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ABSTRACT Soil microbial community assembly is crucial for understanding the
mechanisms of microbial communities that regulate ecosystem-level functioning.
The relative contributions of stochastic and deterministic processes to microbial
community assembly remain poorly defined, and major questions exist concerning
the soil organic carbon (SOC) dynamics of microbial community assembly in deep
soil. Here, the bacterial community assembly processes were explored across five soil
profile depths (up to 80 cm) during a 15-year field experiment involving four fertil-
ization regimes. We found that the bacterial community assembly was initially gov-
erned by deterministic selection in topsoil but was progressively structured by increasing
stochastic dispersal with depth. The migration rate (m) and �-null deviation pattern sup-
ported the hypothesis of a relatively greater influence of dispersal in deep soil, which
was correlated with bacterial community assembly by stochastic processes. These
changes in the entire community assembly reflected consistent assembly processes of
the two most dominant phyla, Acidobacteria and Chloroflexi. Structural equation model-
ing showed that soil features (pH and total phosphorus) and bacterial interactions (com-
petition and network complexity) were significantly related to bacterial community as-
sembly in the 0-to-10-cm and 10-to-20-cm layers. Partial Mantel tests, structural equation
modeling, and random forest modeling consistently indicated a strong and significant
correlation between bacterial community assemblages and SOC dynamics, implying that
bacterial assembly processes would potentially suppress SOC metabolism and mineral-
ization when the contributions of stochastic dispersal to communities increased in
deeper layers. Our results have important implications for integrating bacterial commu-
nity assembly processes into the predictions of SOC dynamics.

IMPORTANCE We have provided a framework to better understand the mechanisms
governing the balance between stochastic and deterministic processes and to inte-
grate the shifts in community assembly processes with microbial carbon metabolism.
Our study reinforced that environmental filtering and bacterial cooccurrence pat-
terns influence the stochastic/deterministic continuum of soil bacterial community
assembly and that stochasticity may act through deeper soil layers to influence car-
bon metabolism. Delineating theoretically the potential linkages between commu-
nity assembly and SOC dynamics across a broad range of microbial systems repre-
sents an interesting topic for future research.
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Understanding the mechanisms controlling microbial community assembly is cen-
tral but poorly studied in microbial ecology. Generally, fundamental ecological

processes can be grouped into two mutually nonexclusive determinants of microbial
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community assembly, i.e., deterministic and stochastic processes, which simultaneously
play important roles in the maintenance of species composition from local to global
scales (1–4). Determinism is largely dictated by selection, including environmental
filtering and various biological interactions (e.g., competition, mutualism, and preda-
tion), and thereby determines the fitness and abundance of species (1, 2). Alternatively,
stochasticity is associated with the random ecological drift, probabilistic dispersal, and
evolutionary diversification that generate divergence in the patterns of community
composition (3, 4). Studies have now progressed toward quantitatively estimating the
relative influences of ecological processes in bacterial community assembly across
natural ecosystems (5–7). As a consequence, there are many associated models, such as
the beta-null model (8), neutral model (9), and phylogenetic sampling theory (10).
However, none of the models mentioned above can simultaneously and quantitatively
separate the contributions of each ecological process to community assemblages.
Recently, Stegen’s null modeling approach was proposed to estimate the relative
influences of ecological components, such as selection, dispersal, and drift, within
Vellend’s framework at the scale of a metacommunity (2, 11). In the null model,
community assembly is divided into five main categories, namely, variable selection,
homogeneous selection, homogeneous dispersal, dispersal limitation, and undomi-
nated processes (“undominated” refers to compositional differences between commu-
nities that are due to a mixture of stochastic organismal movements and stochastic
birth-death events [11]). This emerging model has therefore been widely applied to
understand microbial community assembly in various ecosystems (5–7).

It has been universally acknowledged that bacterial community assembly is greatly
affected by the combination of abiotic environmental filtering and biotic interactions.
Environmental variations are prerequisites of species niche differentiation, which en-
ables distinct bacteria to obtain sufficient resources and survive under diverse envi-
ronmental conditions (12). Numerous works have demonstrated that the assembly
processes of microbial communities are driven by a wide range of edaphic parameters,
such as soil organic matter (5), soil pH (7), and total phosphorus (13). Biotic interactions
(competition and corporation) are other determinants of microbial community assem-
bly (3), and cooccurrence network analysis is a powerful method to elucidate these
interactions (14, 15). In fact, in-depth investigations of cooccurrence networks are
increasingly intriguing for microbial ecologists because the cooccurrence patterns in
the highly complex bacterial communities may serve as indicators of niche differenti-
ation and overlap for inferring potential biological interactions and linking ecological
processes to community assembly (14, 16). Soil profiles with environmental transition
present a unique opportunity for examining community assembly processes, as these
profiles experience variations in physicochemical properties and bacterial community
compositions across tractable spatial scales (17, 18). As levels of nutrients and oxygen
generally fluctuate throughout a soil profile, the corresponding changes are reflected
in the diversity and cooccurrence networks of bacterial communities (18). Thus, an issue
exists as to whether depth gradients influence the relative levels of importance of
stochastic and deterministic processes. The comprehensive perspective of assembly
rules will deepen the understanding of the main factors underpinning observed
community assembly throughout soil layers.

The deep soil organic carbon (SOC) reservoir (�30 cm in depth) is the primary
component of the SOC pool within the top meter, where more than half of the SOC
stock is located in subsoil horizons (19). Although agricultural management practices
strongly control SOC dynamics throughout the soil profile (20), how to determine the
biological processes involved in the changes in deep soil carbon remains a challenge.
Traditional studies have focused on the important roles of microbial biomass and
community composition in functioning at deep depths (21, 22), while recently emerg-
ing theories have highlighted the novel mechanisms of microbial community assembly
processes in mediating microbial carbon metabolism (23). Microbial community assem-
bly processes impose constraints on community membership and subsequently deter-
mine microbial functioning. The direction and extent of community assembly processes
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governing microbial carbon metabolism depend heavily on myriad spatial scales (24,
25). The variations in the microbial assembly processes due to selective pressures and
dispersal scenarios couple with rapid shifts in the rates of microbial carbon metabolism
(23, 25). However, our comprehension of how bacterial assembly processes influence
carbon metabolism is still nascent. To a large extent, the lack of knowledge about
microbial community assembly in terms of influencing carbon metabolism limits the
understanding of SOC dynamics across the soil profile.

