
Cite as: M. C. Maher et al., Sci. Transl. Med. 
10.1126/scitranslmed.abk3445 (2022).  

RESEARCH ARTICLES

First release: 11 January 2022   www.science.org/journal/stm  (Page numbers not final at time of first release) 1 

INTRODUCTION 
SARS-CoV-2 evolution presents an ongoing challenge to 

public health. Tens of thousands of mutations have arisen in 
the SARS-CoV-2 genome as the pandemic has progressed. Un-
derstanding the relative importance of mutations in viral pro-
teins, particularly those of relevance for antiviral immunity, 
is key to allocating preparedness efforts. Mutations in the vi-
ral Spike protein have received particular attention because 
Spike is the target of antibody-mediated immunity and is the 
primary antigen in current vaccines (1). As of December 1st, 
2021, there are 10,381 distinct amino acid substitutions, in-
sertions, or deletions in Spike sequences from the GISAID da-
tabase (2). These mutations occur at all but one position in 
the protein, in different combinations, creating over 160,000 
unique Spike protein sequences. A small subset of these mu-
tations are components of “Variants Being Monitored” 
(VBMs), “Variants of Interest” (VOIs) or “Variants of 

Concern” (VOCs), as classified by the United States Centers 
for Disease Control (CDC) (3). The distinction between VOIs 
and the higher alert VOCs is whether a negative clinical im-
pact is suspected or confirmed. VBMs are variants that would 
be classified as VOCs if not for low prevalence. 

Early statistical and algorithmic identification of the key 
Spike amino acid changes contributing to future putative 
VBM/VOI/VOCs are of clear benefit to public health strategy. 
Such predictions could enhance the identification of vulner-
abilities for antibody-based therapeutics, vaccines, and diag-
nostics. Predicting future successful mutations would extend 
the time available to develop proactive responses at earlier 
stages of spread. It would also complement existing forecast-
ing efforts which seek to predict overall SARS-CoV-2 inci-
dence, hospitalizations, and death over time (4–6). Focus on 
the success of individual mutations rather than genomic var-
iants also facilitates longer-term forecasting. The 
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combinatorics of modeling genomic variants quickly become 
intractable. As a toy example, for a protein of length 1200, 
there are over 250 million distinct sequences that differ by 
only two amino acid changes. By focusing on amino acid suc-
cess from the outset, we rely on common and largely correct 
assumptions about independence between mutations, and 
are able to leverage more information per mutation, thus ex-
tending the timeline on which evolution can be meaningfully 
forecast. 

There is a robust and expanding set of analyses character-
izing the features of amino acid mutations of SARS-CoV-2. 
Studies have identified the emergence of new variants with 
altered biological or antigenic properties (7–9) and character-
ized them using low-throughput methods (10, 11). Deep mu-
tational scanning elucidates the in vitro biological effects of 
all single site amino acid substitutions in a fixed genomic 
backbone (12–14). Others have characterized the distribution 
of immunodominant sites across the viral proteome (15, 16) 
and estimated the fitness of viral sequences using neural nat-
ural language processing (NLP) applied to protein sequences 
(17). 

We sought here to build upon these data and approaches 
to forecast the mutations that will spread from season to sea-
son. We hypothesized that this would also allow us to identify 
the dominant biological drivers of viral evolution over short-
term timescales. These two goals are mutually reinforcing: 
the features that are most useful for forecasting can be in-
ferred as measuring viral fitness. Conversely, a better under-
standing of evolutionary dynamics can make modeling more 
accurate and robust. To accomplish these goals we described 
patterns of rapid mutation spread both globally and within 
the United States and elucidated the relative predictive im-
portance of amino acid mutational features comprising im-
munity, transmissibility, evolution, language model, and 
epidemiology. Next, we utilized data from previous infection 
waves to train and back-test a forecasting model that antici-
pates future spreading mutations and illustrated how fore-
casted mutations could differentially affect clinical 
antibodies. We extended this analysis to forecast mutations, 
specifically on the Delta lineage, across the whole SARS-CoV-
2 proteome. As the number of Omicron sequences increases, 
such a targeted analysis could be repeated for that lineage as 
well. 

