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,ere is a need to improve diagnostic and therapeutic approaches to enhance the prognosis of breast cancer, the most common
malignancy worldwide. Membrane lipid biosynthesis is a hot biological pathway in current cancer research. It is unclear whether
membrane lipid biosynthesis is involved in the prognosis of BRCA. With LASSO regression, a 14-gene prediction model was
constructed using data from the TCGA-BRCA cohort. ,e prediction model includes GPAA1, PIGF, ST3GAL1, ST6GALNAC4,
PLPP2, ELOVL1, HACD1, SGPP1, PRKD2, VAPB, CERS2, SGMS2, ALDH3B2, and HACD3. BRCA patients from the
TCGA-BRCA cohort were divided into two risk subgroups based on the model. Kaplan–Meier survival curves showed that
patients with lower risk scores had significantly improved overall survival (P � 2.49e − 09). In addition, risk score, age, stage, and
TNM classification were used to predict mortality in BRCA patients. In addition, the 14 genes in the risk model were analyzed for
gene variation, methylation level, drug sensitivity, and immune cell infiltration, and the miRNA-mRNA network was constructed.
Afterward, the THPA website then analyzed the protein expression of 14 of these risk model genes in normal and pathological
BRCA tissues. In conclusion, the membrane lipid biosynthesis-related risk model and nomogram can be used to predict BRCA
clinical prognosis.

1. Introduction

Breast cancer is the most common cancer in women and one
of the leading causes of cancer death [1–3]. Breast cancer
mainly refers to malignant tumors in breast epithelial tissue,
with a high clinical cure rate early. In contrast, advanced
breast cancer is highly aggressive, malignant, and has
sizeable histological heterogeneity [4, 5]. In the actual di-
agnosis and treatment process, the clinical symptoms of
early breast cancer are not obvious, which is easy to cause
misdiagnosis and missed diagnosis, leading to breast cancer
patients missing the best time for treatment [6, 7]. At the
same time, there is still no effective treatment for breast
cancer patients with metastases [8]. With the continuous
development of molecular biology, gene therapy has become
a new direction in breast cancer treatment. However, breast

cancer is a complex disease, and its occurrence and devel-
opment are affected by many molecular factors. ,erefore,
studying the pathogenesis of breast cancer is of great sig-
nificance to its treatment.

Cancer cells, as mutated cells, are the source of cancer.
Unlike normal cells, cancer cells have three characteristics of
infinite proliferation, transformation, and easy transfer [9].
,ey can proliferate indefinitely and destroy normal cells
and tissues. In addition to dividing out of control, cancer
cells can invade surrounding normal tissues locally and even
metastasize to other body parts via the circulatory system or
lymphatic system. By remodeling their metabolism, cancer
cells provide ATP and macromolecules necessary for cell
growth, division, and survival. To meet their rapid pro-
liferation needs, tumor cells exhibit metabolic characteristics
different from normal tissue cells [10, 11]. Although cancer
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types and etiologies are different, there are certain simi-
larities in the changes in metabolic pathways in cancer cells.
Glucose, pentose phosphate, and glutamine metabolic
pathways adapt to cancer cells’ rapid growth and pro-
liferation. Recent studies have shown that membrane lipid
biosynthesis is also altered in cancer cells [12–14]. In cancer
development, changes in membrane lipid biosynthesis play
an essential role in providing biomembrane macromolecules
and signaling molecules for the occurrence and development
of cancer [15–18]. Alterations in membrane lipid bio-
synthesis in tumor tissues provide macromolecular pre-
cursors necessary for their abnormal survival and growth.
,is suggests that clinical actions targeting this critical
metabolism could be a highly effective therapeutic approach
[19–23].

As a computer science and high-throughput sequencing
technology developed, bioinformatic analysis can provide
researchers with more opportunities to explore the genetic
risk, regulatory mechanism, and protein function of cancer.
As a highly representative bioinformatics database, the
TCGA database is generated by large-scale gene sequencing,
which can quantitatively study and analyze the changes in
gene expression during tumor occurrence and development
[24, 25].,erefore, in this study, we performed a series of in-
depth explorations of membrane lipid biosynthesis in BRCA
based on the TCGA database using multiple bioinformatic
analyses. Our findings suggest that targeting membrane lipid
biosynthesis has excellent potential for BRCA prevention,
treatment, and control.

2. Materials and Methods

2.1. Data Acquisition and Selection of Membrane Lipid
Biosynthesis-Related Genes. ,is study downloaded BRCA
mRNA expression and clinical information from TCGA
(https://portal.gdc.cancer.gov/). A total of 1,109 tumor
samples and 113 normal samples with clinical and expres-
sion data were obtained. Expression data were normalized
using log2 (TPM+ 1) transformation. Transcript data and
human profiles are matched and sorted by Perl to get
comprehensive and accurate mRNA gene expression data
using information from an integrated database. Gene IDs are
converted to gene names for subsequent analysis. Membrane
lipid biosynthesis-related genes were obtained from the
Gene Set Enrichment Analysis (GSEA) database (https://
www.gsea-msigdb.org/gsea/index.jsp) [26, 27]. ,e standard
name is GOBP membrane lipid biosynthetic process. ,e
systematic name is M16158. Differential expression analysis
was carried out on TCGA data using the “limma” R package.
Univariate Cox analysis was used to identify membrane lipid
biosynthesis-related genes with prognostic values (P< 0.05).
,e TCGA cohort was evaluated for membrane lipid
biosynthesis-related genes with predictive value.