Here, we aimed to investigate the impact of community assembly processes on
carbon metabolism and SOC mineralization across soil profiles (0 to 80 cm). Specifically,
the main scientific questions addressed in this study were as follows. (i) How do the
relative influences of assembly processes regulate soil bacterial community changes
throughout the soil profile? (ii) How do soil properties and bacterial cooccurrence
cooperatively affect bacterial community assembly processes? (iii) What are the bio-
logical mechanisms of community assembly patterns mediating carbon metabolism
and SOC mineralization? To address these questions, we conducted a 15-year field
experiment that involved four fertilization regimes along five soil profile depths in a red
soil (Acrisol). High-throughput sequencing technology coupled with network analysis
was used to evaluate the assembly processes and cooccurrence networks of the
bacterial communities throughout the studied soil layers. The various carbon substrate
utilization profiles were determined via the use of Biolog EcoPlates as a measure of
microbial carbon metabolism, and SOC mineralization was measured by cumulative
CO2 emissions in the microcosms. Through substantial analyses, our results indicated a
strong and significant correlation between bacterial community assemblages and SOC
dynamics, implying that the bacterial assembly processes would potentially suppress
SOC metabolism and mineralization when the contributions of stochastic dispersal to
communities increased in the deeper layers.

RESULTS
Soil physiochemical properties and microbial carbon metabolic profiles. SOC,

pH, total nitrogen (TN), and total phosphorus (TP) declined sharply across the soil layers
(see Fig. S1 in the supplemental material). The soil moisture content (SMC), total
potassium (TK), and ammonia nitrogen (NH4�N) exhibited a unimodal pattern through-
out the soil layers, peaking in the 40-to-60-cm layer. In contrast, nitrate nitrogen
(NO3�N) was significantly higher in the 0-to-10-cm and 20-to-40-cm layers than in the
10-to-20-cm and 60-to-80-cm layers. Two-way permutational multivariate analysis of
variance (PERMANOVA) revealed that soil depth had a stronger effect on the soil
characteristics than the fertilization treatments (see Table S1 in the supplemental
material; P � 0.001). Coefficients of variation for soil pH, TP, SOC, and TK were higher in
the 0-to-10-cm layer than in the other layers and tended to decrease with soil depth
(Fig. S1). The environmental variation (variance-covariance matrix) of the soil properties
in the 0-to-10-cm layer was significantly higher than in the subsoil (10 to 80 cm; Fig. 1A)
(P � 0.05). The microbial metabolic activities reflected by the average well color devel-
opment (AWCD) and SOC mineralization were significantly distinguished by soil depth
(Fig. 1B and C) (P � 0.05) such that, compared with the four other layers, the 0-to-10-cm
layer was characterized by the largest values of AWCD and SOC mineralization. The
utilization of carbohydrates, carboxylic acids, amino acids, and amines followed the
same trend as that of the AWCD for the whole plate (P � 0.05). However, no significant
differences were observed in the utilization of two different guilds, polymers
(P � 0.350) and phenolic acids (P � 0.329).

Biomass, diversity, and composition of the bacterial communities. The 0-to-
40-cm layer presented substantially higher bacterial biomass and diversity than the
40-to-60-cm and 60-to-80-cm layers (Fig. S2A to C) (P � 0.05). At the phylum/class level,
the bacterial communities were predominated by Chloroflexi (26.7%), Acidobacteria
(18.1%), Actinobacteria (16.4%), and Alphaproteobacteria (9.3%), followed by Firmicutes
(5.3%), Deltaproteobacteria (4.3%), Betaproteobacteria (3.8%), and Gammaproteobacteria
(3.1%), across all samples (Fig. S2D). Principal-coordinate analysis (PCoA) revealed that
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the bacterial communities were clearly segregated by soil depth (Fig. S2E) (P � 0.001).
In terms of relative abundance, Acidobacteria abundance was significantly lower in the
topsoil than in the subsoils, whereas the abundances of Alphaproteobacteria and
Deltaproteobacteria were significantly higher in the topsoil than in the subsoils (Fig. S3)
(P � 0.05). Furthermore, Chloroflexi abundance was significantly higher in the 10-to-
20-cm layer than in the 0-to-10-cm layer, while Actinobacteria and Firmicutes exhibited
the opposite trend. Two-way PERMANOVA indicated that soil depth yielded a substan-
tial impact on the bacterial biomass and diversity, while fertilization treatments had less
of an influence (Table S1, P � 0.001).

Assembly processes of the bacterial communities. The metric of the weighted
bacterial community assembly (�NTI) provided insights into the potential roles of both
deterministic and stochastic forces in the phylogenetic community dynamics of bac-
terial communities. Two-way PERMANOVA showed that bacterial community assembly
(�NTI) was more pronouncedly influenced by soil depth (F � 106.59, R2 � 0.59,
P � 0.001) than by fertilization treatments (F � 9.25, R2 � 0.11, P � 0.001) (Table S1).
We observed that the �NTI distributions differed significantly across the soil depth
[F(4, 325) � 5.22, P � 0.001], from deterministic community assembly (|�NTI| � 2) to
stochastic assembly (|�NTI| � 2) (Fig. 2A). Specifically, the contribution of deterministic
processes to community assembly sharply decreased across the soil profile and peaked
in the 0-to-10-cm layer. The deterministic processes of variable selection contributed
40.9% to the community assembly, followed in importance by homogeneous selection
(16.7%) (Fig. 2B). However, the stochastic processes remained dominant in shaping the
bacterial community assembly in the 10-to-80-cm layers. The stochastic process of
homogeneous dispersal was responsible primarily for the assembly and turnover of the
soil bacterial communities (43% to 91%). We further observed the relative influences of
the stochastic and deterministic ecological processes that mediated the assembly
of the dominant phyla (Fig. S4). Consistent with the entire bacterial community
assembly, the �NTI values for both Acidobacteria and Chloroflexi revealed that the

FIG 1 Environmental variation and the soil carbon dynamics across soil profile. (A) Box plot showing the
overall variation in soil properties according to variance-covariance matrices based on all soil properties
in each soil layer. (B) SOC mineralization is indicated by cumulative CO2�C. M0, no manure; M1, low
manure; M2, high manure; M3, high manure plus lime. (C) Carbon metabolic activities are reflected by
the average well color development (AWCD). The carbon sources are further subdivided into six group
substrates, including carbohydrates, carboxylic acids, amino acids, polymers, phenolic acids, and amines.
Bars with different lowercase letters indicate significant differences (P � 0.05) across soil profiles, as
revealed by one-way ANOVA with Turkey’s post hoc test. Each average value was calculated from 12
samples of each soil layer.
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relative influence of stochastic processes gradually increased with increasing soil depth.
In contrast, the contribution of stochastic assembly for Actinobacteria, Alphaproteobac-
teria, Betaproteobacteria, Deltaproteobacteria, Firmicutes, and Gammaproteobacteria was
dominant throughout the soil profile.