RESULTS 
Biological and epidemiological features of SARS-

CoV-2 mutations that spread 
For the purpose of developing the models, we defined 

“spreading” amino acid mutations as a specified fold change 
in frequency across multiple countries, comparing time win-
dows before and after a chosen date (Fig. 1). These mutations 
could be substitutions, insertions, or deletions. (2) Within 
each country, we tabulated the number of sequences 

containing the mutation being modeled, versus those that did 
not, in the three months before and after a date of interest 
(Fig. 1A). For each mutation, we calculated a fold change and 
an associated comparison-adjusted p-value. Mutations with a 
significant Benjamini-Hochbert adjusted p-value (q < 0.05) 
from any country were retained. This set was further filtered 
using the following empirical criteria, all of which had to be 
met to define a mutation as spreading: a fold change (FC) 
from baseline of at least 10.0 in at least one country; a FC of 
at least 2.0 across three or more countries; and a minimum 
global frequency of 0.1% in the later time window. We high-
light that the sequences used to calculate fold change from 
baseline and minimum frequency were all collected after 
those used for model training or feature calculation, with no 
overlap or interleaving between the two datasets. Perfor-
mance was assessed over time by repeating this analysis in 
shifting or sliding time windows covering the whole data col-
lection period, which corresponded to the three months prior 
to the desired forecast start date (Fig. 1B). Assessed data win-
dows ranged from January-March 2020 to June-August 2021. 

This definition of spreading mutations captured the ex-
pansion of VOI/VOCs globally (fig. S1A) as well as the growth 
of a number of lesser-known mutations (fig. S1B). Implicit in 
a mutation-centric approach to forecasting is the assumption 
that mutations accumulate in a manner that is approximately 
independent, or at least that their interactions can be aver-
aged out when looking across all genomic backgrounds. To 
test for significant violations of this implicit assumption, we 
tested for linkage between all pairs of spreading mutations 
(fig. S2). Enrichment for co-occurrence between pairs of mu-
tations at a rate of greater than 8-fold was observed for fewer 
than 5% of mutation pairs. Thus, we find that (pairwise) in-
dependence between mutations is a useful and approximately 
correct simplifying assumption. 

We next determined which features of amino acid muta-
tions are informative for predicting their spread at baseline 
(Table 1, data file S1). Within the receptor binding domain 
(RBD) of Spike, we found that ACE2 binding affinity was a 
useful predictor of mutation spread (area under the receiver 
operator characteristic curve, AUROC=0.85; Fig. 1C). An-
other useful predictor was the change in in vitro expression 
of Spike mutants (AUROC=0.82; fig. S3A). Among measures 
of immune escape, the binding contributions of known anti-
body epitopes (antibody binding score) to anti-SARS-CoV-2 
antibodies were predictive of mutation spread (AUROC=0.71; 
Fig. 1C) whereas CD4+ or CD8+ T-cell immunogenicity did 
not offer substantial explanatory power for mutation spread 
(AUROC=0.52-0.62; fig. S3A). We found that Natural Lan-
guage Processing (NLP) scores for sequence plausibility 
(grammaticality) (17) were similarly predictive to deep muta-
tional scanning data (AUROC=0.82; Fig. 1C). The best evolu-
tionary feature for prediction of spread (AUROC=0.86; Fig. 
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1C) was obtained from Fixed Effects Likelihood (FEL (18)) 
from the Hyphy package [http://www.hyphy.org] (19) which 
tests for pervasive negative or positive selection across the 
internal branches of a phylogenetic tree. 

The highest predictive performance, however, was ob-
tained from epidemiological features, that is, variables which 
more directly measure sampled mutation counts (Table 1). 
The most predictive variable in this feature category was “Epi 
Score”, the exponentially weighted mean ranking across the 
other epidemiological variables (mutation frequency, fraction 
of unique haplotypes in which the mutation occurs, and the 
number of countries in which it occurs), with AUROC=0.99. 
This score captures both lineage expansion and recurrent 
mutation that occurs in multiple variant lineages by conver-
gent evolution. We note that the utility of recurrent mutation 
signals is consistent with recent findings that convergent evo-
lution plays a substantial role in SARS-CoV-2 adaptation (20). 
As observed for the RBD alone, within Spike we also obtained 
the best predictive performance with epidemiologic 
(AUROC=0.96) and evolutionary (AUROC=0.84) measures 
(Fig. 1C). The performance of other feature sets for spike is 
presented in fig. S3B. 

