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Abstract: Face scanners promise wide applications in medicine and dentistry, including facial
recognition, capturing facial emotions, facial cosmetic planning and surgery, and maxillofacial
rehabilitation. Higher accuracy improves the quality of the data recorded from the face scanner,
which ultimately, will improve the outcome. Although there are various face scanners available on
the market, there is no evidence of a suitable face scanner for practical applications. The aim of this
in vitro study was to analyze the face scans obtained from four scanners; EinScan Pro (EP), EinScan
Pro 2X Plus (EP+) (Shining 3D Tech. Co., Ltd. Hangzhou, China), iPhone X (IPX) (Apple Store,
Cupertino, CA, USA), and Planmeca ProMax 3D Mid (PM) (Planmeca USA, Inc. IL, USA), and to
compare scans obtained from various scanners with the control (measured from Vernier caliper).
This should help to identify the appropriate scanner for face scanning. A master face model was
created and printed from polylactic acid using the resolution of 200 microns on x, y, and z axes and
designed in Rhinoceros 3D modeling software (Rhino, Robert McNeel and Associates for Windows,
Washington DC, USA). The face models were 3D scanned with four scanners, five times, according to
the manufacturer’s recommendations; EinScan Pro (Shining 3D Tech. Co., Ltd. Hangzhou, China),
EinScan Pro 2X Plus (Shining 3D Tech. Co., Ltd. Hangzhou, China) using Shining Software, iPhone
X (Apple Store, Cupertino, CA, USA) using Bellus3D Face Application (Bellus3D, version 1.6.2,
Bellus3D, Inc. Campbell, CA, USA), and Planmeca ProMax 3D Mid (PM) (Planmeca USA, Inc. IL,
USA). Scan data files were saved as stereolithography (STL) files for the measurements. From the
STL files, digital face models are created in the computer using Rhinoceros 3D modeling software
(Rhino, Robert McNeel and Associates for Windows, Washington DC, USA). Various measurements
were measured five times from the reference points in three axes (x, y, and z) using a digital Vernier
caliper (VC) (Mitutoyo 150 mm Digital Caliper, Mitutoyo Co., Kanagawa, Japan), and the mean was
calculated, which was used as the control. Measurements were measured on the digital face models of
EP, EP+, IPX, and PM using Rhinoceros 3D modeling software (Rhino, Robert McNeel and Associates
for Windows, Washington DC, USA). The descriptive statistics were done from SPSS version 20 (IBM
Company, Chicago, USA). One-way ANOVA with post hoc using Scheffe was done to analyze the
differences between the control and the scans (EP, EP+, IPX, and PM). The significance level was set at
p = 0.05. EP+ showed the highest accuracy. EP showed medium accuracy and some lesser accuracy
(accurate until 10 mm of length), but IPX and PM showed the least accuracy. EP+ showed accuracy in
measuring the 2 mm of depth (diameter 6 mm). All other scanners (EP, IPX, and PM) showed less
accuracy in measuring depth. Finally, the accuracy of an optical scan is dependent on the technology
used by each scanner. It is recommended to use EP+ for face scanning.
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1. Introduction