2.2. Construction and Validation of a Prognostic Signature of
Membrane Lipid Biosynthesis-Related Genes. A predictive
model was constructed in BRCA using LASSO regression
analysis to minimize the use of overlapping membrane lipid

biosynthesis-related gene risk values. Statistics and machine
learning use LASSO regression to identify the most critical
factors and improve the accuracy of statistical models.
LASSO is a popular machine learning algorithm widely used
in medical research [25, 28, 29]. In our study, risk scores
were obtained for all patients and then divided into high- or
low-risk subgroups based on the median risk score of the
TCGA cohort. ,e “survival,” “survminer,” and “timeROC”
packages in Rwere used to performKM survival analysis and
ROC analysis based on OS to estimate the predictive ac-
curacy of the two sets of gene signatures.

2.3. Prognostic Independence of Prognostic Signature from
Routine Clinicopathological Features and Generation of the
Corresponding Nomogram. To further evaluate the gene
prognostic signature’s independent predictive value, it was
examined using univariate and multivariate Cox regression
analysis to see if it was affected by other clinical traits such as
age, gender, stage, and TNM stage. Corresponding nomo-
grams were drawn using the R package “RMS” based on risk
scores and other routine clinicopathological features.

2.4. Prognostic Value andGene Variation of RiskModel Genes
Associated with Membrane Lipid Biosynthesis in Pan-Cancer.
In this study, we first targeted the membrane lipid
biosynthesis-related risk model genes GPAA1, PIGF,
ST3GAL1, ST6GALNAC4, PLPP2, ELOVL1, HACD1,
SGPP1, PRKD2, VAPB, CERS2, SGMS2, ALDH3B2, and
HACD3 were analyzed for OS, CNV, SNV, methylation, and
immune cell infiltration in pan-cancer via Gene Set Cancer
Analysis (GSCA) database (https://bioinfo.life.hust.edu.cn/
GSCA/#/) [30]. We then used this database to drill down to
the percentage of cancers, in which mRNA expression of
membrane lipid biosynthesis-related risk model genes had
a potential impact (activation or inhibition) on biological
pathways. Finally, we used this database to construct
a miRNA regulatory network for membrane lipid
biosynthesis-related risk model genes.

2.5. Anticancer Drug Sensitivity Analysis of Risk Model Genes
Associated with Membrane Lipid Biosynthesis. ,is study
integrated the drug sensitivity and gene expression profiling
data from Genomics of Drug Sensitivity in Cancer (GDSC)
and Cancer ,erapeutics Response Portal (CTRP). ,e
correlation between small molecule/drug sensitivity (IC50)
and the expression of 14 membrane lipid biosynthesis-
related risk model genes was analyzed by Spearman cor-
relation. GDSC was developed by the Sanger Institute in the
United Kingdom to collect the sensitivity and response of
tumor cells to drugs. Raw data from GDSC comes from
75,000 experiments describing the response of about 200
anticancer drugs in more than 1,000 tumor cells. ,e on-
cogene mutation information in this database comes from
the COSMIC database, including oncogene point mutations,
gene amplification and loss, tissue types, and expression
profiles (https://www.cancerrxgene.org/) [31–33]. In addi-
tion, CTRP, a database of 70,000 cancer cell line compounds
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that link susceptibility to genetic or lineage characteristics,
serves as a public resource for researchers worldwide
(https://portals.broadinstitute.org/ctrp.v2.1/) [34–36]. ,is
important resource drives the discovery of potential cancer
drugs that match the patient population and maximize the
likelihood that patients will benefit from them. Such data are
therefore crucial for the discovery of potential tumor
therapeutic targets.

2.6. Gene Set Enrichment Analysis and Protein Expression
Analysis of Membrane Lipid Biosynthesis-Related Risk Model
Genes in BRCA. Gene Set Enrichment Analysis (GSEA) is
a method for enrichment analysis of target genes, which can
be used to test the correlation between target genes and gene
sets of known functions. ,is study used the GTBA database
to explore the relationship between membrane lipid
biosynthesis-related risk model genes and the HALLMARK
pathway (https://guotosky.vip:13838/GTBA/). ,e Human
Protein Atlas (THPA) database is based on proteomics,
transcriptomics, and systems biology data, which can map
tissues, cells, organs, etc. ,is database includes protein
expression in tumors and normal tissues (https://www.
proteinatlas.org/) [37, 38]. ,erefore, in this study, we
used this database to explore the expression of risk model
genes related to membrane lipid synthesis in breast cancer
and normal breast tissue.