We next sought to interrogate the robustness of this ap-
proach to changes in the underlying drivers of SARS-CoV-2 
evolution. For example, it has been hypothesized that selec-
tion due to immune pressure has increased with time as more 
individuals became immune through infection or vaccination 
(20). For example, the Gamma P.1 lineage is thought to have 
spread rapidly in Brazil largely due to immune selection in a 
population with high seroprevalence (21). We measured the 
predictive performance of antibody binding scores, which 
quantify the predicted percent contribution of each Spike site 
to antibody affinity. We took this metric as a proxy for B cell 
immunodominance (Table 1) (22). Taking the maximum of 
this value across antibodies at a given site yielded the maxi-
mum antibody binding score. The predictiveness of this met-
ric increased from nearly uninformative early in the 
pandemic (p-value for difference from random=0.53), to an 
AUROC of 0.75 (p<1e-4; fig. S2C) for predicting spreading 
mutations during the third wave of the pandemic (Fig. 1D). 
Predictiveness subsequently decreased again to 0.64 by sum-
mer of 2021 coincidental with the emergence of Delta. How-
ever, we found that epidemiological features maintained 
their performance, achieving an AUROCs of 0.92-0.97 over 
multiple evaluation periods (Fig. 1D). 

Last, we trained models to predict spreading mutations 
using all, or various subsets of, the features identified above. 
We employed logistic regression with baseline features as in-
puts. The best predictors were epidemiologic features 
(AUROC=0.98) and positive selection features (AUROC=0.83; 
fig. S4A). The performance of the full model was comparable 
to the non-model-based performance of Epi Score (fig. S4B). 

Therefore, to simplify reproducibility and further minimize 
the risk of overfitting, we used Epi Score to predict mutation 
spread going forward. We found that taking the top 5% of 
mutations according to their Epi Score achieved reasonable 
sensitivity (~50%) and maintained a positive predictive value 
of between 20 and 60% across time windows (fig. S5). Given 
that an average of ~3% of observed mutations are spreading 
at any point in time, this represents more than a 300-fold im-
provement in sensitivity, and a 6- to 20-fold improvement in 
positive predictive value relative to random selection. 

In summary, immunity, transmissibility, evolution, lan-
guage model, and epidemiologic features all effectively pre-
dicted mutation spread. The methodology captured changes 
to the underlying selective forces over the course of the pan-
demic. We found that epidemiologic features in particular 
display superior accuracy and maintain it over time. 

Examining global dynamics and the emergence of 
VOCs 

To determine whether local or global dynamics drive mu-
tation spread, we examined whether spreading mutations in 
the United States were better predicted by global or US-only 
epidemiological values. We tested the performance of Epi 
Score across four waves of the pandemic. We found that mu-
tations were predicted with an AUROC above 0.85 up to 11 
months in advance, both within the United States and glob-
ally. Global epidemiology metrics were best overall and were 
generally more predictive of country-level mutation spread 
than the country-level metrics themselves (fig. S6). 

To illustrate the practical utility of Epi Score using global 
features, we assessed how early we would have been able to 
forecast the spread of Spike mutations that define current 
and former CDC VOCs, VOIs, and VBMs (n=50 defining mu-
tations). To be conservative, we defined the date that a muta-
tion was first forecast as the earliest date at which it was 
predicted to spread in two subsequent analysis periods. Of 
the 50 mutations (Fig. 2A), the median time between when 
a mutation was forecast to spread and when it reached 1% 
frequency was 5 months. The maximum was 20 months, 
while the minimum was 0 months for D614G, because this 
mutation had already reached a frequency of 69% by the first 
forecast period. The distribution of these forecast intervals is 
presented in Fig. 2B. 

Of particular note, Y145H was forecast to spread starting 
in July of 2021. This mutation is now a defining mutation of 
AY.4.2, a spreading sub-lineage of the Delta VOC. As of Octo-
ber 2021, AY.4.2 accounted for 8.5-11.3% of samples in the UK. 
Estimated growth rates remain slightly higher for AY.4.2 than 
for Delta, and the household secondary attack rate was 
higher for AY.4.2 cases than for other Delta cases (23). Based 
on these observations, we conclude that our approach was 
able to predict key mutations, across all current and former 
VOC/VOI/VBMs, several months in advance. Early warning 
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of mutations in current VOCs, VOIs, and VBMs would have 
been possible before reaching worrisome degrees of global 
spread. 

Understanding performance through a causal lens 
Seeking to understand the high predictive performance of 

epidemiologic features, we constructed a directed acyclic 
graph to represent the hypothesized causal relationships, and 
to probe whether relative trends in performance were con-
sistent with the expectations that follow from this model 
(Fig. 3A). We proposed that epidemiologic features mediate 
the relationship between viral fitness and mutation spread. 
Our rationale was that if a mutation’s contribution to viral 
fitness was sufficient to drive it to appreciable prevalence at 
one time point (as measured by global frequency and geo-
graphic distribution), and in the context many genetic back-
grounds, it would likely drive it to higher prevalence in the 
future as well (unless it were outcompeted by a more fit ad-
aptation, or the fitness landscape changed). This type of me-
diated relationship (fitnessÞcurrent prevalenceÞfuture 
prevalence) implies that epidemiological prevalence features 
will capture information from both known and unknown 
drivers of selection. 