To explore the relative levels of importance of stochastic processes in bacterial
community assembly along soil profiles, a neutral model of community assembly
combined with abundance-based �-null approaches was further fitted to distinguish
deterministic and stochastic processes. The habitat niche breadth values and migration
rates (m) of soil bacterial communities showed a sharply increasing trend with in-
creased soil depths (Fig. 2C; see also Table S2). However, the �-null deviations of
Bray-Curtis dissimilarity and weighted UniFrac distance were statistically significantly
higher in the 0-to-10-cm layers than in the 10-to-80-cm layers (Fig. 2D) (P � 0.05),
indicating that the bacterial community assembly was a more deterministic process in
the 0-to-10-cm layers than in the 10-to-80-cm layers. At the phylum level, the �-null
deviation value, habitat niche breadth, and m values for Acidobacteria and Chloroflexi
followed a trend similar to that seen with the entire bacterial community (Fig. S5 and
S6; see also Table S2). Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Deltapro-
teobacteria, Firmicutes, and Gammaproteobacteria exhibited higher habitat niche
breadth and m values but lower �-null deviations across soil depths.

Cooccurrence patterns in the bacterial networks. The cooccurrence patterns
were analyzed to explore the potential roles of bacterial interactions in community
assembly processes using network analysis. The topological characteristics of the
bacterial networks were calculated to decipher the complex cooccurrence patterns

FIG 2 The bacterial community assembly processes across soil profiles. (A) The values of the weighted
beta nearest taxon index (�NTI) for soil bacterial communities present. Horizontal dashed gray lines
indicate upper and lower significance thresholds at �NTI � �2 and �2, respectively. (B) The percentage
of turnover in soil bacterial community assembly, governed principally by deterministic processes
(homogeneous and variable selection), stochastic processes (dispersal limitation and homogenizing
dispersal), or undominated processes. (C) Habitat niche breadth of the bacterial communities. (D) The
deviations of Bray-Curtis dissimilarities and weighted UniFrac distances were calculated to separate the
community assembly into deterministic and stochastic processes. A �-diversity deviation value closer to
zero indicates higher stochasticity, whereas a �-diversity deviation value closer to 1 or �1 indicates
higher deterministicity. Bars with different lowercase letters indicate significant differences within the
bacterial phyla (P � 0.05) across soil profiles, as revealed by one-way ANOVA with Turkey’s post hoc test.
Values for each soil layer were calculated from 12 samples.
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among bacteria. The total number of edges and percentage of negative correlations
(PNC) tended to decrease as the soil depth increased (Fig. 3; see also Table S3).
Structural analysis revealed that the stochastic cooccurrence pattern was prominent in
the 20-to-80-cm layers, which was indicated by the inconsistency between the ob-
tained (O) and random (R) cooccurring incidences in the bacterial communities. Five
dominant phyla, Acidobacteria, Actinobacteria, Betaproteobacteria, Firmicutes, and Gam-
maproteobacteria, tended to cooccur lower at a lower ratio (O/R � 1) than expected by
random associations, taking the phylum frequency and random expectations into
account (Table S4). Similar patterns were also identified for Chloroflexi (O/R � 0.87 to
0.95) in the 40-to-60-cm and 60-to-80-cm layers.

Potential important predictors of bacterial community assembly and carbon
metabolism. The partial Mantel test showed that the �NTI scores were significantly
correlated with TP (R � 0.53, P � 0.001) and pH (R � 0.50, P � 0.001), as well as with
carbon metabolism (R � 0.43, P � 0.001) and SOC mineralization (R � 0.39, P � 0.01)
(Table 1). Random forest modeling was performed to separate and assess the important
predictors of the bacterial community assembly and carbon metabolic profiles across
soil layers (Fig. 4). The models for carbon metabolic activities and SOC mineralization
were significant at the 0.01 level (R2 � 0.61 and 0.77). We observed that TP and pH were
the two most important predictors of carbon metabolism (23.4% and 16.4%) and soil
mineralization (18.1% and 13.7%), respectively. Furthermore, the community composi-
tion (10.4% and 11.2%), biomass (8.7% and 10.4%), assembly processes (8.1% and 9.8%),
and PNC (6.1% and 6.8%) of the bacterial community contributed significantly to
carbon metabolism and soil mineralization, respectively.

Structural equation modeling (SEM) was developed to explore the potential direct
and indirect effects of abiotic and biotic factors on carbon metabolism and SOC

FIG 3 The bacterial cooccurring networks across soil profiles. The networks of cooccurring bacterial OTUs were determined for five
soil depth layers, including 0 to 10 cm (A), 10 to 20 cm (B), 20 to 40 cm (C), 40 to 60 cm (D), and 60 to 80 cm (E), based on correlation
analysis. For each panel, a connection stands for a strong correlation coefficient (r) greater than 0.6 or less than �0.6 and a P value
of �0.01. The cooccurring networks are colored by phylum/class. The size of each node is proportional to the number of connections
(i.e., degree), and the thickness of each connection between two nodes (i.e., edge) is proportional to the value of correlation
coefficients. Blue edges indicate positive relationships between two individual nodes, while red edges indicate negative relationships.
Each network was constructed from 12 samples.
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mineralization (Fig. 5). Overall, soil TP was positively linked to carbon metabolism in the
0-to-10 cm, 10-to-20 cm, and 20-to-40-cm layers, while pH showed a negative relation-
ship (Fig. 5). Soil TP and pH were not only directly correlated with community assembly
in the 0-to-10-cm and 10-to-20-cm layers but also indirectly related to community
assembly via PNC. The bacterial biomass had significantly positive relationships with
carbon metabolism in the 0-to-10-cm and 10-to-20-cm layers. In addition, the commu-
nity composition (Bray-Curtis dissimilarity) and assembly (�NTI) exhibited positive
relationships with carbon metabolism in the 0-to-10 cm, 10-to-20-cm, 20-to-40-cm, and
60-to-80-cm layers.