The human face not only shows the physical anatomical landmarks of a person’s identity,
but reveals the psychological make-up or personalization [1]. Facial morphology and analysis
are important for various disciplines, such as craniofacial-maxillofacial surgery, orthodontics,
prosthodontics, pedodontics, biometrics, and forensic odontologists [2–4]. The conventional methods
of facial analysis include two-dimensional (2D) photographic, Vernier caliper, and bevel protractor
measurements, to measure 2D projection distances and angles [2,5,6]. Recently, there has been a digital
dental era due to the massive advancement and evolution in optical scanning and designing technology
that has led a shift from 2D to three-dimensional (3D) technology, with the use of 3D leading to disruption
in the treatment modality [7–9]. The facial landmarks can be recorded digitally from the 3D face scanning
using the scanner and can be used for facial recognition, capturing facial emotions, facial cosmetic
planning and surgery, maxillofacial rehabilitation, etc. [10–14]. The computer aided design/computer
aided manufacturing (CAD/CAM) system, milling systems, rapid prototyping, three-dimensional
(3D) scanning, and 3D printing have revolutionized and created new modalities in medicine and
dentistry, which improved the speed and accuracy of treatment [15–17]. Currently, CAD/CAM is
widely used in dentistry for the fabrication of inlays, onlays, veneers, crowns, implant prosthesis,
and full-mouth reconstruction [16,18,19]. In addition, in dentistry, 3D imaging using dental cone
beam computed tomography (CBCT) offers volumetric data on jaw bones and teeth, which helps in
presurgical diagnosis, preoperative planning, and transferring a preoperative plan for actual treatment
outcome for oral rehabilitation [20–22]. Similarly, augmented reality is also an emerging technology in
medicine and dentistry, and this includes an accurate display of either static or dynamic diagnostic
images via the use of a visor or specific glasses, which is useful, especially in implant surgery [23].

For aesthetic and full mouth rehabilitation, although the semi-adjustable articulator and face
bow are commonly used, they are based on the average values and cannot be individualized unless
the fully adjustable articulator is used [24]. However, due to high technical skills requirements and
errors from the users, the measurements may have questionable accuracy. Hence, the 3D face scan and
intraoral scan can be integrated with a CBCT scan for the facial analysis, occlusion analysis, and even
digital/virtual face bow transfer and full mouth rehabilitation [22,25–32]. The data from CBCT, intraoral
scans, and facial scans can be superimposed to create a 3D “virtual patient” for better diagnosis,
treatment planning, and patient outcomes [22]. Mangano et al. [32] found that the combination of
intraoral and face scans allowed them to successfully restore fully edentulous patients with maxillary
overdentures supported by four implants and a CAD/CAM PEEK bar. The facially driven design is a
technique which considers the facial esthetics, facial profile, proportions, and harmony for the oral
rehabilitation, and uses digital smile design to make aesthetically pleasing faces. This approach is
important for aesthetic dental restorations considering hard and soft tissues, which results in enhanced
smiling, self-esteem, and self-confidence of patients [1,33–36]. Higher accuracy improves the quality
of the data recorded from the face scanner, which ultimately improve the outcome [37]. Although
there are various face scanners available in the market, there is no evidence of a suitable scanner for
practical applications.

Hence, the aim of this in vitro study was to analyze the face scans obtained from
four scanners:—EinScan Pro (EP), EinScan Pro 2X Plus (EP+) (Shining 3D Tech. Co., Ltd. Hangzhou,
China), iPhone X (IPX) (Apple Store, Cupertino, CA, USA), and Planmeca ProMax 3D Mid (PM)
(Planmeca USA, Inc. IL, USA)—and to compare scans obtained from various scanners with the control
(measured from Vernier caliper). This helped to identify the appropriate scanner for face scanning.

2. Materials and Methods

The overview of the study is shown in Figure 1 and the method can be divided into three parts:
scanning, measurements, and comparison.
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Figure 1. Study overview. The study involved scanning, measurements, and comparison. 
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and Associates for Windows, Washington DC, USA) with shape, size, and ratios close to the human 
face. Reference points marked on the model and various measurements along the x axis (length), y 
axis (length), and z axis (depth) are shown in Figure 2. The face model was printed from polylactic 
acid using the resolution of 200 microns on x, y, and z axes (Figure 3). 
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2.1. Scanning

At first, a face model was designed in Rhinoceros 3D modeling software (Rhino, Robert McNeel
and Associates for Windows, Washington DC, USA) with shape, size, and ratios close to the human
face. Reference points marked on the model and various measurements along the x axis (length), y axis
(length), and z axis (depth) are shown in Figure 2. The face model was printed from polylactic acid
using the resolution of 200 microns on x, y, and z axes (Figure 3).
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Figure 2. Reference points marked on the model and various measurements. X-axis (length), y-axis
(length), and z-axis (depth).