If the causal model were reasonable, we would expect first 
that variables whose causal effects are mediated, as defined 
above, should predict epidemiologic variables at a compara-
ble or even greater accuracy compared to spreading muta-
tions. This is illustrated by comparing the first and second 
columns of Fig. 3B. We observed that, with the exception of 
the maximal antibody binding score, all top variables pre-
dicted Epi Scores better than they predict mutation spread. 
The lower predictiveness of maximal antibody binding score 
for Epi Scores would be consistent with a slight time lag effect 
due to shifting evolutionary pressures. 

A second criterion for mediation is that information from 
these variables should not substantially complement the pre-
dictiveness of the epidemiologic variables alone. In other 
words, there should be little or no additional information 
that other inputs provide relative to the epidemiologic varia-
bles. We assessed this by comparing the AUROCs of two-var-
iable models in column 3 of Fig. 3B with the AUROC for Epi 
Score alone (0.983). The only nominal AUROC increase for a 
complemented model was observed for the evolutionary 
measure FEL (0.984). We did not find statistically significant 
complementarity with Epi Score for this or any other varia-
ble, either within the RBD or across full length Spike (see 
supplemental section “Mediation Analysis”, table S1). 

Our examination of mediated causal relationships begins 
by assuming a causal graph based on prior knowledge. Such 
an approach is common to many causal inference methods 
(24) and represents a well-understood limitation of these 
methods (24). Therefore, we considered this as a tool to more 
systematically analyze the plausibility of our results. 

Although it is generally difficult to verify the structure of pro-
posed causal graphs, our findings support the concept that 
epidemiological variables mediate the effects of other classes 
of explanatory variables, and this may explain their high pre-
dictive accuracy. 

Emergence and spread of Omicron 
While this work was in revision, we were confronted with 

the emergence in late November 2021 of the Omicron 
(B.1.1.529/21K) variant. Despite the low frequency of many of 
the individual mutations that define the major haplotype of 
Omicron (median allele frequency 0.00046), we observed 
high Epi Score values across Spike (median Epi Score of 9.51); 
Fig. 4A. A benefit of the computational simplicity of Epi 
Score is that predictions can easily be updated on a daily ba-
sis. We therefore sought to move beyond single time point 
Epi Scores to examine trends in Epi Score across time for the 
Omicron mutations. The time-analysis showed that the Omi-
cron Spike mutations had progressively higher Epi Score val-
ues long preceding the acceleration that characterized the 
emergence of Omicron in November 2021 (Fig. 4B). We ad-
ditionally found that the spread of Omicron was rapidly re-
flected in the raising Epi Scores of its mutations, and that 
daily forecasts allowed the identification of trending scores. 

As an independent approach to assess the singularity of 
Omicron, we also examined the evolutionary nature of the 
Omicron mutations using our language model. Omicron had 
a grammaticality change between that of Alpha and Delta, 
but the highest semantic change (predicted antigenic shift) 
of any SARS-CoV-2 lineage (fig. S7). Indeed, Omicron’s se-
mantic change score was twice that of both Alpha and Delta, 
consistent with high levels of mutation and immune escape 
adaptation. 

Forecasting spreading mutations in Spike and pro-
teome-wide 

Building upon the accurate prediction of spreading muta-
tions across different waves of the pandemic, we next lever-
aged Epi Score on current data to forecast mutations that 
may contribute to VOIs and VOCs over the coming months. 
Because global metrics outperformed metrics restricted to 
the United States, even for forecasting within the United 
States, we focused on global forecasting. We considered 
shortening our feature calculation window to further miti-
gate the effects of shifting evolutionary dynamics. However, 
we found that longer feature calculation windows improved 
performance across all prediction windows (fig. S8). 