DISCUSSION
Stochastic and deterministic processes structure bacterial community assem-

bly. Uncovering microbial community assembly processes is a long-standing and
extremely challenging task (1–3). Our results showed that the bacterial community
assembly was governed by determinism and stochasticity, with the relative contribu-
tion of stochasticity increasing progressively in the deeper soils. Stochastic and deter-
ministic processes represent two complementary mechanisms along a continuum of
ecological forces that structure community assembly (3). The 0-to-10-cm layer was

TABLE 1 Correlations among soil properties, bacteria community, and carbon metabolic activities and SOC mineralizationa

Parameter

Correlation value

pH TP SOC TN TK SMC NO3–N NH4–N AWCD SOC mineralization

Biomass 0.44*** 0.51*** �0.1 0.44** 0.11 �0.68*** 0.22 �0.31* 0.47*** 0.64***
Shannon 0.16 0.04 0.16 �0.03 �0.07 �0.28* 0.20 0.05 0.13 0.13
Chao1 0.14 0.07 0.24 �0.11 �0.23 �0.22 0.29* 0.08 0.18 0.22
Bray-Curtis dissimilarity 0.42*** 0.52*** �0.03 0.26* 0.08 0.38** –0.03 �0.05 0.35** 0.48***
PNC �0.07 �0.07 �0.14 0.27* �0.25 �0.65*** 0.03 �0.41*** 0.39** 0.23*
�NTI 0.50*** 0.53*** 0.08 �0.22 0.14 0.12 0.02 �0.02 0.43*** 0.39**
AWCD 0.46*** 0.48*** 0.09 �0.14 �0.22 �0.29* 0.35* �0.11 n.a. n.a.
SOC mineralization 0.36** 0.43** �0.01 �0.02 �0.31 �0.27 0.32 �0.14 n.a. n.a.
aPartial Mantel tests for the correlations between soil properties and the bacterial community composition (Bray-Curtis dissimilarity) and assembly processes (�NTI, the
weighted beta nearest taxon index). Partial correlation tests were performed to determine the correlations between soil properties, the bacterial biomass, diversity
(Shannon index and Chao1 richness), and the percentage of negative correlations (PNC) in the cooccurring networks, carbon metabolic activities, and soil organic
carbon (SOC) mineralization. Soil properties included soil pH, total phosphorus (TP), SOC, total nitrogen (TN), total potassium (TK), soil moisture content (SMC), nitrate
nitrogen (NO3�N), and ammonia nitrogen (NH4�N). Calculation of values representing Shannon index and Chao1 richness was performed on the basis of OTU tables
rarified to the same sequencing depth. The microbial metabolic activities are reflected by the average well color development (AWCD). SOC mineralization was
measured by analyzing cumulative CO2 emission in the microcosms. The significance of results of comparisons was tested based on 999 permutations. ***, P � 0.001;
**, P � 0.01; *, P � 0.05; n.a., not analyzed. All analyses were conducted based on all 60 samples.

FIG 4 Mean predictor importance (percent increased mean square error, MSE) of carbon metabolism
and soil organic carbon (SOC) mineralization. (A) Soil carbon metabolic activities are reflected by the
average well color development (AWCD). (B) SOC mineralization is indicated by cumulative CO2-C. Soil
properties include pH, SOC, total phosphorus (TP), total nitrogen (TN), total potassium (TK), ammonia
nitrogen (NH4�N), nitrate nitrogen (NO3�N), and soil moisture content (SMC). The bacterial community
data represent biomass, diversity (Shannon index), composition (Bray-Curtis dissimilarity), assembly
processes (�NTI, the weighted beta nearest taxon index), and the cooccurring networks (PNC, the
percentage of negative correlations). Significance levels of predictors are indicated as follows: ***,
P � 0.001; **, P � 0.01; *, P � 0.05.
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characterized by the strong variable selection (40%) of determinism (|�NTI| � 2) guid-
ing community assembly with a relatively lower m value and higher �-null deviations
(Fig. 2). This result may be attributed to the high selection forces involving environ-
mental heterogeneity and biological interactions in topsoil. However, the bacterial
communities in the subsoil (10 to 80 cm) with lower environmental heterogeneity were
more extensively governed by stochastic processes, which may consist of ecological
drift, probabilistic dispersal, and/or random births/deaths (26). Homogenizing dispersal
was largely responsible for the bacterial community assembly in the 10-to-80-cm layer
(43% to 91%), which was supported by the high value of m and low �-null deviations
(Fig. 2). In this case, homogenizing dispersal greatly homogenized the bacterial com-
munity structure and caused low compositional turnover (2, 11). Collectively, the results
suggested the importance of the deterministic and stochastic processes that comple-
mentarily and simultaneously governed the bacterial community across the soil pro-
files. The abundant groups in the bacterial communities were further parsed to better
understand the taxon-specific selection and dispersal mechanisms (27–29). In our
opinion, the type of ecological processes structuring the assembly of the bacterial phyla
was depth dependent. We found that stochasticity was important for Acidobacteria,
Actinobacteria, Alphaproteobacteria, Chloroflexi, and Deltaproteobacteria, with the de-
creased strength of variable selection but the increased homogenizing dispersal.
Dispersal rates depend largely on species traits (flagella, cell size, metal resistance
ability, etc.) and the activity status of bacterial taxa, ranging from being quite restricted
to being extremely unrestricted (3). Homogenizing dispersal coupled with high migra-
tion rates can unify the species pool of the bacterial community and hence lead to low
compositional variation (2, 11, 30).

