secreted by the
liver, is the primary growth factor and chief regulator of megakaryocytes for the platelet
production, signaling via its receptor, MPL [62].

In the neurovasculature, there are distinct mechanisms of platelet-mediated thromboin-
flammation, which involves interaction with the neutrophils, endothelial cells, plasmatic
coagulation factors, and the complement system [63,64]. In stroke, platelets and neutrophils
are the first immunomodulatory cells recruited to the affected cerebral vessel where they
initiate aggregation and thrombus formation [63]. The interaction of the platelets with the
surrounding milieu, including circulating neutrophils, plays a significant role in regulating
thromboinflammation [7,12,64]. Platelets express P-selectin on activation, which interacts
with PSGL-1 to enhance neutrophil activation and recruitment at the inflammatory site.
The CD40 ligand (CD40L) is found on platelets and is released on activation in the solu-
ble circulating form, thus inducing endothelial cells to secrete chemokines and express
adhesion molecules, thereby initiating a vascular inflammatory response. CD40L is also
a key regulator of NPA formation and can accelerate early stages of atherosclerosis and
plaque development, promote progression toward advanced atherosclerosis; and influence
regulatory T cell recruitment in atherosclerosis, which is one of the main underlying causes
of stroke pathogenesis [65]. Platelet PF4-dependent HIT can result in NPA formation and
the development of thrombi enabling the pathogenesis of stroke [43].

Damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1)
is upregulated by activated platelets in multiple inflammatory diseases and has also been
shown to be a critical mediator of thrombosis by regulating platelet activation, granular
secretion, adhesion, and spreading [66]. HMGB1 effects on platelets seems to be mediated
via platelet toll-like receptor 4 (TLR4) followed by MyD88/GC complex formation and
activation of the cGMP-dependent protein kinase I (cGKI) [66]. Interestingly, platelet TLR4
also activates NET production, which can further enable stroke pathogenesis [67].

Platelet activation and aggregation resulting in thrombosis is further influenced by
the high shear forces generated from the blood flow around the thrombus microenviron-
ment [68]. The von Willebrand factor (vWF) is a key participant in the platelet-dependent
thromboinflammation and stroke development [69]. Shear stress activates and brings
conformational change to vWF, which then associates with platelet GPIbα (a subunit of
GPIb-IX-V complex). This vWF–GPIbα interaction is crucial for initial platelet adhesion,
which in turn facilitates platelet aggregation and adhesion in thrombotic events [70,71].
vWF–GPIbα interaction leads to platelet activation and results in soluble platelet agonists,
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such as adenosine 5′-diphosphate, adenosine 5′-triphosphate, and thromboxane A2 (TXA2),
being released at the inflammatory site and shifting GPIIb/IIIa to a high-affinity state and
further enabling both thrombus formation [69] and increasing the risk of IS and secondary
thrombotic events post -IS [6]. Interestingly, a recent study showed that PAD4 in circula-
tion enhances thrombosis by promoting formation of vWF-platelet string formation and
reducing ADAMST13 activity [72].

7. Neutrophil- and Platelet-Dependent AnxA1-FPR2/ALX Resolution Axis in Stroke

Inflammation plays a key role in the pathophysiology of IS. Resolution is the ideal
outcome of inflammation [4,73,74], and is defined as the mechanism to clear inflammatory
influx to restore functional homeostasis. Resolution involves a tightly regulated series of
events that are mediated by specialized pro-resolving mediators (SPMs) (e.g., resolvins,
lipoxins, maresins, and protectins) and resolver proteins (e.g., Annexin 1 and Annexin
1-derived peptides) (10, 60–65), which are actively involved in the recovery phase of
inflammation in acute and chronic conditions (8, 61, 66–68). AnxA1 and its biomimetic
peptide AnxA1Ac2-26 have a more unique role in the resolution axis as they can target both
endogenous inflammatory and pro-resolving pathways [75]. It is known that resolution
is dampened in chronic inflammatory states, as shown for example by decreased levels
of AnxA1 in plasma samples obtained from patients with SCD or IS compared to their
respective controls [4,6]. The resolution process has also been shown to be altered or
dysregulated in other inflammatory conditions, including MI, chronic kidney disease,
and arthritis [6,76–80]. A new phase that follows resolution is known as ‘post-resolution’
in which the affected tissue develops adaptive immunity. In chronic inflammation, the
post-resolution phase is not achieved due to stagnant or ‘frustrated resolution’ resulting
in a delay in adaptive immunity [81]. The current research and development of novel
pharmacological strategies may help in rescuing resolution biology in chronic inflammatory
conditions, which in turn may help to prevent acute cerebrovascular events such as IS.