As an application of the forecasting analysis, we examined 
how forecasted mutations intersected with the binding sites 
of clinical antibodies as of October 19th, 2021. We found wide 
variation in the number of forecasted mutations per antibody 
epitope (Table 2), ranging from 10 mutations for Celltrion’s 
CT-P59, to two low-frequency mutations for Vir-7831 (sotro-
vimab), which was designed to be more robust to viral 
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evolution by targeting a region that is conserved across coro-
naviruses (25). The two mutations in the epitope of sotro-
vimab, A340S and R346K, do not limit neutralization (25, 26). 
As an additional proof of concept, we focused our attention 
on Spike S494P, a mutation reported to have enhanced bind-
ing affinity to ACE2 (27), and to reduce neutralization by 3-5-
fold in some convalescent sera (27). We found that the S494P 
mutation decreases neutralization potential of clinical thera-
peutic antibodies: Ly-CoV555 (bamlanivimab), CT-P59 and to 
a lesser extent to REGN10933 (casirivimab) (Fig. 5). 

Last, to demonstrate the flexibility and extensibility of our 
approach, we forecasted the spread of mutations specifically 
on the Delta genomic background, across the full SARS-CoV-
2 proteome. Because the components of Epi Score can be cal-
culated for any mutation where sequencing data are availa-
ble, extension to the full proteome is trivial and not 
computationally taxing. It can also be reasonably calculated 
on any subset of sequences to determine which mutations are 
most likely to spread based on their characteristics within 
that subset (or lineage). Therefore, it is also straightforward 
to adapt this approach to produce lineage-specific forecasts. 
Fig. 6A shows a Manhattan-style plot of Epi Scores across 
the full SARS-CoV-2 genome. The plot highlights all muta-
tions at positively selected sites (FEL, fixed effects model for 
detecting site-wise selective pressure, FDR < 0.05) that cur-
rently occur at a frequency over 0.1% on a Delta background. 
We found 151 such mutations, distributed across the prote-
ome. The mutation density was 1.8 per 100 amino acids across 
the whole proteome, with a rate varying from 0 to 12.3 across 
SARS-CoV-2 proteins (Fig. 6B). By this measure, the highest 
mutational density was identified in ORF3/NS3, an accessory 
protein that is reported to modulate autophagosome–lyso-
some fusion (ORF3a) (28) and antagonize interferon (Orf3b) 
(29). Spike was close to average, with a density of 2.3 muta-
tions per 100 amino acids. Based on the Epi Score ranking, 
the top 5 mutations for potential to spread were Spike:G142D, 
Spike:T95I, NSP3:A1711V, N:Q9L, and NSP2:K81N. All muta-
tion Epi Scores proteome-wide are presented in data file S2. 

In summary, we established a method for predicting 
spreading mutations and applied it to forecast future contrib-
utors to putative VOCs/VOIs/VBMs. These predictions yield 
mutations known to be important from in vitro data. We con-
clude that this approach can anticipate spreading mutations 
many months in advance. We find that a subset of forecast 
mutations could have implications for the continued efficacy 
of clinical antibodies, but that the level of these effects varies 
widely. We then extended our analysis to encompass the full 
SARS-CoV-2 proteome, and to produce Delta and informative 
Omicron forecasts. This work also suggests that there is con-
siderable potential for spreading mutations located outside 
of Spike, underlining the importance of forecasting methods 
that can be applied across the whole viral proteome. 

DISCUSSION 
We established a working definition for spreading muta-

tions and leveraged this definition to deliver a systematic 
analysis of amino acid features predictive of mutation spread. 
This yielded a simple, explainable, and accurate approach for 
forecasting mutations several months in advance, across mul-
tiple pandemic waves. Calculating this scoring was also effi-
cient enough to enable daily forecast updates on millions of 
sequences using only a laptop. Although this strategy re-
quired nothing more than genomic surveillance data, we also 
highlighted the value of the complete mapping of epitopes, in 
vitro deep site-directed mutagenesis, and downstream func-
tional experimental validation. Confidence in the prediction 
of spreading mutations came through retrospectively evalu-
ating multiple waves of the pandemic and verifying con-
sistency with experimental data, and with a plausible causal 
framework. Furthermore, long observed lags between the 
earliest warning signals and high population frequency of 
current mutations in VOCs, VOIs, and VBMs gave further 
support for using forecasting to anticipate the spread of fu-
ture concerning mutations. Although this approach will be 
limited in its ability to anticipate mutations that appear and 
rise to high frequencies within a short time frame, we found 
this to be a rare occurrence. 