2.7. Tumor Immune Estimation Resource (TIMER) Database.
A comprehensive database of immune infiltration in various
cancer types, the TIMER database offers multiple methods of
assessing immune infiltration levels, providing researchers
with the ability to generate high-quality graphs online to
explore immunomics, clinical manifestations, and tumor
genomes. ,is study used this database to assess the asso-
ciation between membrane lipid biosynthesis-related risk
model genes and immune cell infiltration in BRCA.

2.8. Statistical Analysis. Statistical analysis was performed
using R 4.1.2 and Strawberry Perl software. ,e non-
parametric rank test (Wilcox test) was used to analyze the
expression differences of membrane lipid biosynthesis-
related genes in breast cancer and normal breast tissue
samples. ,e Kaplan–Meier analysis of gene expression was
used to analyze the relationship between breast cancer
survival and gene expression, and the significance of the
breast cancer risk model was assessed using univariate and
multivariate Cox regression analysis. ,e relationship be-
tween gene expression and clinicopathological characteris-
tics was analyzed by χ2 test.

3. Results

3.1. Gene Expression and Protein Interaction of Membrane
Lipid Biosynthesis-Related Molecules in BRCA. It is well
known that the process of carcinogenesis is often accom-
panied by abnormal expression of gene mRNA. ,ese ab-
normally expressed genes are of more interest to cancer

researchers than those that are not [9, 39]. To explore
whether there are differences in the expression of membrane
lipid biosynthesis-related genes in BRCA, we extracted the
mRNA expression data of membrane lipid biosynthesis-
related genes from the TCGA database. We used the R
language to draw a corresponding heatmap (Figure 1(a)).
We can intuitively see that the mRNA expression of the vast
majority of membrane lipid biosynthesis-related genes is
significantly different in BRCA. ,en, to explore the in-
teraction of the protein molecules encoded by membrane
lipid biosynthesis-related genes, we used the String website
to draw the corresponding PPI network (Figure 1(b)). ,e
PPI network revealed extensive interactions of membrane
lipid biosynthesis-related molecules. To further explore the
relationship, we used the MCODE algorithm of the Meta-
scape website to perform cluster analysis on the PPI network
to identify subnetworks, that is, potential protein complexes
(Figures 1(c) and 1(d)) (Supplementary Material Table S1).
,e results showed that the top three subnetworks were
sphingolipid metabolism, membrane lipid metabolic pro-
cess, and fatty acid elongation. Finally, the results of uni-
variate Cox regression analysis showed that GPAA1, PIGF,
ST3GAL1, ST6GALNAC4, PLPP2, ELOVL1, PIGU, VAPB,
CERS2, SGMS2, ALDH3B2, and HACD3 play an inhibitory
role in the malignant progression of BRCA, in contrast,
HACD1, SGPP1, and PRKD2 play an inhibitory role in
BRCA malignant progression (Figure 1(e)).

3.2. Construction of Risk Models Associated with Membrane
Lipid Biosynthesis in BRCA. To fully explore the prognostic
value of membrane lipid biosynthesis-related genes in
BRCA, we used LASSO regression curve analysis to establish
a prognostic risk model in BRCA, which included GPAA1,
PIGF, ST3GAL1, ST6GALNAC4, PLPP2, ELOVL1,
HACD1, SGPP1, PRKD2, VAPB, CERS2, SGMS2,
ALDH3B2, and HACD3 (Figures 2(a) and 2(b)). LASSO
regression curve analysis is often used in medical modeling
[28, 29]. Based on the calculation formula of the risk model
related to membrane lipid biosynthesis, we can divide breast
cancer patients into high-risk and low-risk groups. ,e
drawn survival curve shows that the survival rate of breast
cancer patients in the high-risk group is significantly lower
than that in the low-risk group. cancer patients
(P � 2.49e − 09) (Figure 2(c)). To test the predictive accu-
racy of this model of membrane lipid biosynthesis-related
risk, we performed a ROC curve analysis, which showed that
the five-year AUC was equal to 0.69, the seven-year AUC
was equal to 0.722, and the ten-year AUC was equal to 0.729
(Figures 2(d)–2(f)). ,is indicates that this membrane lipid
biosynthesis-related risk model has good predictive accu-
racy.,e formula for calculating the risk model is as follows.

Risk model � 0.004049719 ∗ GPAA1 + 0.119845071 ∗
PIGF + 0.002817462 ∗ ST3GAL1 + 0.019867802 ∗
ST6GALNAC4 + 0.013021966 ∗ PLPP2 + 0.007145373 ∗
ELOVL1 + 0.00779386 ∗ VAPB + 0.000841801 ∗ CERS2 +
0.045125517 ∗ SGMS2 + 0.001158905 ∗ ALDH3B2 +
0.002111798 ∗ HACD3 − 0.116447762 ∗ HACD1 −