Then, the master face model was 3D scanned with four scanners five times according to the
manufacturer’s recommendations: EinScan Pro (Shining 3D Tech. Co., Ltd. Hangzhou, China), EinScan
Pro 2X Plus (Shining 3D Tech. Co., Ltd. Hangzhou, China) using Shining Software, iPhone X (Apple
Store, Cupertino, CA, USA) using the Bellus3D Face Application (Bellus3D, version 1.6.2, Bellus3D, Inc.
Campbell, CA, USA), and Planmeca ProMax 3D Mid (PM) (Planmeca USA, Inc. IL, USA) (Figure 4).
Scan data files were saved as stereolithography (STL) files for the measurements. From the STL files,
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digital face models were created in the computer using Rhinoceros 3D modeling software (Rhino,
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2.2. Measurement

Various measurements were measured five times from the reference points on three axes (x, y,
and z) using a digital Vernier caliper (VC) (Mitutoyo 150 mm Digital Caliper, Mitutoyo Co., Kanagawa,
Japan), and the mean was calculated, which is shown in Figure 2. The same measurements as measured
before were measured on the digital face models of EP, EP+, IPX, and PM using Rhinoceros 3D
modeling software (Rhino, Robert McNeel and Associates for Windows, Washington DC, USA).

2.3. Comparison

The measurements of the various scanners were compared with the Vernier caliper. The descriptive
statistics were done from SPSS version 20 (IBM Company, Chicago, USA). One-way ANOVA with post
hoc using Scheffe was done to analyze the difference between the control and the scans (EP, EP+, IPX,
and PM). The significance level was set at p = 0.05.

3. Results

3.1. Scanning Time

Table 1 shows the scanning time, processing time, and total time for the scanning process of
four scanners (EP, EP+, IPX, and PM). The scanning process consists of scanning and data processing.
Scanning time is the time taken for scanning the face. Data processing includes data editing, generating
points, meshing, removing artifacts, making a solid model, and finishing the face model. The fastest
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scan was done by IPX with Bellus3D (0.57 ± 0.03 min), and was followed by PM (0.7 ± 0.05 min),
EP (6.77 ± 0.15 min), and finally, EP+ (9.4 ± 0.21 min).

Table 1. Scanning and processing times of various scans (EinScan Pro (EP), EinScan Pro 2X Plus (EP+),
iPhone X (IPX), and Planmeca ProMax 3D Mid (PM)).

Scanners Scanning Time (min) Data Processing Time (min) Total Time for Scanning Process (min)

EP 2.14 ± 0.03 4.63 ± 0.11 6.77 ± 0.15
EP+ 2.12 ± 0.01 7.28 ± 0.2 9.4 ± 0.21
IPX 0.29 ± 0.01 0.28 ± 0.04 0.57 ± 0.03
PM 0.22 ± 0.01 0.48 ± 0.05 0.7 ± 0.05

3.2. Scanning Accuracy

The best scanning accuracy was shown by EP+, which was followed by EP, IPX, and finally,
PM (Figure 3). EP showed that medium scanning accuracy and the least accuracy was shown by IPX
and PM. Regarding the depth, EP+ showed accuracy of 2 mm in depth (diameter 6 mm). All other
scanners (EP, IPX, and PM) showed less scanning accuracy when measuring depth.

Table 2 shows the mean measurements along the x-axis of the face model from the Vernier caliper
(VC) and various scans (EP, EP+, IPX, and PM), and the comparisons of various scans from the VC.

Table 2. Measurements in x-axis of the face model from the Vernier caliper (VC) and various scans (EP,
EP+, IPX, and PM), and the comparisons of various scans from the VC.