Environmental filtering and bacterial cooccurrence patterns drive community
assembly. Depth gradients, which are imposed by abiotic environment filtering, are a
predominant driver of community assembly processes. Soil microbial community dis-
similarities between the surface and subsurface soil at a single site were equal to or
greater than those at multiple sites across hundreds of kilometers, indicating the

FIG 5 Structural equation modeling shows the direct and indirect effects of soil properties and the bacterial community on carbon metabolism and SOC
mineralization in five soil depth layers, including 0 to 10 cm (A), 10 to 20 cm (B), 20 to 40 cm (C), 40 to 60 cm (D), and 60 to 80 cm (E). Blue lines indicate positive
effects, and red lines indicate negative effects. The width of arrows indicates the strength of significant standardized path coefficients. Paths with nonsignificant
coefficients are presented as gray lines. Soil properties include pH and total phosphorus (TP), while the bacterial community data include biomass, composition
(Bray-Curtis dissimilarity), assembly processes (�NTI, the weighted beta nearest taxon index), and the cooccurring networks (PNC, the percentage of negative
correlations). Carbon metabolic activities are reflected by the average well color development (AWCD). SOC mineralization is indicated by cumulative CO2�C.
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powerful effect of filtering across the soil profile (31). The patterns in our study
suggested that the directional shifts in the stochastic-deterministic balance were
mirrored by the spatial variations in soil pH and TP in the 0-to-10-cm and 10-to-20-cm
layers. It has long been recognized that soil properties are crucial determinants of soil
bacterial community assembly (32, 33). For instance, soil pH has been identified as the
key factor that mediates the relative influences of stochastic and deterministic pro-
cesses of bacterial community assembly at a broad range of scales (7, 32). Manure
fertilization supplies considerable quantities of organic P and effectively improves
P-sorption capacity in acidic soils (33, 34). A large shift in TP is expected to cause strong
ecological selection to promote the compositional turnover of soil bacterial commu-
nities. Nevertheless, the levels of strength of the selection imposed by pH and TP on
bacterial community assembly differed across soil profiles. The variations in pH and TP
were much lower in deep soil layers than in the other layers (see Fig. S1 in the
supplemental material), suggesting that the soil environment became more homoge-
neous with increasing soil depth. As a consequence, the bacterial communities in the
20-to-80-cm layer should be less affected by environmental filtering, i.e., by determin-
istic processes.

The structural properties of networks allow comparisons between soil layers to
understand how biotic cooccurrence patterns shape bacterial community assembly (18,
35). The low values of PNC in the subsoil networks (20 to 80 cm) indicated weak
competition among the dominant phyla in the bacterial assemblages. Accordingly,
decreased negative bacterial relationships were expected to decrease the relative
influence of variable selection and to impose low compositional turnover in the
bacterial community due to the homogenous environment. Intriguingly, the extent of
the discrepancy between the obtained (O) and random (R) cooccurring frequencies
reflected differences among microhabitats across the soil profile (14, 36). Structural
analysis demonstrated that the stochastic pattern of intraphylum cooccurrence was
prevalent in the dominant phyla Acidobacteria and Chloroflexi in the 40-to-60-cm and
60-to-80-cm layers (Fig. 4; see also Table S2 in the supplemental material), which is
consistent with the results of �NTI. We extrapolated from the data the finding that
homogeneous dispersal-based stochasticity dispersed its members broadly, restricting
the intraphylum cooccurrence in the networks. Therefore, the measured O/R ratio may
provide insights into the ecological mechanisms guiding bacterial community assem-
bly. Future manipulative and experimental studies are required to directly characterize
the mechanisms that produce patterns of community assembly.

Coupling bacterial community assembly to carbon metabolism. The microbial
community is expected to influence microbial functions related to carbon metabolism
(21–23). Our results showed that the biomass, composition, and assembly processes of
the bacterial community exhibited significant contributions to carbon metabolism and
SOC mineralization (Table 1). Consistent with many previous studies (37, 38), our study
indicated that bacterial biomass was the most important factor mediating carbon
metabolism and SOC mineralization. However, the significant relationship between
microbial assembly processes and carbon metabolism remains poorly understood. Our
results suggested that the levels of carbon metabolism and SOC mineralization were
highest when selective pressures were maximized but dispersal was minimized. Vari-
able selection would putatively favor a well-adapted community with respect to
prevailing conditions, resulting in increased carbon metabolic capacity and SOC min-
eralization (25). In contrast, high homogeneous dispersal may increase the proportion
of maladapted organisms in bacterial communities that are vulnerable to changes in
local environmental conditions (4, 25). The greater niche breadth of the bacterial
community in deeper soils suggested a relatively lower maximum fitness level for the
individuals and lower biogeochemical function (39). If individuals are dispersed to a
more extreme environment, then they may invest more energy in maintaining cell
survival to obtain energy for growth and reproduction (25). Considering the trade-off
between function and vulnerability in the bacterial community, the ability to adjust
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entire community rates of carbon metabolism and SOC mineralization would decrease
in response to perturbation. Our results provide new evidence supporting the idea that
bacterial community assembly may influence carbon metabolism in deep soil layers.
Potential mechanisms of positive coupling between ecological assembly processes and
SOC dynamics still need further experimental investigation.

Conclusions. In summary, we provided a framework to enable better understanding
of the mechanisms governing the balance between stochastic and deterministic pro-
cesses and to integration of community assembly with microbial carbon metabolism.
Specifically, stochasticity and determinism formed the ends of a continuum along soil
profiles, wherein determinism weakened while stochasticity strengthened as soil depth
increased. The assembly of the two most dominant phyla, Acidobacteria and Chloroflexi,
followed a trend similar to that of the entire bacterial community. Environmental
filtering and cooccurrence patterns jointly influenced the stochastic/deterministic con-
tinuum of soil bacterial community assembly. Our study results suggest that bacterial
community assembly is associated with carbon metabolism. Theoretical and experi-
mental delineation of the potential linkages between community assembly and func-
tion across a broad range of ecosystems represents an interesting topic for future
research.

MATERIALS AND METHODS
Experimental design. A long-term manure experiment was performed at the Yingtan National

Agro-Ecosystem Observation and Research Station (28°15=20==N, 116°55=30==E) of the Chinese Academy
of Sciences, Jiangxi Province, China. This region is characterized as having a typical subtropical climate,
mean annual temperature of 17.6°C, and mean annual precipitation of 1,795 mm. The soil is acidic loamy
clay developed from Quaternary red clay and is classified as a Ferric Acrisol according to the Food and
Agriculture Organization of the United Nations (FAO) classification system and as a Udic Ferralsol
according to Chinese soil taxonomy. The field experiment was established in accordance with a
randomized design with four pig manure rates: (i) no manure (M0); (ii) low manure rate with 150 kg N
ha�1 per year (M1); (iii) high manure rate with 600 kg N ha�1 per year (M2); and (iv) high manure rate
with 600 kg N ha�1 per year and lime applied at 3,000 kg Ca(OH)2 ha�1 every 3 years (M3). Three
replicates of each treatment had been applied to 2 m-long, 2 m-wide, and 1.5 m-deep plots since 2002.
The pig manure on a dry-matter basis contained total carbon of 397.5 g kg�1 and total nitrogen (TN) of
34.5 g kg�1. Rotations of monocropped maize (cultivar no. 11 from Denghai) was planted annually in
April and harvested in July from 2002 to 2017. There were no tillage and management measures with the
exception of weeding by hand.

