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Abstract
Background: Efforts to predict functional sites from globular proteins is increasingly common; however, the
most successful of these methods generally require structural insight. Unfortunately, despite several recent
technological advances, structural coverage of membrane integral proteins continues to be sparse. ConSequently,
sequence-based methods represent an important alternative to illuminate functional roles. In this report, we
critically examine the ability of several computational methods to provide functional insight within two specific
areas. First, can phylogenomic methods accurately describe the functional diversity across a membrane integral
protein family? And second, can sequence-based strategies accurately predict key functional sites? Due to the
presence of a recently solved structure and a vast amount of experimental mutagenesis data, the
neurotransmitter/Na+ symporter (NSS) family is an ideal model system to assess the quality of our predictions.

Results: The raw NSS sequence dataset contains 181 sequences, which have been aligned by various methods.
The resultant phylogenetic trees always contain six major subfamilies are consistent with the functional diversity
across the family. Moreover, in well-represented subfamilies, phylogenetic clustering recapitulates several
nuanced functional distinctions. Functional sites are predicted using six different methods (phylogenetic motifs,
two methods that identify subfamily-specific positions, and three different conservation scores). A canonical set
of 34 functional sites identified by Yamashita et al. within the recently solved LeuTAa structure is used to assess
the quality of the predictions, most of which are predicted by the bioinformatic methods. Remarkably, the
importance of these sites is largely confirmed by experimental mutagenesis. Furthermore, the collective set of
functional site predictions qualitatively clusters along the proposed transport pathway, further demonstrating
their utility. Interestingly, the various prediction schemes provide results that are predominantly orthogonal to
each other. However, when the methods do provide overlapping results, specificity is shown to increase
dramatically (e.g., sites predicted by any three methods have both accuracy and coverage greater than 50%).

Conclusion: The results presented herein clearly establish the viability of sequence-based bioinformatic
strategies to provide functional insight within the NSS family. As such, we expect similar bioinformatic
investigations will streamline functional investigations within membrane integral families in the absence of
structure.
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Background
Due to their immense biomedical importance, as well as
their strong representation within genomes [1], mem-
brane channels and transporters are among the most
important classes of proteins to better understand. These
proteins facilitate movement of substrates (i.e., metal-
loions, amino acids, signaling molecules, etc.) across
intervening membrane barriers. Historically, our under-
standing of these proteins has been hampered by a lack of
structural information. However, starting with the potas-
sium channel, which is a membrane transport protein
whose structure was solved at high resolution [2], there
has been a string of recently solved structures of trans-
porter proteins, including the ATP binding cassette (ABC)
transporter [3], the multidrug efflux transporter AcrB [4],
lac-permease [5], aquaporin [6], the glutamate transporter
[7], ammonia channel AmtB [8], Na+/H+ antiporter [9],
and recently, a leucine transporter, LeuTAa [10], which is a
bacterial member of the Na+- and Cl--coupled family of
transporters (SLC6 according to the Human Genome
Organization classification). From these groundbreaking
efforts, our overall understanding of the sequence/struc-
ture/function relationships within transporter proteins is
beginning to mature to a point where accurate descrip-
tions of mechanism are possible [11-15]. Unfortunately,
despite these successes, structural coverage of this segment
of the proteome will continue to be sparse for the foresee-
able future.

LeuTAa is a good example where a solved structure has pro-
vided a framework to investigate function within its bio-
medically important homologs [10]. LeuTAa is a bacterial
member of the Na+/Cl- dependent transporter family,
which is also called the neurotransmitter/Na+ symporter
family (NSS; 2.A.22 according to the transporter classifica-
tion system) [16-20]. In the NSS family, free energy pro-
vided by the flux of sodium and chloride ions down their
electrochemical gradients is used to move chemical sub-
strates against concentration gradients across a membrane
barrier [21-24]. The chemical substrates recognized by
members of the NSS family are extremely diverse and
include amino acids, biogenic amines, and osmolytes. For
example, the serotonin transporter, which is localized to
the presynaptic terminal plasma membrane and is
responsible for recycling serotonin to the releasing neu-
ron, is a member of this functionally diverse family [25].
The serotonin transporter is responsible for clearing sero-
tonin from the synapse after neurotransmitter release, and
is the target of many current anti-depression drugs [26].
Other members of the family include transporters of
dopamine, norepinephrine, γ-aminobutyric acid (GABA),
glycine, proline, creatine, betaine, taurine, and several
other small-molecule substrates [17]. Similar to the serot-
onin transporter, there is substantial clinical interest in
the dopamine, norepinephrine, GABA, and glycine trans-

porters. Although the family includes many ORFans
(sequences that have not been functionally annotated),
subfamily differentiation is generally consistent with the
chemical diversity of the transported molecules [10,17].

The LeuTAa protein structure is composed of twelve trans-
membrane helices, two intracellular helices, four extracel-
lular helices, and a small extracellular β-hairpin [10]. At
present, the fold has only been observed within the NSS
family. A lack of an unobstructed path through the struc-
ture indicates that the structure was solved in the "closed"
or "occluded" state [27]. Interestingly, the first and sixth
transmembrane helices (TM1 and TM6) are partially
unwound. It has been hypothesized that these unwound
regions provide hinges that allow the structure to cycle
between three distinct conformational states: outward fac-
ing open ↔ closed ↔ inward facing open [10]. The back-
bone amides and carbonyls of the extended residues are
involved in ion coordination and hydrogen bonding to
the leucine substrate.