Measurements Groups Mean ± SD (mm)
Comparison from Vernier Caliper (VC) Using One-Way ANOVA

VC vs. EP VC vs. EP+ VC vs. IPX VC vs. PM

X1

VC 2.11 ± 0.04

0.82 0.62 NA <0.001 *
EP 2.2 ± 0.15

EP+ 2.25 ± 0.37
IPX NA
PM 5.15 ± 1.04

X2

VC 10.02 ± 0.05

0.21 0.94 0.39 <0.001 *
EP 9.04 ± 0.44

EP+ 10.29 ± 0.25
IPX 10.8 ± 1.18
PM 15.36 ± 2.15

X3

VC 50.48 ± 0.25

<0.001 * 1 0.96 <0.001 *
EP 42.41 ± 0.51

EP+ 50.51 ± 0.4
IPX 50.23 ± 1.36
PM 59.92 ± 3.34

X4

VC 100.28 ± 0.06

<0.001 * 0.79 <0.01 * 0.99
EP 84.55 ± 0.51

EP+ 99.82 ± 0.63
IPX 98.43 ± 1.11
PM 100.08 ± 0.94

X5

VC 120.18 ± 0.05

<0.001 * 0.97 0.77 0.064
EP 116.3 ± 0.25

EP+ 120.02 ± 0.127
IPX 119.83 ± 0.99
PM 117.36 ± 2.88

SD = standard deviation; NA = not available. * Significant at p < 0.05.

For the EP, the X3, X4, and X5 measurements showed significant differences (p < 0.01) compared
to VC. For the EP+, all the measurements on the z-axis showed no significant difference to the VC.
For the IPX, the X4 measurement showed a significant difference (p < 0.01) compared to the VC. The X1
measurement could not be measured because scanning the point for the measurement of X1 could not
be captured in the IPX scan. Hence, from the results in x-axis, it can be implied that the EP showed
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inaccuracy in capturing the length of more than 50 mm. However, EP+ showed accuracy in recording
the length until 120 mm. IPX showed accuracy in capturing the length from 10 mm until 50 mm,
but failed to record the details and had difficulties while measuring length (X1). Similarly, Table 3
shows the mean measurements in the y-axis of face model from the Vernier caliper (VC) and various
scans (EP, EP+, IPX, and PM), and the comparisons of various scans from the VC.

Table 3. Measurements in the y-axis of the face model from the Vernier caliper (VC) and various scans
(EP, EP+, IPX, and PM), and the comparisons of various scans from the VC.

Measurements Groups Mean ± SD (mm)
Comparison from Vernier Caliper (VC) Using One-Way ANOVA

VC vs. EP VC vs. EP+ VC vs. IPX VC vs. PM

Y1

VC 1.97 ± 0.15

0.48 0.25 NA <0.001 *
EP 2.15 ± 0.09

EP+ 2.22 ± 0.389
IPX NA
PM 4.1 ± 0.46

Y2

VC 10.08 ± 0.05

0.04 * 0.82 NA 0.966
EP 9.06 ± 0.43

EP+ 10.24 ± 0.48
IPX NA
PM 9.90 ± 0.90

Y3

VC 50.21 ± 0.05

<0.001 * 0.62 0.99 0.027 *
EP 42.60 ± 0.24

EP+ 50.70 ± 0.81
IPX 50.13 ± 0.8
PM 48.93 ± 1.49

Y4

VC 100.52 ± 0.67

<0.001 * 0.14 0.95 1
EP 86.28 ± 0.22

EP+ 101.76 ± 0.96
IPX 100.81 ± 0.99
PM 100.41 ± 0.57

Y5

VC 121.30 ± 0.18

<0.001 * 0.4 1.65 0.029 *
EP 102.56 ± 0.27

EP+ 121.98 ± 0.71
IPX 120.37 ± 0.93
PM 119.53 ± 1.18

Y6

VC 151.49 ± 0.11

<0.001 * 0.62 <0.001 * 0.028 *
EP 128.22 ± 0.54

EP+ 151.86 ± 0.32
IPX 150.30 ± 0.60
PM 150.15 ± 0.92

SD = standard deviation; NA = not available. * Significant at p < 0.05.