Soil sampling and physicochemical characteristics. Soil samples in each plot were collected at a
depth of 0 to 80 cm in late July 2017. Within each plot, five soil cores (6 cm in diameter) free from maize
roots were collected at random locations and partitioned into five depth intervals: 0 to 10 cm, 10 to
20 cm, 20 to 40 cm, 40 to 60 cm, and 60 to 80 cm. A total of 60 soil samples were collected, including 4
(fertilizer treatments) � 5 (soil layers) � 3 (replicates). Fresh samples were chilled on ice immediately
following collection in the field and then transported in a cooler to the laboratory, where they were
sieved (4-mm pore size) to remove roots and rocks. Then, the soil samples were gently broken along
natural fracture planes to a size of �2 mm to measure the soil physicochemical properties and the
bacterial community.

Soil physicochemical properties were then detected according to methods described in a handbook
of soil analysis (40). Soil pH was determined using a glass electrode in a soil/water ratio of 1:2.5 (wt/vol).
Soil organic carbon (SOC) was titrated against 0.5 M ferrous iron solution after it had been digested with
0.8 M K2Cr2O4 and concentrated H2SO4 (1:1 [vol/vol]) at 150°C for 30 min. Total nitrogen (TN) was
measured as Kjeldahl N. Briefly, the soil sample was heated and boiled with concentrated H2SO4. The
solution was then absorbed by the use of a 2% boric acid solution and titrated against 0.1 M sulfuric acid.
Total phosphorus (TP) was extracted with HF�HClO4 and sodium bicarbonate, and TP levels were then
determined by the molybdenum blue method using an UV spectrophotometer at 700 nm. Total
potassium (TK) levels were determined using flame emission spectrometry after the soil had been
digested in concentrated HF�HClO4 (2:1[vol/vol]). NH4�N and NO3�N were extracted with 2 M KCl and
detected on a continuous flow analyzer (Skalar, Breda, Netherlands). SMC levels were measured by
determination of the weight loss after 48 h of drying at 70°C.

Carbon metabolic profiles and SOC mineralization. The capability of soil microbial communities
to utilize a variety of carbon sources was measured with Biolog EcoPlates (Biolog Inc., USA) (41). The
Biolog EcoPlates system consisted of 31 different carbon sources plus a blank well in three replications.
The carbon sources were subdivided into six group substrates, including carbohydrates, carboxylic acids,
amino acids, polymers, phenolic acids, and amines (42). Soil microorganisms were extracted in accor-
dance with the procedure described here. First, 5 g of soil (dry weight equivalent) was added to 45 ml
of sterile 0.85% (wt/vol) saline solution. The mixture was then shaken for 30 min at 90 rpm on an orbital
shaker and left to stand for 2 h. Afterward, 1 ml of the supernatant was diluted to 20 ml with sterilized
saline solution. Each well of the Biolog EcoPlates was inoculated with 200 �l of the mixed suspension,
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after which the plates were incubated at 25°C in the dark for 7 days. The utilization rate of the carbon
sources was determined by the reduction in tetrazolium violet redox dye, which changes from colorless
to purple if added microorganisms utilize the substrate. The average well color development (AWCD),
which indicates the carbon utilization, was calculated by taking absorbance measurements at 590 nm
every 24 h. For the posterior analysis, absorbance at a single time point (96 h) was used, when the
asymptote was reached. Measurements of optical density at 590 nm (OD590) from each well were
corrected by subtracting the control (blank well) values from the values representing each plate well.

The SOC mineralization was measured by the cumulative CO2 efflux from soils using the alkali-
absorption method. Briefly, 50-g (dry weight) soil samples were adjusted to 65% field capacity and
preincubated in 250-ml sealed flasks to activate the soil microbial community for 7 days at 25°C. The
content of CO2 trapped in 0.5 mol liter�1 sodium hydroxide (NaOH) was determined by titration at days
1, 3, 5, 7, 14, 21, 28, 42, 56, 70, 85, and 100. After each sampling, the incubation flasks were left open for
1 h in the surrounding air to reach the ambient O2 level and were refilled with fresh NaOH solution. Each
treatment was replicated three times, and three control vials (silica sand without soil) were set to detect
the concentration of background CO2. Soil moisture was maintained by adding distilled water through-
out the incubation experiment. The SOC mineralization level mainly represents the decomposition of
active SOC in the incubation experiment. We used a first-order kinetic equation, Ct � C0 [1 � exp(�kt)],
to fit the SOC mineralization processes, where Ct represents the cumulative amount of CO2�C miner-
alized from the SOC at a certain incubation time (mg kg�1), C0 represents the potentially mineralized C
(mg kg�1) and, mainly, the active carbon pool, k is the mineralization rate constant (day�1), and t is the
incubation time (in days).

Illumina sequencing and quantitative PCR (qPCR). DNA was extracted from 0.5 g of fresh soil via
the use of a MoBio Power Soil DNA extraction kit (MoBio Laboratories, Inc., CA, USA) in accordance with
the manufacturer’s instructions. The quality and quantity of DNA were checked using a NanoDrop
spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). The hypervariable V4�V5 region of
bacterial 16S rRNA gene was amplified using a set of universal primer pairs, 515F (5=-GTGCCAGCMGCC
GCGGTAA-3=) and 907R (5=-CCGTCAATTCCTTTGAGTTT-3=), for the Illumina sequencing (43). Both the
forward and reverse primers were tagged with an adapter and linker sequence, and barcode oligonu-
cleotides that were 8 bp in length were added to the reverse primer to distinguish the 16S rRNA
amplicons that originated from different soil samples. Reaction mixtures (20 �l) contained 4 �l of 5�
FastPfu buffer, 0.25 �l of each primer (10 �M), 2 �l of 2.5 mM deoxynucleoside triphosphates (dNTPs),
10 ng template DNA, and 0.4 �l FastPfu polymerase. The PCR protocol was as follows: an initial
predenaturation at 95°C for 5 min followed by 28 cycles of 30 s at 94°C, 30 s at 55°C, and 45 s at 72°C
and a final extension at 72°C for 10 min. All amplicons were cleaned and pooled in equimolar concen-
trations in a single tube, after which they were subjected to library preparation, cluster generation, and
300-bp paired-end sequencing on an Illumina MiSeq platform (Illumina Inc., San Diego, CA).