0.040517734 ∗ SGPP1 − 0.023673124 ∗ PRKD2.
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3.3. Independent Predictive Value of Risk Models Associated
with Membrane Lipid Biosynthesis and Construction of Cor-
responding Predictive Survival Nomogram in BRCA. To gain
an in-depth understanding of the correlation between
membrane lipid biosynthesis-related risk models and
clinical clinicopathological characteristics, we obtained
the corresponding BRCA clinical data through the TCGA
official website and performed a correlation analysis. ,e
results are presented in the form of a heatmap. ,e results

showed a significant correlation between this membrane
lipid biosynthesis-related risk model and stage, age, and
fustat in breast cancer patients (Figure 3(a)). We sub-
sequently performed univariate and multivariate
Cox regression analyses to explore the role of this
membrane lipid biosynthesis-related risk model and
clinicopathological features in breast cancer progression.
Univariate Cox regression analysis showed that age,
stage, T, M, N, and risk score were risk factors for the
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Figure 1: Expression and interaction of membrane lipid biosynthesis-related molecules in BRCA. (a) Heat map showing the mRNA
expression of membrane lipid biosynthesis-related genes in BRCA. (b) Protein-protein interaction network showing interactions of proteins
encoded by genes involved in membrane lipid biosynthesis. (c, d) Protein interaction network diagrams show clustering analysis results
based on the MCODE algorithm. (e) ,e forest plot shows the univariate Cox analysis of membrane lipid biosynthesis-related genes in
BRCA. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001.
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malignant progression of breast cancer (Figure 3(b)).
Multivariate Cox regression analysis showed that age and
risk score were independent risk factors for the malignant
progression of breast cancer (Figure 3(c)). Finally, based
on the risk model associated with membrane lipid bio-
synthesis, we drew corresponding nomograms to predict
breast cancer patients 5-, 7-, and 10-year
survival (Figure 3(d)). ,e above results indicate that
this membrane lipid biosynthesis-related risk model has
solid clinical relevance and clinical application value
in BRCA.

3.4.GeneExpressionandPrognosticValueofRiskModelGenes
Associated with Membrane Lipid Biosynthesis in Pan-Cancer.
To further understand the significance of membrane lipid
biosynthesis-related risk model genes in pan-cancer, first,
we explored the mRNA expression differences of these
fourteen risk model genes in pan-cancer and presented
them in the form of a heat map. ,e results showed that
these fourteen risk model genes were widely differentially
expressed in LUSC, LUAD, BRCA, LIHC, and THCA
(Figure 4(a)). Subsequently, we performed a biological
pathway correlation analysis for these fourteen risk model
genes. ,e results showed that its mRNA expression was
negatively correlated with the inhibition of DNA Damage,

EMT, and Hormone AR pathways. In contrast, its mRNA
expression was positively associated with activation of
Apoptosis, Cell Cycle, and EMT pathways (Figure 4(b)).
Furthermore, to closely link the clinic, we explored the
predictive value of risk model genes associated with
membrane lipid biosynthesis in pan-cancer. ,e results
showed that these fourteen risk model genes were signifi-
cantly associated with DSS, OS, and PFS in patients with
multiple types of cancer (Figure 4(c)). We then performed
a Gene set variation analysis (GSVA) on these fourteen risk
model genes to explore the differences in multiple tumors of
the membrane lipid biosynthesis-related risk model genes.
GSVA is a non-parametric, unsupervised algorithm that
transforms gene expression data, from an expression matrix
featuring a single gene to an expression matrix featuring
a specific set of genes. GSVA quantified gene enrichment
results, making the subsequent statistical analysis more
convenient. Boxplots show that the GSVA scores of these
fourteen risk model genes tended to increase in various
tumors, including BLCA, BRCA, ESCA, LUAD, and THCA
(Figure 4(d)). ,e biological pathway correlation analysis
showed a negative correlation between GSVA score and
DNA Damage (Figure 4(e)). ,e above results suggest that
this membrane lipid biosynthesis-related risk model gene
may play a similar biological function in pan-cancer and
provide meaningful clues for future cancer research.
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Figure 2: Construction of risk models using membrane lipid biosynthesis-related prognostic genes in BRCA. (a) LASSO regression of OS-
related genes. (b) Cross-validation for tuning the parameter selection. (c) Based on this membrane lipid biosynthesis-related risk model, the
Kaplan–Meier curve in BRCA showed that the overall survival rate of the low-risk group was significantly higher than that of the high-risk
group (P � 2.49e − 09). Among them, blue represents the low-risk group and red represents the high-risk group. (d–f) ,e AUC of the
prediction of 5-, 7-, and 10-year survival rates of BRCA.
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3.5. Genetic Variation of Risk Model Genes Associated with
Membrane Lipid Biosynthesis in Pan-Cancer. Variations in
the human genome play an essential role in inherited dis-
eases. In addition to DNA point mutations, the genome