For the EP, it showed that the Y3, Y4, Y5, and Y6 measurements showed significant differences
(p < 0.01) compared to the VC. For the EP+, all the measurements showed no significant difference
to the VC. For the IPX, Y6 showed significant difference (p < 0.01) compared to the VC. For the PM,
Y1, Y3, Y5, and Y6 showed significant difference (p < 0.01) compared to the VC. The X1, Y1, and Y2
measurements could not be measured because scanning the point for the measurement of Y1 could not
be captured in the IPX scan. Similarly, from the results in y-axis, the EP showed inaccuracy in capturing
the length more than 50 mm (similar to X-axis). In addition, EP+ showed accuracy in recording the
length until 150 mm. IPX showed accuracy in capturing the length from 50 mm until 120 mm, but failed
to record the details and had difficulties while measuring length (Y1 and Y2).

Finally, Table 4 shows the mean measurements in z-axis of face model from the caliper (VC) and
various scans (EP, EP+, IPX, and PM) and the comparisons of scans from the VC.

For both the EP and EP+, it showed that all the measurements in z-axis showed significant
differences (p < 0.01) compared to the VC. For IPX, all the measurements in z-axis could not be
measured because scanning the point for the measurement of Z-axis could not be captured in the IPX
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scan. Hence, all the scanners were unable to record clearly, the depth of more than 2–4 mm with a
diameter of 6 mm. The IPX showed the least accuracy in recording the depth of more than 2 mm.

Table 4. Measurements in z-axis of the face model from the Vernier caliper (VC) and various scans (EP,
EP+, IPX, and PM), and the comparisons of scans from the VC.

Measurements Groups Mean ± SD (mm)
Comparison from Vernier Caliper (VC) Using One-Way ANOVA

VC vs. EP VC vs. EP+ VC vs. IPX VC vs. PM

Z1

VC 2.02 ± 0.08

0.03 * <0.001 * NA NA
EP 1.9 ± 0.06

EP+ 2.23 ± 0.18
IPX and PM NA

Z2

VC 4.06 ± 0.03

<0.001 * <0.001 * NA NA
EP 3.48 ± 0.09

EP+ 4.39 ± 0.13
IPX and PM NA

Z3

VC 5.99 ± 0.05

<0.001 * <0.001 * NA NA
EP 3.3 ± 1.48

EP+ 1.85 ± 0.07
IPX and PM NA

Z4

VC 8.04 ± 0.02

<0.001 * <0.001 * NA NA
EP 2.7 ± 0.44

EP+ 4.69 ± 0.19
IPX and PM NA

Z5

VC 10 ± 0.05

<0.001 * <0.001 * NA NA
EP 2.46 ± 0.05

EP+ 1.95 ± 0.05
IPX and PM NA

SD = standard deviation; NA = not available. * Significant at p < 0.05.

Figure 5 shows the mean measurements along the x-axis (length), y-axis (length), and z-axis
(depth) of VC, and three scanners. Discontinuity in a line shows the inability in measurements. Figure 6
shows the mean differences of various measurements in the x-axis (length), y-axis (length), and z-axis
(depth) of three scanners from the caliper. It showed that the mean difference of the measurements
increased as the distance increased (from 2 to 120 mm in the x-axis, from 2 to 150 mm in the y-axis,
and from 4 to 10 mm in the z-axis). The factors affecting the accuracy in the z-axis, or depth, are light
intensity, focus, distance of objects from the scanner, and deviation of light.Int. J. Environ. Res. Public Health 2019, 16, x 9 of 14 
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4. Discussion

Facial and dental measurements analyses help in smile design and esthetic rehabilitation [38–42].
With the huge advancements in digital technology, it has been widely applied in medicine and dentistry
for diagnoses, therapeutics, artificial intelligence, and augmented reality [43]. The face scanning and
digital impression-making of teeth are widely used now a days [44]. The advantages of scanners are
simplified clinical procedure; time efficiency; patient comfort; no use of plaster/dental stone, as a digital
model is prepared in the computer; better patient communication and motivation; simplifying clinical
procedures for both the dentist and the laboratory technician; ease of communication with technician;
and ease of fabrication of prosthesis [19,44–47].