8. Therapeutics in Thromboinflammation

Due to the understanding of thromboinflammatory mechanisms in the evolution of IS,
there has been significant research in drug development programs targeting neutrophil-
and platelet-dependent mediators: In pre-clinical studies, engagement of the AnxA1-
FPR2/ALX pathway in neutrophils as well as platelets produced significant results of
mitigation and rescue of the adverse thromboinflammatory phenotype in cerebral mi-
crovessels, theoretically preventing the onset of IS as well as management of secondary
I/RI-related inflammation (Figure 3) [4,6,7,75,82].
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Figure 3. Targeting neutrophil- and platelet-dependent thromboinflammation in stroke. Schematic depiction of potential
therapeutic targets to mitigate thromboinflammation in stroke. (A) Anti-neutrophil adhesion agents include P-selectin and
intracellular adhesion molecule-1 (ICAM-1) therapies, CD18, and CXCR2 blockade. (B) Aspirin (ASA) and P2Y12 inhibition
(clopidogrel and ticagrelor) inhibit the platelet activation and aggregation by antagonizing the platelet P2Y12 receptor.
Lipoxin, an endogenous pro-resolving molecule, engages via Formyl peptide receptor-2/lipoxin-A4 (Fpr2/ALX) pathway
and modifies neutrophil–platelet aggregate response resulting in anti-inflammatory and pro-resolving response in stroke.
(C) Targeting von-Willebrand factor (vWF)–GPIbα interaction attenuates vWF-mediated platelet adhesion. (D) Targeting
reactive oxygen species production by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) blockade
or remote ischemic conditioning and hypothermia may attenuate oxidative stress and inflammation, reduce edema, and
help to maintain the function and integrity of the blood–brain barrier (BBB) and augment neurovascular protection in
stroke. (E) Bryostatin and vascular cell adhesion molecule (VCAM-1) blockade can inhibit neutrophil transendothelial
migration. (F) Annexin A1 (AnxA1) and related biomimetic peptides such as Annexin A1Ac2-26 engage via AnxA1-Fpr2-ALX
by reducing neutrophil activation and the release of pro-thrombotic mediators, regulating neutrophil H3cit+ (Citrullinated
histone H3) production, and lastly enabling of neutrophil and platelet phagocytosis.
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9. Targeting Neutrophil-Dependent Thromboinflammation

Neutrophils are the main agents of chaos in cerebral thromboinflammation and pro-
mote thrombosis and atherosclerosis via the release of various thromboinflammatory
mediators as discussed above. Therefore, targeting thromboinflammatory mediators may
have a critical role in management of IS by suppressing the inflammatory process and
boosting neuroprotection.

Neutrophil recruitment to the ischemic site and adhesion to brain endothelial cells is
enabled by P-selectin and ICAM-1 [83–85]. The anti-neutrophil adhesion strategy targeting
P-selectin and ICAM-1 was proven to diminish neutrophil recruitment and transmigration
at the site of cerebral I/R, thereby resulting in attenuation of thromboinflammation [84,85].
CD18 (leukocyte counter-ligand to endothelial intracellular adhesion molecule-1) knockout
mice conferred cerebrovascular protection in a murine model of IS, but not to CD18-deficient
animals with permanent middle cerebral artery occlusion, suggesting anti-neutrophil ad-
hesion strategies should be further tested for the management of stroke [84]. However,
Enlimomab, a murine ICAM-1 antibody that is known to reduce leukocyte adhesion and
infarct size in experimental stroke studies, was not effective in earlier clinical trials, with
more adverse events such as infections and fever compared to the placebo [86]. Studies tar-
geting anti-E-selectin, anti-L-selectin, and chemokine receptors had no response to minimal
response in animal models of experimental IS [13].

Neutrophil recruitment to the site of inflammation and stroke can result in excessive
production of NSPs and reactive oxygen species (ROS), damaging the vascular as well as
parenchymal structures by acting at various steps of the inflammatory cascade. Directly
targeting the production of NSPs or using intracellular protease inhibitor was shown to
attenuate NSP-dependent thromboinflammation [31,35]. Whereas targeting ROS produc-
tion can attenuate initial as well as later stages of oxidative stress development in stroke by
mitigating I/RI, restoring the BBB, and preventing neuronal death [50]. In our own work,
we have shown that targeting neutrophil-dependent nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase may attenuate cerebrovascular thromboinflammation by
inhibiting the production of H3cit+ neutrophils [87].

IS induces BBB permeability, thereby increasing the movement of inflammatory cells,
such as neutrophils, into the brain. Enhancing and protecting the BBB against IS damage is a
target of IS treatment. Bryostatin, a macrolide lactone, has been described to activate PKCδ

in endothelial cells, enhance barrier integrity, block cytokine-induced barrier alterations,
and potentially block neutrophil transendothelial migration [88,89]. Bryostatin treatment
in an experimental model of IS resulted in improved neurological function, reduced lesion
volume, and salvaged tissue compared to controls by reducing necrosis and peri-infarct
astrogliosis [90].