involves variation in large DNA sequences, including
microduplications and microdeletions of submicroscopic
structures. ,erefore, we further explored the genetic var-
iation of risk model genes related to membrane lipid
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Figure 3: Based on this risk model associated with membrane lipid biosynthesis, univariate and multivariate Cox regression curve analysis
was performed and a corresponding nomogram was generated in BRCA. (a) Heatmap showing correlations between membrane lipid
biosynthesis-related risk models and clinicopathological features of breast cancer patients. (b, c) Forest plots showing the results of
univariate Cox analysis and multivariate Cox analysis. (d) Based on this membrane lipid biosynthesis-related risk model, a corresponding
nomogram was drawn to predict breast cancer patients’ 5-, 7-, and 10-year survival.
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biosynthesis in pan-cancer. In the SNV variant analysis
results, we found that PRKD2, SGPP1, and GPAA1 have
widespread high CNVs in UCEC, SKCM, COAD, and
STAD. ,e results also showed that the top 10 SNV variants
were PRKD2, ALDH3B2, GPAA1, ST3GAL1, SGPP1,
CERS2, SGMS2, HACD1, PLPP2, and HACD3. Among
them, PRKD2 accounted for as high as 22% of SNVs in pan-
cancer (Figures 5(a)–5(d)). Since CNVs are an essential part
of genomic variation, we then explored the CNVs of
membrane lipid biosynthesis-related risk model genes in
pan-cancer.,e results showed that CERS2, VAPB, GPAA1,
and ST3GAL1 were widespread CNVs in pan-cancer
(Figure 5(e)). In LUAD, LUSC, OV, BRCA, and UCS,
CNVs of GPAA1, VAPB, ERS2, PRKD2, and ELOVL1
showed a positive correlation with their mRNA expression
(Figure 5(f)).

3.6. Methylation and Drug Sensitivity of Risk Model Genes
Associated with Membrane Lipid Biosynthesis in Pan-Cancer.
Epigenetic studies are the characteristics of heritable changes
outside the DNA sequence. All cells of a living individual
have essentially the same DNA. Still, different organs and
tissues have different functions and maintain their specific
cellular identity over multiple cell divisions, which are
primarily thought to be determined by the appearance of
mediated by genetic information [9, 40]. Since methylation
is essential to epigenetic research, we explored the meth-
ylation differences of membrane lipid biosynthesis-related
genes in various tumors [41, 42]. We presented them in the
form of heat maps. ,e results showed that ALDH3B2,
ST3GAL1, and SGMS2 genes had noticeable methylation
differences in BRCA, KIRC, and LUSC (Figures 6(a) and
6(b)). Because mutations in the cancer genome can affect the
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Figure 4: Differences in expression, prognosis, and biological pathway correlation of risk model genes associated with membrane lipid
biosynthesis in pan-cancer. (a)–(b) Heatmaps showing differential mRNA expression of these membrane lipid biosynthesis-related risk
model genes in pan-cancer and their correlation with biological pathways. (c) Heat map showing DFI, DSS, OS, and PFS of these membrane
lipid biosynthesis-related risk model genes in pan-cancer. (d, e) ,ese show how the GSVA scores of these membrane lipid biosynthesis-
related risk model genes differ in pan-cancer and their correlation with biological pathways. ,e red represents the activated biological
pathway, and the blue represents the inhibited biological pathway.
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efficacy of clinical treatments, responses to anticancer drugs
vary widely across different therapeutic targets. ,erefore,
we used data fromGDSC and CTRP databases to explore the
sensitivity of membrane lipid biosynthesis-related genes to
various anticancer drugs. ,e results showed that SGMS2,
PLPP2, HACD1, ELOVL1, ALDH3B2, and VAPB signifi-
cantly correlated with the sensitivity of various anticancer
drugs. Meanwhile, there were significant negative correla-
tions between PRKD2, ST6GALNAC4, and HACD1 sen-
sitivities to multiple anticancer drugs (Figures 6(c) and
6(d)). We believe our study provides valuable data for future
drug target development.

3.7. ImmuneCell Infiltration ofMembrane Lipid Biosynthesis-
Related RiskModel Genes in BRCA. We all know that tumor
tissue is not simply composed of tumor cells, it is composed
of various types of cells, including stromal cells, fibroblasts,
immune cells, etc. ,ese cells constitute the tumor micro-
environment [43, 44]. In recent years, we have paid more

attention to the role of immune cells in this microenvi-
ronment [45–47]. Immune cells include many kinds, such as
B cells and Tcells. Different immune cells play different roles
in the process of tumorigenesis, and the composition of
immune cells of various tumors also has its characteristics.
Because of the importance of immune cell infiltration in
tumor progression, based on the Timer database, we ex-
amined six types of immune cell infiltration and this
membrane lipid biosynthesis-related gene in BRCA. ,e
results showed a significant positive correlation between
ST3GAL1, SGPP1, VAPB, and SGMS2 and CD8+ T Cell
infiltration (Figures 7(a)–7(n)).