We evaluated epidemiologic features aggregated in the 
Epi Score such as mutation frequency, and the distribution of 
mutations across countries and fraction of unique haplotypes 
across which a mutation occurs. We explored other predic-
tors, including the rate of increase of each of these features, 
but did not find that they improved performance. We note 
that the fraction of unique haplotypes shared similarities to 
phylogenetic measures of recurrent mutation. However, 
there is considerable lack of phylogenetic resolution in such 
calculations, so the number of recurrent mutations is a sta-
tistically “noisy” measure, depends strongly on the method 
used to build phylogenies, and is very expensive to compute. 
The fraction of unique haplotypes, on the other hand, is fast 
to compute, can be perfectly estimated, and will increase with 
both recurrent mutation and single-lineage expansion; both 
of which are indicative of a positive contribution to fitness. 

Omicron emerged as the paper was completing the review 
process. Despite the limited numbers of viral sequences avail-
able as of December 2021, we observed a distinctive pattern 
of Omicron mutations that, despite low frequency of many 
individual mutations, already had high Epi Score values. It is 
also notable that for all mutations, high Epi Score values an-
tedated the emergence of Omicron, even though those muta-
tions had not yet converged on the same haplotypes. We 
interpret these data as indicative that individual mutations 
were endowed with advantageous properties in the viral ge-
nome even before their co-occurrence on the Omicron spike. 

There are limits to this study; general prediction of viral 
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evolution is fundamentally an intractable problem. The cur-
rent work only addresses a simpler question: predicting 
which mutations will increase in frequency over some thresh-
old in the near future based on the analysis of their recent 
patterns of spread. Thus, the study predicts spread of existing 
mutations, but not a true emergence of previously unob-
served mutations. In addition, it is difficult to predict which 
lineages, i.e., a major viral haplotype, will spread because this 
would require the complex projection of growth of multiple 
mutations together. These limitations notwithstanding, the 
data on Omicron suggest that successful lineages may be de-
fined by the convergence of mutations that, individually, ex-
hibited high Epi Score values and other features that signal 
adaptive evolution. 

Although this work forecasts which mutations will spread, 
the success of a given mutation does not necessarily result in 
clinical or public health consequences. Therefore, we posit 
that the value of the predictions is to prioritize mutations for 
functional screening. Here, we demonstrate how a subset of 
spreading mutations differentially impact clinical antibodies. 
We also extended the analysis to encompass the whole viral 
proteome. By this approach, we identified spreading amino 
acid replacements in other viral proteins, and highlighted po-
sitions under strong positive selection. Given the limited un-
derstanding of the role of non-Spike regions of the proteome 
in driving the pandemic, we believe that those non-Spike mu-
tations should be prioritized for understanding their role in 
evading innate immunity, increasing the replication of SARS-
CoV-2, and more generally for their contribution to viral fit-
ness. We intend for these results to provide a foundation for 
future improvement. Although we have shown that Epi Score 
is robust to shifting evolutionary dynamics, performance can 
be monitored in real-time, and if necessary, re-tuned to cap-
ture novel behavior as now shown with the emergence of 
Omicron. This approach can also be generalized and im-
proved upon to stay ahead of evolutionary cycles for other 
pathogens (30), when sufficiently rich and representative ge-
nomic sampling is available. 

MATERIALS AND METHODS 
Study Design. Sample size. The current work to define 

spreading amino acid mutations was based on viral se-
quences and metadata obtained from GISAID EpiCoV project 
(https://www.gisaid.org/). A total of 4,487,305 sequences 
were analyzed. 

Research objectives. We hypothesized that the pattern of 
spread could be estimated from the large database of GISAID. 
Next, we hypothesized that one or more variable comprising 
biological, immunological, epidemiological and genomic (in-
cluding language) features could be identified as drivers of 
the spread. 

Experimental design. We used predictive models and ex-
pressed predictive performance using the area under the 

receiver operator characteristic curve (AUROC). Prediction 
was performed using forward feature selection followed by 
logistic regression. The criterion for forward selection was 
cross-validated AUROC of the logistic regression model 
within the training set. Feature selection and model fitting 
were performed separately within each fold of the outer cross 
validation loop. Logistic regression was chosen due to its 
sample efficiency. 