Finally, knowing the role of NETs and PAD4 in the pathogenesis of stroke, targeting
pathological NET production may be a viable approach to reduce thrombosis and stroke
damage [4,87]. Our own findings have demonstrated that targeting H3cit+ NETs and PAD4
significantly inhibited cerebral thrombosis in vivo [4,87]. However, at present, few clinical
trials have tested NET or PAD4 inhibitors in stroke management.

10. Targeting Platelet-Dependent Thromboinflammation

Acetylsalicylic acid (ASA), commonly known as aspirin, is one of the most common
medications prescribed for primary, as well as secondary prevention of cardiovascular
disease and in stroke thromboprophylaxis [91]. ASA produces clinical effect by irreversibly
acetylating the active site of cyclooxygenase-1 (COX-1), thereby blocking prostaglandin and
TXA2 synthesis, which are required for thrombus formation [92]. In a preclinical study, ASA
significantly reduced cerebral leukocyte recruitment and increased endogenous levels of
aspirin-triggered lipoxin, thereby inducing thromboinflammation resolution via FPR2/ALX
pathway [7]. Multiple clinical trials have reported long-term secondary prevention of stroke
in patients with transient of attack or IS, including non-randomized observation studies
reporting a benefit of up to 80% risk reduction in recurrent stroke [91,93].
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P2Y12 receptor is the main receptor responsible for ADP-stimulated activation of the
glycoprotein IIb/IIIa receptor. Thienopyridines such as clopidogrel and ticagrelor inhibit
the platelet activation and aggregation by antagonizing the platelet P2Y12 receptor [94].
Multiple clinical trials have shown the benefit of dual- as well as monotherapy with P2Y12
inhibition in stroke [95]. CHANCE and POINT revealed that the combination of clopidogrel
and aspirin reduced risk of stroke in the first 90 days in patients with minor ischemic stroke
or high-risk TIA, compared to those who received aspirin alone [96,97]. In a similar fashion,
THALES and SOCRATES showed the benefit of ticagrelor with and without aspirin [98,99].
The recently published CHANCE-2 trial found that, in patients with minor ischemic stroke
or TIA who are carriers of CYP2C19 loss-of-function alleles, the risk of stroke at 90 days
was modestly lower in patients who received ticagrelor compared to clopidogrel [95,100].

Dipyridamole inhibits adenosine deaminase and platelet cAMP phosphodiesterase
resulting in prevention of platelet aggregation. Multiple clinical trials have studied combi-
nation dipyridamole and aspirin for stroke management, especially the ESPS-2 trial, which
showed the benefit of 25 mg of ASA twice daily and dipyridamole as equally effective for
the secondary prevention of stroke and TIA [101].

Many case studies have investigated and revealed an association between high vWF
levels [102] and low levels of ADAMSTS13 [103] in patients with IS. Therefore, several
clinical studies have utilized strategies to inhibit vWF or enhance ADAMSTS13 in the
management of stroke, including in knockout transgenic animals [69]. Most of the inhibitors
targeting vWF-mediated platelet adhesion target vWF–GPIbα interaction, and are still in
pre-clinical stages [104]. vWF inhibitors include monoclonal antibodies targeting vWF (e.g.,
82D6A3, AJvW2, and AJW200) or targeting GPIbα 6B4 (e.g., h6B4, the nanobody ALX-0081,
the aptamer ARC1779, and the recombinant GPIbα fragment GPG-290) [69].

11. Concluding Remarks and Future Directions

Neutrophils and platelets are seen as key players in thromboinflammation and the
pathogenesis of stroke. The emerging role of neutrophil-derived serine proteases, extracel-
lular traps, and ROS in the cerebrovascular thromboinflammation has created an immense
opportunity for the development of translational research. Current evidence suggests the
dampening of resolution pathways/mediators in thromboinflammatory conditions such
as stroke, therefore leading to an unchecked and persistent burden of pro-inflammatory
milieu. The ongoing research including our own will be instrumental in developing viable
drug discovery programs that target proteins and pathways involved in pathophysiological
settings (such as H3Cit+ NETs and PAD4) to enable inflammation resolution. In a similar
fashion, platelet-dependent thromboinflammation has and can be effectively targeted by
inhibiting the pathophysiological activation of vWF–GPIbα interaction, P2Y12, CD40L,
and TLR4. Additional targeting and modulating NPA formation can mitigate the sec-
ondary complications of chronic thromboinflammation such as stroke. Finally, exploiting
endogenous protective mechanisms and pathways (e.g., the AnxA1/FPR2/ALX pathway)
in neutrophils and platelets, thereby enabling the resolution of thromboinflammation, is
going to be impactful in developing novel and potent therapies against stroke and will
help drive effective pre-clinical and clinical therapeutic studies.
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