3.8. Biological Pathway Enrichment Analysis and Protein
Expression of Membrane Lipid Biosynthesis-Related Risk
ModelGenes inBRCA. In this study, we performed GSEA on
the HALLMARK gene set for membrane lipid biosynthesis-
related risk model genes in BRCA (Figures 8(a) and 8(b))
[26, 48]. GSEA results showed that these risk model genes
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Figure 5: Variation of risk model genes associated with membrane lipid biosynthesis in pan-cancer. (a–d) ,ese show the SNVs of these
membrane lipid biosynthesis-related risk model genes in pan-cancer. (e) Heatmap showing the CNVs of these membrane lipid biosynthesis-
related risk model genes in pan-cancer. (f ) Heatmap showing the correlation between CNV and mRNA expression of risk model genes.
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were associated with abnormal activation of PI3K AKT
MTOR SIGNALING, PROTEIN SECRETION, and
MTORC1 SIGNALING, HEME METABOLISM, and OX-
IDATIVE PHOSPHORYLATION. Subsequently, we used
immunohistochemical data from the THPA database to
validate our previous findings to explore the expression of
risk model genes associated with membrane lipid bio-
synthesis in mammary and normal breast tissues. Since
ST6GALNAC4 and HACD1 have not been included in the
THPA database, we provide the immunohistochemical re-
sults for ALDH3B2, CERS2, ELOVL1, GPAA1, HACD3,
PIGF, PLPP2, PRKD2, SGMS2, SGPP1, ST3GAL1, and
VAPB. ,e results showed that the protein expression levels
confirmed our previous findings at the mRNA level, con-
firming our findings were correct (Figures 8(c)–8(n)). ,ese
data may provide a solid basis for further research into these
risk model genes and pave the way for future interventions.

3.9. Construction of a Risk Model Genes-Related miRNA In-
teraction Network for Membrane Lipid Biosynthesis.
MicroRNAs (miRNAs) are a class of endogenous non-
coding RNAs with a length of about 22 nt, which regulate
gene expression by complementary binding to target gene

transcripts [49, 50]. In recent years, studies have found
that miRNAs are closely related to the occurrence of
cancer, and miRNAs are involved in regulating multiple
aspects of tumors, including transcription, cell cycle
regulation, apoptosis, angiogenesis, tumor invasion, and
invasion metastasis. miRNAs can directly act as onco-
genes or tumor suppressor genes to affect the occurrence
and growth of tumors. To further explore the regulatory
relationship between membrane lipid biosynthesis-
related risk genes and miRNAs, we used the GSCALite
database to map the miRNA-mRNA regulation network
associated with membrane lipid biosynthesis-related risk
genes (Figure 9). Among them, we can find a regulatory
relationship between a variety of miRNAs and the SGMS2
gene, which suggests that we can target these miRNAs to
regulate SGMS2 in the future, thereby affecting the
progression of BRCA.

4. Discussion

Globally, cancer is the leading cause of death and a signifi-
cant barrier to extending life [51]. With the aging population
and the rapid development of society, the cancer burden in
countries worldwide is overgrowing [52, 53]. It is worth
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Figure 6: Correlations between methylation, drug sensitivity, and mRNA expression of risk model genes associated with membrane lipid
biosynthesis. (a) Heatmap showing differences in methylation levels of these membrane lipid biosynthesis-related risk model genes across
multiple tumors. (b) Heat map showing the correlation between methylation levels and mRNA expression of these membrane lipid
biosynthesis-related risk model genes. (c, d) Heatmaps showing correlations between these membrane lipid biosynthesis-related risk model
genes and susceptibility to multiple anticancer drugs in the GDSC and CTRP databases.
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noting that in 2020, breast cancer in women surpassed lung
cancer as the most common cancer worldwide for the first
time, with an estimated 2,261,419 new cases. Meanwhile,
breast cancer is the fifth leading cause of cancer death
globally, with 684,996 deaths. In recent years, the morbidity
and mortality of female breast cancer worldwide have in-
creased sharply, and the disease burden has also increased,
becoming a significant global public health problem [54]. In
recent years, the biological role of membrane lipid
biosynthesis-related genes in cancer has attracted more and
more attention from cancer researchers. ,erefore, in this
study, we used “glmnet” and “survival” extension packages
to perform LASSO regression curve analysis. We utilized
genes related to membrane lipid biosynthesis to construct
a prognosis-related risk model in BRCA. ,e risk model
contains fourteen genes, namely, GPAA1, PIGF, ST3GAL1,
ST6GALNAC4, PLPP2, ELOVL1, HACD1, SGPP1, PRKD2,
VAPB, CERS2, SGMS2, ALDH3B2, and HACD3.

GPAA1 is a crucial subunit of glyco-
sylphosphatidylinositol transferase, responsible for binding
GPI anchors to precursor proteins, but not involved in GPI
anchor synthesis. Previous studies have shown that GPAA1
is abnormally expressed and amplified in various malignant
tumors, such as liver, breast, gastric, and colorectal [55–58].
Since GPAA1 is an enzyme, its chemical activity is vul-
nerable to the intervention of various physicochemical
factors or inhibitors, so the development of its inhibitors is
less complex and more drug-producing. ,erefore, we be-
lieve that targeting GPAA1-mediated synthesis of GPI-
anchored proteins is a potential tumor-targeted therapeu-
tic option [55]. Furthermore, PIGF is a homodimeric gly-
coprotein belonging to the VEGF subfamily. It exists in two
isoforms, PIGF-1 and PIGF-2, the latter having a heparin-
binding domain. Like VEGF, it is a potent angiogenic factor.
Tumor growth promotes the proliferation of tumor blood
vessels by interacting with its receptors, thereby affecting
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Figure 7: Scatter plot showing the correlation between membrane lipid biosynthesis-related risk model genes and immune cell infiltration
in BRCA. (a–n) GPAA1, PIGF, ST3GAL1, ST6GALNAC4, PLPP2, ELOVL1, HACD1, SGPP1, PRKD2, VAPB, CERS2, SGMS2, ALDH3B2,
and HACD3; the data come from TIMER database.
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tumor growth, infiltration, and metastasis [59, 60]. And
ST3GAL1 regulates cancer progression by affecting the
activity of the TGF-β signaling pathway in glioblastoma and
breast cancer [61, 62].