Statistical analysis. Spreading mutations were defined 
based on a Fisher’s exact test for frequency fold change per 
country, adjusted for multiple comparisons, followed by fil-
ters for rate of spread (max fold change of at least 10, fold 
change > 2 in three or more countries), and a minimum prev-
alence of 0.1%. We estimated epistasis using pointwise mu-
tual information, which corresponds to the log ratio of the 
observed prevalence of a pair to the expected prevalence as-
suming independence. The most predictive variable, “Epi 
Score” was defined as the exponentially weighted mean rank-
ing across the other epidemiological variables (mutation fre-
quency, fraction of unique haplotypes in which the mutation 
occurs, and the number of countries in which it occurs. For 
natural language processing (NLP) neural network features, 
we used the grammaticality and semantic change scores re-
ported by Hie et al. (17) in which a bidirectional long short-
term memory (BiLSTM) model was trained on Spike se-
quences from GISAID and GenBank. Natural selection fea-
tures were generated using MEME (31) and FEL (18) methods 
implemented in the HyPhy package (19) (version 2.5.31). Me-
diation analysis was based on the Baron and Kenny test. The 
list of forecast mutations was generated by calculating Epi 
Scores on the most recent three months of data and taking 
the top 5% of mutations, a cutoff chosen based empirical 
analyses. 
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Fig. 1. Predicting mutation spread. (A) Analyzing performance at baseline and over time. The core analysis 
consists of three steps. First, creating a working definition for spreading mutations. Second, calculating 
features that can predict future spread using a window of prior data. Third, having constructed models on 
training data, run prediction of future spread (Forecast), and interpret the results. (B) Performance was 
assessed over time by repeating this analysis in sliding time windows covering the whole data collection 
period. (C) The most predictive metrics within each feature group at baseline (see Table 1 and table S1) were 
ranked by performance within the receptor binding domain (RBD), where the most data are available and for 
the Spike. (D) RBD classification accuracy over time for the top GISAID-based feature (Epi Score), and the 
top transmission and immune variables (Table 1). AUROCs in panel D are smoothed with a rolling window of 
two analysis periods. AUROC, area under the receiver operating characteristic curve. FEL, fixed effects model 
for detecting site-wise selective pressure. 
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Fig. 2. Early detection of variant mutations. (A) Depiction of where in their growth trajectories current and 
former VOC/VOI mutations were first forecast to spread. Dotted lines denote the part of the curve where the 
variant had not yet been forecast to spread. Solid lines denote the period after first forecast. Delta-defining 
variants are shown by thick lines. Mutations are presented in genomic order. (B) The number of months 
between when the mutations presented in (A) were forecast and when they reached a prevalence of 1% 
globally. 
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Fig. 3. Epi Score mediates effects captured by other data sources. (A) Causal model: mutation fitness 
drives viral prevalence at time 1 (as measured by global frequency, and geographic and haplotype 
distribution, Epi Score). Language model score or evolutionary metrics are summaries of GISAID data and 
therefore are shaped by mutation prevalence. Prevalence at time 1 predicts prevalence at time 2, which 
ultimately leads to mutation being defined as spreading. Therefore, prevalence at time 1 (as captured by Epi 
Score) mediate the effects of the biological variables that enhance viral fitness through transmissibility or 
escape adaptation. (B) To quantitatively test for mediation, we assessed whether variables were better at 
predicting mutations in the top 5% of Epi Scores, compared to spreading mutations for time 2 versus time 
1. “Combo AUC” refers to the combined AUC of that variable with Epi Score. Significant improvements of the 
combined model over that of Epi Score alone would indicate complementarity, and therefore predictive 
information not captured by Epi Score alone. 
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Fig. 4. Emergence and spread of Omicron. (A) The Epi Scores of 37 Omicron-defining mutations are shown 
as of December 8, 2021 (red dots). (B) Although some of the mutations in Omicron already had very high Epi 
Scores and were widely spread, emergent mutations were distinguished by the progressively increasing Epi 
Score between April 2020 and August 2021 preceding the rapid acceleration at the end of 2021. Shown are 
mean and confidence interval Epi Score values. Other: Epi Score of all other mutations in the SARS-CoV-2 
spike. 
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Fig. 5. S494P mutation decreases neutralization potential of three clinically approved therapeutic 
antibodies. (A) VSV-SARS-CoV-2 pseudovirus was generated based on the “Wuhan-Hu-1” sequence with 
either the D614G mutation or D614G and S494P mutations. Virus neutralization was measured in a 
microneutralization assay on Vero E6 cells. Example results from one repeat are shown. (B) EC50 values 
and fold-changes were calculated from two independent experiments. S309 is the parent molecule of VIR-
7831, which had been previously evaluated on the S494P variant and showed no change in neutralization 
(25). 
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Fig. 6. Manhattan-style plot of Epi Scores across the SARS-CoV-2 Delta proteome. (A) For visualization 
purposes, Epi Scores have been calculated as Z-scores, which correlate to the default, rank-based 
calculation as a spearman R > 0.99. Points highlighted in color occur at a frequency over 0.1% on a Delta 
background (B.1.617.2 + AY lineages) and occur at significantly positively selected sites (FEL FDR-adjusted 
q-value < 0.05). All mutations occurring at over 80% frequency, in the lineages accounting for >80% of all 
Delta cases, were excluded from the visualization. Thus, the plot serves to highlight variants predicted to 
spread and under positive selection in the current Delta background. For a complete listing, Suppl. File S2. 
(B) The rate per 100 amino acids of highlighted forecasted mutations from panel A, per gene in the SARS-
CoV-2 proteome. 
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Table 1. Summary of analytical features. A total of 48 parameters for 14 variables were created for 5 feature groups. 
These features capture evolutionary, immune, epidemiologic, transmissibility, and language model predictors of mutation 
spread. A detailed description of all parameters is included in data file S1. 