The raw sequences were quality screened and trimmed using the Quantitative Insights into Microbial
Ecology (QIIME) pipeline (v1.9.1) (44). Sequences that fully matched the barcodes were selected and
distributed into separate files for the bacterial 16S rRNA gene. Additional sequence processing, including
quality trimming, demultiplexing, and taxonomic assignments, was performed. QIIME quality trimming
was performed in accordance with the following criteria: (i) sequence reads were truncated before three
consecutive low-quality bases and reevaluated for length, (ii) no ambiguous bases were allowed, and (iii)
the minimum sequence length was 392 bp after trimming. The assembled reads were processed for de
novo chimera detection conducted with UCHIME v5.1 (45). The remaining sequences were additionally
screened for frame shifts via the use of HMM-FRAME (46). Thereafter, the 16S rRNA gene sequence was
subjected to a similarity search on a one-by-one basis against sequences within the Ribosomal Database
Project (RDP). Finally, the sequence reads from each sample were clustered to provide similarity-based
operational taxonomic units (OTUs) that had 97% identity cutoff values (47). A total of 4,910 bacterial
OTUs were generated after rarefication to 20,515 sequences per sample (based on the sample with the
minimum numbers of reads) using the “multiple_rarefractions_even_depth.py” command. The alignment
was filtered to remove common gaps using the “align_seqs.py” command, and a phylogenetic tree was
constructed de novo using FastTree (48). Values representing alpha diversity (calculated using the
“alpha_diversity.py” command) and Bray-Curtis dissimilarity of soil bacterial communities were calculated
in a principal-coordinate analysis (using R package “vegan”).

Bacterial biomass was quantified by determination of the copy number of the 16S rRNA gene using
qPCR and a Bio-Rad CFX96 Touch real-time PCR detection system. The high-quality DNA was amplified
using the primers described above for the preparation of standard plasmids (43). The qPCR products
were electrophoresed on a 1% agarose gel containing ethidium bromide and visualized using a gel
image processing system (Tanon-1600; Tanon Science & Technology Co., Ltd., Shanghai, China). The qPCR
products were cloned using a pUC-T TA cloning kit (CoWin Biosciences, Beijing, China) and then were
transformed into Escherichia coli DH5a competent cells. The plasmids of the positive clones containing
the 16S rRNA gene fragment were used as plasmid DNA standards. Standard curves for the bacterial
community were observed using a dilution series (102 to 108 copies) of plasmid DNA (49). Calibration
curves were generated with Sequence Detection system software according to the qPCR results
determined with the plasmid DNA standards and dilutions. Reaction mixtures (20 �l) contained 1 �l DNA
template (1 to 10 ng), 10 �l 2 � SYBR Premix Ex Taq, and a 0.5 �M concentration of each primer. All qPCR
assays were run with 3 min initial denaturation at 95°C followed by 40 cycles (with plate reading) of 30
s at 95°C and 45 s at 60°C and by a final melt-curve step from 72 to 95°C. No-template controls were
included with each qPCR run. The qPCRs were run in triplicate, and amplification efficiencies of �97%
were obtained with R2 values of �0.99.
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Ecological network construction. To describe the complex cooccurrence pattern of bacterial
networks, we constructed a correlation matrix by calculating multiple correlations and similarities with
Co-occurrence Network (CoNet) inference (50). Twelve samples (4 fertilization treatments � 3 replicates)
in each soil layer were used to construct the bacterial networks. In total, five networks were constructed
from each of five soil layers. The OTUs detected in more than three-fourths of the soil samples at the
same depth were kept for the network construction. We used an ensemble approach that combined four
measurements, including Pearson and Spearman correlations and Bray-Curtis and Kullback-Leibler
dissimilarities. Weighted voting with Brown P values (51) was used for the four measurements, as this
method accounts for the dependency among measures. A valid cooccurrence was considered a statis-
tically robust correlation between species when the correlation coefficient (r) was greater than 0.6 or less
than �0.6 and the P value was �0.01. Those P values that were �0.01 were adjusted by a testing
correction using the Benjamini-Hochberg procedure to reduce the chances of obtaining false-positive
results. Correlation networks were visualized via Gephi software (52). The calculated topological char-
acteristics of the bacterial networks included average path length, graph density, network diameter,
average clustering coefficient, average degree, and modularity. The discrepancy between the observed
(O) and random (R) cooccurring incidences was used to display nonrandom assembly patterns in the
bacterial communities (14). Briefly, O% was calculated as the relative percentage of the number of
observed edges (Eo) between two taxa divided by total number of edges (E) in the network, while the
random coexcluding incidence (R%) was theoretically calculated by considering the frequencies of two
taxa [n (N1) and n (N2)] and random associations. The ratio of O% to R%, that is, the O/R ratio, was used
as a measure of nonrandom species-species associations between two different taxa. When the O/R ratio
is �1, the network tends to determinism. When the O/R ratio is �1, the network tends to stochasticity.