Additionally, SGPP1 controls multiple cellular func-
tions, including differentiation, proliferation, metastasis,
cytoskeleton remodeling, senescence, and apoptosis [63].
SGPP1 is a tumor suppressor gene that plays a crucial role in
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cancer invasion and metastasis [64–66]. In gastric cancer
tissues, the expression of SGPP1 was down-regulated
compared with adjacent tissues and cancer-free tissues. It
was confirmed that the low expression of SGPP1 was pos-
itively correlated with the distant metastasis of lymph nodes
and gastric cancer. SGPP1 downregulation can promote cell
migration to epidermal growth factor (EGF), while SGPP1
overexpression can decrease chemotaxis to EGF [67]. ,ere
is evidence that PRKD2 regulates fundamental biological
processes, including signal transduction, membrane traf-
ficking, cell survival, migration, differentiation, and pro-
liferation [68–71]. PRKD2 affects drug resistance in various
tumors such as breast cancer and leukemia by regulating
tumor cell proliferation, apoptosis, metastasis, and invasion
[72]. As in glioblastoma, PRKD2 can promote CDKN1A
gene overexpression through p53-dependent or in-
dependent pathways and integrated extracellular signal

regulation, promoting cellular senescence and affecting cell
sensitivity [73]. Furthermore, SGMS2 is a key regulator
involved in ceramide and sphingomyelin homeostasis. A
previous study showed that high expression of SGMS2 is
associated with breast cancer metastasis. SGMS2 promotes
cancer cell invasion by enhancing TGF-β/smad signaling to
initiate epithelial-mesenchymal transition [74].

Meanwhile, several other risk model genes were
identified in this study (ST6GALNAC4, PLPP2, ELOVL1,
HACD1, VAPB, CERS2, ALDH3B2, and HACD3) have
not yet been explored in depth in breast cancer. In the
future, we should focus on these genes’ biological func-
tions and roles in the malignant progression of breast
cancer. ,is study still has some limitations, mainly di-
vided into the following three points. First, the data of
BRCA patients used in this study were extracted from
TCGA, and data from more databases are still needed for

miRNA

Gene

Figure 9: miRNA regulatory networks associated with risk model genes related to membrane lipid biosynthesis. Among them, blue
represents miRNA and yellow represents genes.
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validation; second, although the newly proposed risk
model has apparent clinical significance, its underlying
mechanisms are still not precise. ,erefore, we plan to
explore further the role of this risk model in single-center
or multicenter clinical samples in the future. ,ird, due to
experimental conditions and time constraints, we have
not yet validated the biological functions of risk model
genes in BRCA. ,erefore, we hope to plan to explore the
biological processes of these risk models in BRCA through
in vivo and in vitro experiments in the future.

5. Conclusions

,is study deeply explored the potential biological
functions and application values of membrane lipid
biosynthesis-related genes in various tumors, including
breast cancer. Surprisingly, we successfully constructed
a fourteen-gene risk model in BRCA using these lipid
biosynthesis-related genes. Based on this risk model, we
can easily divide BRCA patients into high-risk and low-
risk groups. In addition, to facilitate future practical
applications, we also draw a nomogram corresponding to
this risk. ,erefore, we believe that this study guides the
precision treatment of breast cancer by interpreting ge-
nomic data and lays the foundation for future scientific
research and molecular typing of BRCA.

Abbreviations

BRCA: Breast cancer
TCGA: ,e Cancer Genome Atlas
GSCA: Gene set cancer analysis
THPA: ,e Human Protein Atlas
ImmuCellAI: Immune cell abundance identifier
GDSC: Genomics of drug sensitivity in cancer
CTRP: Cancer therapeutics response portal
LASSO: Least absolute shrinkage and selection

operator
GSEA: Gene set enrichment analysis
GPAA1: Glycosylphosphatidylinositol anchor

attachment 1
PIGF: Phosphatidylinositol glycan anchor

biosynthesis class F
ST3GAL1: ST3 beta-galactoside alpha-2,3-

sialyltransferase 1
ST6GALNAC4: ST6 N-acetylgalactosaminide alpha-2,6-

sialyltransferase 4
PLPP2: Phospholipid phosphatase 2
ELOVL1: ELOVL fatty acid elongase 1
HACD1: 3-hydroxyacyl-CoA dehydratase 1
SGPP1: Sphingosine-1-phosphate phosphatase 1
PRKD2: Protein kinase D2
VAPB: VAMP-associated proteins B and C
CERS2: Ceramide synthase 2
SGMS2: Sphingomyelin synthase 2
ALDH3B2: Aldehyde dehydrogenase 3 family

member B2
HACD3: 3-hydroxyacyl-CoA dehydratase 3
EGF: Epidermal growth factor.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.

Ethical Approval

Ethical approval was not required.