Feature group Variable Meaning Source or 
reference 

Number of 
parameters 

Evolution Positive selection 
(FEL, MEME) 

Parameters from Fixed Effects 
Likelihood (FEL) and Mixed Effects 

Model of Evolution (MEME) 

HyPhy (19) 11 

  Codon-SHAPE RNA SHAPE constraint Manfredonia et 
al. 2020 (32) 

3 

  Viral entropy Shannon entropy at each codon 
position for an amino acid site 

This work 3 

Immune CD8 epitope escape The frequency of SARS CoV-2 
mutations in cytotoxic lymphocyte 

(CTL) epitopes 

Agerer et al. 
2021 (15) 

1 

  CD8 response The percent and average CD8+ T cell 
response to an epitope in patients 

Tarke et al. 
2021 (33) 

2 

  CD4 response The percent and average CD4+ T cell 
response to an epitope in patients 

Tarke et al. 
2021 (33) 

2 

  Antibody binding 
score 

The estimated percent contribution of 
a site to binding of the indicated 

antibody, as estimated by Molecular 
Operating Environment (MOE) 

This work 17 

  Maximum escape 
fraction in vitro 

The maximum escape fraction across 
all conditions for that mutation 

Greaney et al. 
2021 (34) 

1 

Epidemiology Variant frequency The percent of sequences with the 
mutation 

Calculated from 
GISAID (2) 

1 

  Fraction of unique 
haplotypes 

 

The fraction of unique Spike 
haplotypes in which a mutation is 

observed 

Calculated from 
GISAID (2) 

1 

  Number of countries The number of countries where it has 
been observed. 

Calculated from 
GISAID (2) 

1 

  Epi Score The exponentially weighted mean 
rank across the other epidemiology 

variables 

Calculated from 
GISAID (2) 

1 

Transmissibility RBD expression 
change 

Change in RBD expression due to the 
mutation 

Starr et al. 2020 
(13) 

1 
 

  ACE2 binding 
change 

The change in binding affinity for 
ACE2 

Starr et al. 2020 
(13) 

1 

Language model Language model Grammaticality and semantic change 
of a mutation 

Hie et al. 2021 
(17) 

2 
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Table 2. Forecasted mutations for therapeutic antibodies. Forecasted mutations, as of October 19th (including VOC 
mutations) were intersected with the binding epitopes of therapeutic monoclonal antibodies. Mutations were included if 
they were in sites contributing at least 1% of the total binding energy for a given antibody, as estimated by Molecular Oper-
ating Environment (MOE) program. Mutations known to decrease antibody EC50 more than five-fold are marked with as-
terisks. Mutations with daggers indicate neutralization is decreased less than five-fold 
(https://covdb.stanford.edu/page/susceptibility-data/), whereas values with double daggers indicate untested antibody, mu-
tation combinations. 
 

Clinical therapeutic 
antibody 

Forecasted mutations in epitopes 

VIR-7831 (sotrovimab) A344S†, R346K† 

LY-CoV016 (etesevimab) K417T‡, K417N*, L455F‡ 

REGN10987 (imdevimab) R346K†, K444N*, G446V* 

LY-CoV555 (bamlanivimab) L452R*, L452Q‡, V483F†, E484K*, E484Q*, F490S*, S494L‡, S494P* 

REGN10933(casirivimab) K417T*, K417N*, L455F*, G476S*, S477I‡, T478K‡, E484K*, E484Q*, F490S* 

CT-P59 K417T‡, K417N†, L452R*, L452Q‡, L455F‡, E484K*, E484Q‡, F490S‡, S494L‡, S494P‡ 

 
 
 