Accuracy is key in all clinical applications in prosthesis and scanners should be able to detect
an accurate impression [48–50]. In this study, a face model was fabricated using the fused deposition
modeling technique and this study analyzed the details and accuracy of face scans obtained from
four scanners (EP, EP+, IPX, and PM) and compared the scans obtained from various scanners with
the control (measured from Vernier caliper). This helped to identify the appropriate scanner for
face scanning. In this study, EP+ showed the highest accuracy (accuracy until 150 mm of length).
EP showed medium scanning accuracy (accurate until 10 mm of length). IPX and PM were the least
accurate (accuracy from 10 mm to 120 mm in length). For IPX, various measurements (X1, Y1, and Y2)
could not be measured because they could not be captured in the scan, as IPX and PM showed.
In addition, IPX showed accuracy in capturing the length from 10 mm until 50 mm in the x-axis
and from 50 mm until 120 mm in the y-axis, with failure to record the details and difficulty while
measuring. This might be due the ability of the video capturing capacity of the IPX. The inaccuracy of
PM scanner may be due scanning from a short distance due to the lesser field of vision. Our study is
similar to the study done by Zhao et al. [2], wherein they compared the practical accuracy of optical
facial scanners for facial deformity patients using a high-accuracy industrial “line-laser” scanner (Faro),
stereophotography (edMD), and a “structured light” facial scanner (FaceScan). The respective 3D
accuracy of stereophotography and structured light facial scanners obtained for facial deformities were
0.58 ± 0.11 mm and 0.57 ± 0.07 mm. The 3D accuracies of different facial partitions were inconsistent;
the measurements at the middle face had the showed the highest accuracy. Although the accuracies of
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two facial scanners were lower than their nominal accuracies, they all met the requirements for oral
clinic use. However, from the results of our study, only EP+ is suitable for face scanning.

Mangano et al. [48] compared the accuracy of five different intraoral scanners (IOSs) in the
impressions of single and multiple implants. They used plaster models representative of a partially
edentulous maxilla to be restored with a single crown and a partial prosthesis, and a totally edentulous
maxilla to be restored with a full-arch. They concluded that the IOSs showed significant differences
between them, both in trueness and in precision. The mathematical error increased in the transition
from single crown to partial prosthesis up to full-arch, both in trueness and in precision. A similar
study was done by Braian et al. [51], wherein they studied the trueness and precision under repeatable
conditions for different IOSs when scanning fully edentulous arches with multiple implants, and
they found low precision when scanning fully edentulous arches with multiple implants. This result
is similar to our study: as the scanning length increased, the accuracy decreased. They mentioned
that the accuracy can be enhanced by reducing the span of scanning, and ensuring the scanned
surfaces exhibit minimal irregularities [49]. Furthermore, Braian et al. [52] studied the accuracies of
IOSs for scanning dentate and edentulous casts and they found that the significant differences were
found in scanning edentulous and dentate scans for short arches and complete arches. Trueness for
complete-arch scans was <193 µm (edentulous scans), and was <150 µm for dentate scans. Trueness
for short-arch scans was <103 µm (edentulous scans) and <56 µm for dentate scans.

Similarly, for the depth measurement, all the optical scanners showed less accuracy; i.e., were
unable to record clearly, a depth of more than 2 mm for diameter 6 mm. The IPX showed the least
accuracy in recording the depth of more than 2 mm. Inaccuracy in recording the depth might be due
to failure of passing the light into the depth while scanning. For the depth measurement in z-axis,
none of the scanners were able to capture it accurately. In this study, a hole of 2 mm was used, which
was too narrow to pass the light to the bottom of the hole. The scanners used in this study (EP, EP+,
IPX, and PM) are optical scanners. The light from the scanner’s projects in various patterns to the
surface and records the 3D picture. The software analyzes and creates the 3D model. The EP projects
the visible line pattern, the EP+ projects a QR code-like pattern, the IP projects one QR code-like with
infrared rays, and the PM projects X-rays. Light or optical scanning shows it is also acceptable but may
have distortion from the light intermittent. IPX uses infrared for face scanning using the Bellus3D Face
application to capture hard and soft tissue. In another study, it was found that there was no error in
recording the tissue of depth of 5 mm for diameter 4.5 mm by a TRIOS scanner Model S1P (3Shape
Trios A/S, Copenhagen, Denmark) for the fabrication of polyether ether ketone (PEEK) abutment for
the implant retained finger prosthesis [53].