Community assembly processes and habitat niche breadth. The weighted � nearest taxon index
(�NTI) and Bray-Curtis-based Raup-Crick (RCbray) values were calculated via a null model methodology to
differentiate the ecological processes that regulate bacterial community assembly (2, 11). The �NTI was
quantified by determination of the standard deviation between an observed level and the null distri-
bution of the mean nearest taxon distance metric (�MNTD). The pairwise phylogenetic turnover between
communities was calculated as �MNTD to infer the community assembly processes via the “comdistnt”
function of the picante package (53). The RCbray data were calculated by the determination of the
deviation between the empirically observed Bray-Curtis data and the null distribution via the use of the
vegan package (54), with the values seen after standardization ranging between �1 and �1 (2).
Specifically, deterministic processes were associated with variable selection (�NTI greater than 2) and
homogeneous selection (�NTI less than �2), and stochastic processes were associated with homoge-
nizing dispersal (|�NTI| greater than 2 and RCbray less than �0.95) and dispersal limitation (|�NTI| greater
than 2 and RCbray greater than 0.95). Undominated processes that were not dominant (|�NTI| greater
than 2 and |RCbray| greater than 0.95) indicated a situation where composition turnover was not
dominated by any single process as described above. Specifically, “homogeneous selection” refers to the
primary cause of the low rate of compositional turnover caused by the consistent selective pressure that
results from consistent environmental conditions; “variable selection” refers to the primary cause of high
compositional turnover caused by a shift in selective pressure that results from a shift in environmental
conditions; “homogenizing dispersal” refers to the high dispersal rate between the communities in a
given pair that is the primary cause of low compositional turnover; “dispersal limitation” refers to the
high turnover in composition that is primarily due to a low rate of dispersal-enabling community
composition; and “undominated” refers to the compositional differences between communities that are
due to a mixture of stochastic organismal movements and stochastic birth-death events (11).

The abundance-based �-null model was used to distinguish deterministic from stochastic processes
by evaluating the deviation between the observed �-diversity and null-expected �-diversity of a
randomly assembled pair of communities (8, 55). The higher the null deviation value of a microbial
community, the greater the effect of the deterministic processes by which they will be influenced.
Custom R scripts for �-null model fitting written by Tucker et al. (8) were modified to include the
weighted UniFrac �-null model described previously by Lee et al. (55). We applied two distance metrics,
including Bray-Curtis and weighted UniFrac, for the analysis of microbial communities. We calculated the
pairwise �-diversity between the samples in 999 randomly assembled pairs to produce a distribution of
null �-diversity.

The Sloan neutral model was used to estimate the importance of the effects of stochastic processes
on community assembly (9). This model predicts that less-abundant taxa would be lost due to ecological
drift, while more-abundant taxa are more likely to be dispersed by chance. Migration rate (m) data were
calculated by analysis of observed OTU distributions and mean relative abundances. Higher m values
indicate that microbial communities are less limited by dispersal. This analysis was performed using
nonlinear least-squares fitting and the minpack.lm package in R (56). Calculation of 95% confidence
intervals (CIs) for the model predictions was conducted using the Wilson score interval in the Hmisc
package in R (57). Niche breadth was calculated using Levins’ niche breadth index (B) equation (58),
Bj � 1��i�1

N Pij
2, where Bj represents the habitat niche breadth of OTU j in a metacommunity, N is the total

number of communities of each metacommunity, and Pij is the proportion of OTU j in community i. A
high B value indicates that the OTU occurs widely and evenly along a wide range of locations,
representing wide habitat niche breadth. The B value representing the community level (Bcom) was
calculated as the average of B values from all taxa occurring in one community. The microbial group with
a wider niche breadth is thought to be more metabolically flexible at the community level.

Statistical analyses. Two-way PERMANOVA was used to estimate the effect of fertilization treatments
and soil depth on soil properties, the bacterial community, carbon metabolic profiles, and SOC mineralization

Luan et al.

May/June 2020 Volume 5 Issue 3 e00298-20 msystems.asm.org 12

https://msystems.asm.org


using SPSS 22.0 software (SPSS, Chicago, IL, USA). One-way analysis of variance (ANOVA) was performed to
determine the statistically significant differences in soil properties, bacterial biomass, diversity, �NTI, AWCD,
SOC mineralization, niche breadth, and �-null deviation value, based on the data that followed a normal
distribution and had the same variances (59), along with the use of Turkey’s test for multiple comparisons
(P � 0.05). Variance-covariance matrix data based on all soil properties were calculated to indicate the overall
variation in soil properties. A canonical principal-coordinate analysis (PCoA) was performed to estimate the
influence of soil depth on the Bray-Curtis dissimilarities of bacterial community composition (60). We used
“capscale” and “permutest” permutation-based testing functions for PCoA and for calculating significance
values, respectively. Partial Mantel tests were performed to determine the correlations between soil properties
and the bacterial community composition (Bray-Curtis dissimilarity) and �NTI. Partial correlation tests were
performed to determine the correlations between soil properties, the bacterial biomass, and diversity
(Shannon index and Chao1 richness) and PNC, carbon metabolism, and SOC mineralization.

The random forest tool was used to quantitatively illustrate the important predictors of carbon
metabolic capacity and SOC mineralization corresponding to soil properties and the bacterial commu-
nity. The soil property data included soil pH, SOC, TN, TP, TK, NH4–N, NO3–N, and SMC, while the bacterial
community data included biomass, composition (Bray-Curtis dissimilarity), diversity (Shannon index),
�NTI, and PNC. The total 60 samples were randomly divided into two parts with about 2/3 used for the
training data set and the remaining samples for the “out-of-bag” data set (61). The importance of each
factor was evaluated by analysis of the increase in the mean square error between the observed and
predicted values seen when the predictor was randomly permuted (62). The accuracy of the importance
results was measured for each tree and then averaged across the forest with 500 trees (63). Structural
equation modeling (SEM) was applied to determine the direct and indirect contributions of abiotic and
biotic variables to the bacterial community assembly and carbon metabolism data. The first step in SEM
required establishing an a priori model based on the known effects of variables on the bacterial
community assembly and carbon metabolic capacity. We excluded the predictors of poor fitting to the
model and then established a unified structural equation modeling the data from each soil layer. SEM
analysis was conducted via the robust maximum likelihood evaluation method using AMOS 20.0. The
SEM fitness was examined on the basis of a nonsignificant chi-square test (P � 0.05), the goodness-of-fit
index, and the root mean square error of approximation (64).

All statistical analyses were performed in R (v3.5.1; http://www.r-project.org/), using the “picante”
(53), “vegan” (54), “minpack.lm” (56), “hmisc” (57), “randomForest” (65), “A3” (66), “rfPermute” (67), “stats”
(68), and “spaa” (69) packages.

Data availability. The sequences of the 16S rRNA gene were deposited in the Sequence Read
Archive (SRA) at NCBI under accession number SRP151282. All data needed to evaluate the conclusions
in the paper are present in the paper and/or the supplemental material. Additional data related to this
paper may be requested from us.
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