Consent

Consent is not applicable.

Conflicts of Interest

,e authors declare that they have no conflicts of interest.

Authors’ Contributions

Shengchun Liu and Yingkun Xu designed the research
methods and analyzed the data. Yingkun Xu, Yudi Jin, and
Shun Gao participated in data collection. Yuan Wang, Chi
Qu, and YinanWu drafted themanuscript. Nan Ding, Yuran
Dai, and Linshan Jiang revised the manuscript. All authors
approved the release version and agreed to be responsible for
all aspects of the work.

Acknowledgments

,e authors thank ,e Cancer Genome Atlas (TCGA) for
providing publicly available data. In addition, Yingkun Xu is
particularly grateful to Shipeng Guo of Chongqing Medical
University for his assistance in the progress of this research.
,is research was funded by the National Natural Science
Foundation of China (Grant no. 81772979), the Key Re-
search and Development Project of Chongqing’s Technology
Innovation and Application Development Special Big
Health Field (Grant no. CSTC2021jscx-gksb-N0027), and
the Doctoral Research Innovation Project of the First Af-
filiated Hospital of Chongqing Medical University (Grant
no. CYYY-BSYJSCXXM-202213).

Supplementary Materials

Table S1. Cluster analysis results of membrane lipid
biosynthesis-related genes under the MCODE algorithm.
(Supplementary Materials)

References

[1] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer
statistics, 2022,” CA: A Cancer Journal for Clinicians, vol. 72,
no. 1, pp. 7–33, 2022.

[2] N. Harbeck and M. Gnant, “Breast cancer,” �e Lancet,
vol. 389, no. 10074, pp. 1134–1150, 2017.

[3] L.Wilkinson and T. Gathani, “Understanding breast cancer as
a global health concern,” British Journal of Radiology, vol. 95,
no. 1130, Article ID 20211033, 2022.

Journal of Oncology 13

https://downloads.hindawi.com/journals/jo/2022/7204415.f1.pdf


[4] S. K. Yeo and J. L. Guan, “Breast cancer: multiple subtypes
within a tumor?” Trends in Cancer, vol. 3, no. 11, pp. 753–760,
2017.

[5] V. F. Grabinski and O. W. Brawley, “Disparities in breast
cancer,” Obstetrics & Gynecology Clinics of North America,
vol. 49, no. 1, pp. 149–165, 2022.

[6] N. U. Lin, E. Claus, J. Sohl, A. R. Razzak, A. Arnaout, and
E. P. Winer, “Sites of distant recurrence and clinical outcomes
in patients with metastatic triple-negative breast cancer: high
incidence of central nervous system metastases,” Cancer,
vol. 113, no. 10, pp. 2638–2645, 2008.

[7] H. A. Wahba and H. A. El-Hadaad, “Current approaches in
treatment of triple-negative breast cancer,” Cancer Biology
and Medicine, vol. 12, no. 2, pp. 106–116, 2015.

[8] J. M. Lebert, R. Lester, E. Powell, M. Seal, and J. McCarthy,
“Advances in the systemic treatment of triple-negative breast
cancer,” Current Oncology, vol. 25, no. 11, pp. S142–s150,
2018.

[9] D. Hanahan, “Hallmarks of cancer: new dimensions,” Cancer
Discovery, vol. 12, no. 1, pp. 31–46, 2022.

[10] I. A. Cree, “Cancer biology,” Methods in Molecular Biology,
vol. 731, pp. 1–11, 2011.

[11] K. L. Lim, H. K. Teoh, P. F. Choong, H. X. Teh, S. K. Cheong,
and T. Kamarul, “Reprogramming cancer cells: overview &
current progress,” Expert Opinion on Biological �erapy,
vol. 16, no. 7, pp. 941–951, 2016.

[12] T. Li and A. Le, “Glutamine metabolism in cancer,” Advances
in Experimental Medicine and Biology, vol. 1063, pp. 13–32,
2018.

[13] Y. Peng, H. Yang, and S. Li, “,e role of glycometabolic
plasticity in cancer,” Pathology, Research & Practice, vol. 226,
Article ID 153595, 2021.

[14] M. Zheng, W. Wang, J. Liu, X. Zhang, and R. Zhang, “Lipid
metabolism in cancer cells,” Advances in Experimental
Medicine and Biology, vol. 1316, pp. 49–69, 2021.

[15] T. Skotland, S. Kavaliauskiene, and K. Sandvig, “,e role of
lipid species in membranes and cancer-related changes,”
Cancer and Metastasis Reviews, vol. 39, no. 2, pp. 343–360,
2020.

[16] G. L. Nicolson, “Cell membrane fluid-mosaic structure and
cancer metastasis,” Cancer Research, vol. 75, no. 7,
pp. 1169–1176, 2015.

[17] P. K. Agarwala, R. Aneja, and S. Kapoor, “Lipidomic land-
scape in cancer: actionable insights for membrane-based
therapy and diagnoses,” Medicinal Research Reviews, vol. 42-
, no. 2, pp. 983–1018, 2022.

[18] W. Szlasa, I. Zendran, A. Zalesińska, M. Tarek, and
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