Van der Meer et al. [54] studied the accuracy of the IOSs by scanning high precision PEEK
cylinders and they found the errors and it increased in distance and/or angulations in arch due to an
accumulation of registration errors of the patched 3D surfaces. The registration errors may vary in
magnitude depending on the scanning technology and the registration algorithms [55]. This all can
be eliminated with advancement in the technology. In addition, the scanners may be difficult when
scanning shiny, reflective, or transparent objects. The calibration is also done to compensate the errors
that have occurred during scanning.

In addition, the fastest scan was done by IPX (0.57 min). PM: 0.7 min; EP, 6.7 min; and EP+,
9.4 min. The faster scanning of IPX and PM might be due to lower accuracy of the scanning and
resolution of the scanned file. It was found that there was no significant difference between EP and
EP+, which might be due to similar accuracy of the scanning and resolution of the scanned file. In
this study, the descending order of the rendering of the 3D scan files was EP+, EP, IPX, PM. In the
clinical situation, if the capture details are required, such as the teeth surfaces, auditory canal, or nostril,
more accuracy of the scanner or technique of the scan is required. In addition, in a procedure such as
digital face bow recording, accuracy is important for accurate recording of an occlusion to the face. IOS
can be combined with a facial scanner for oral rehabilitation purposes. Mangano et al. [32] combined
intraoral and face scanning for the CAD/CAM fabrication of implant-supported bars for maxillary
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overdentures. Hence, the scanners which were used in our study can be combined with the IOSs for
the esthetic oral rehabiliation. The results from this study can be implemented in capturing landmarks,
as shown in Table 5. The capturing difficulty of the facial structures can be classified as follows.

Table 5. The classification of the capturing difficulty of the facial structures.

Capturing Difficultness Landmarks

Easy Forehead, cheek, and chin
Medium Ear lobe and eye lids

Hard Teeth, extra auditory canal, and nostril

Many factors influence the accuracy of the 3D scanner, such as ability to record details, accuracy,
scanning principles, span of scanning, size of scanning area, arch length, surface irregularities,
temperature, relative humidity, and illumination [56,57]. The 3D scanning uses one of the various
scanning technologies—laser triangulation, structured light, photogrammetry, contact-based, and laser
pulse (time of flight or lidar) [58]. Contact-based is the best for the surface scanning but it depends on
the probe size. The disadvantages of scanners include costs for the machines, difficulty in handing,
technique-sensitive difficulties when capturing the deeper tissues, and rendering [45,58–60]. The future
of digital scanning is expected to involve wide availability of scanners at lower costs with high quality
and accuracy for various dental and medical applications.

5. Conclusions

The following conclusions can be drawn from this study:

• The accuracy of a 3D scanner is affected by the scanning length and pattern of scanning.
• The accuracy of an optical scan is dependent on the technology used by each scanner.
• Among the scanners evaluated, EinScan Pro 2X Plus (EP+) showed the highest accuracy (accuracy

until 150 mm of length). EinScan Pro (EP) showed moderate accuracy (accurate until 10 mm of
length). iPhone (IPX) and ProMax 3D Mid (PM) showed the least accuracy (accuracy from 10 mm
to 120 mm in length).

• In addition, EP+ showed accuracy measuring the 2 mm of depth (diameter 6 mm). All other
scanners (EP, IPX, and PM) showed less accuracy measuring depth.

• Hence, it is recommended to use EinScan Pro 2X Plus for the face scan for facial driven design and
other scanning purposes.

• For measuring the depth of more than 2 mm, these scanners are not recommended.
Further development of the scanners is needed for accurately measuring depth.
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