Due to the paucity of structural coverage, bioinformatic
methods provide an attractive means to guide functional
studies of membrane integral proteins. In this report, we
assess the ability of several sequence-based bioinformatic
tools to predict key functional sites within the NSS family.
The LeuTAa structure provides structural hindsight to
gauge the accuracy of the predictions. Our results clearly
establish that sequence-based methods can provide key
residue-level insight into the structurally derived set of
functional sites. Remarkably, the importance of these sites
is corroborated by previous mutagenesis experiments
done on the serotonin, dopamine, and GABA transport-
ers. In addition, this report provides a more complete pic-
ture of functional divergence within the NSS family than
previously described. Using a phylogenomics approach,
several ORFan NSS members have been annotated and
subfamily differentiation is shown to parallel known
functional distinctions.

Results and Discussion
Familial phylogeny and phylogenomic assignment of 
function
The ClustalW [28] generated NSS family phylogenetic tree
is shown in Figure 1 and provided in Additional file 1. The
tree has six major subfamilies (see Table 1). The PHYLIP
[29] generated tree (not shown) has only minor topolog-
ical differences; all six subfamily bipartitions are con-
served within each tree. Four of the six subfamilies are
associated with substrates of specific chemical classes.
These four subfamilies include transporters for: biogenic
amines (dopamine, norepinephrine and epinephrine,
and serotonin), osmolytes (GABA, betaine, taurine, creat-
ine, and several ORFans), as well as two evolutionarily
distinct classes of amino acid transporters (designated
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Phylogenetic tree of the complete NSS familyFigure 1
Phylogenetic tree of the complete NSS family. The tree is composed of six major distinct subfamilies, four of which are specifi-
cally associated with a specific chemical class of substrates (osmolytes, biogenic amines, and two distinct classes of amino 
acids). Only 7 of the 24 sequences within the subfamily generically annotated as Renal system (light purple) have been experi-
mentally characterized. The dark purple subfamily lacks any experimental annotation; however, we include it within the Renal 
system subfamily based on the location of the branch point. The sixth subfamily (generically annotated as prokaryotic) is much 
more divergent. In fact, it appears that the prokaryotic subfamily could be further split, indicated by the light and dark shades of 
blue. However, we do not do so due to the lack of functional annotation discriminating between the two. Triple asterisks indi-
cate leaves of experimentally annotated homologs; the other highlighted leaf (<<<) corresponds to the sequence of the LeuTAa 
structure.
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Amino acid #1 and Amino acid #2). The other two sub-
families include a poorly characterized subfamily generi-
cally designated as the Renal system (because most of the
characterized sequences from this subfamily are found
within the kidney and/or intestine), and a large prokaryo-
tic subfamily. The osmolyte subfamily, which is the larg-
est subfamily observed, contains 46 sequences.
Conversely, the second of two amino acid subfamilies
(Amino acid #2) has only five sequences. Bootstrapping
clearly indicates that all six subfamilies (in both trees) are
statistically robust, including the small Amino acid #2
subfamily (see Additional file 2).

While there are significant chemical differences among
the substrates across the entire NSS family, differences
within subfamilies are greatly diminished. For example,
all of the four known substrates within the osmolyte sub-
family are of similar size and are zwitterionic (Figure 2a).
Moreover, the spatial separation of charge within each is
also fairly conserved. In order to extend the annotations
beyond the known (experimental) descriptions, we
employ a phylogenomics approach [30,31], where appro-
priate, to assign functional specificity to sequences with-
out annotation. ORFans within otherwise obviously
annotated out-groups are associated with the consensus
annotation. For example, in the osmolyte subfamily,
seven sequences are annotated as ORFans (arrows in Fig-
ure 3b). Five of those sequences occur within well-estab-
lished out-groups. ConSequently, functional annotations
are assigned here based on the other sequences within
their respective out-group. The remaining two ORFans
occur together, but do not fall into any obvious substrate
distinction. As such, these two sequences remain unanno-
tated (question marks in Figure 3a). Application of this
approach to the entire NSS family increases the number of
functional annotations by 12, which is significant, but not
necessarily remarkable. However, the annotation

improvement becomes significantly more impressive
when investigating only the osmolyte and biogenic amine
transporter subfamilies, both of which are better charac-
terized experimentally [20,23,26,32-35]. In these two
examples alone, ten of twelve ORFans can be functionally
classified using phylogenetics. (Note: a complete list of all
experimentally characterized sequences, ORFans, and the
twelve newly annotated sequences is provided in Addi-
tional file 2.)

Curiously, there are two distinct groups of GABA trans-
porters within the osmolyte subfamily. The first GABA
out-group diverged from the rest of the osmolyte sub-
family (designated as branch point 1 in Figure 3a). Branch
point 2 diverged into the second GABA out-group and the
betaine out-group. It is known that some GABA symport-
ers can transport both GABA and betaine [32,36]. There-
fore, it is tantalizing to suggest based solely on the
phylogeny that it is the second group of GABA symporters
(shown in red in Figure 3a) that can transport both GABA
and betaine, whereas the first group is specific to GABA
only (shown in blue in Figure 3a). This is, in fact, sup-
ported by experimental data. Members of this second
GABA transporter out-group have been shown to exhibit
substrate overlap with members of the other branches in
the tree. For example, mouse GAT2 (homolog of BGT-1)
transports betaine, and mouse GAT3 (homolog of rat/
human GAT-2) and mouse GAT4 (homolog of rat/human
GAT-3) transport taurine and creatine (Spencer, Padilla,
and Eskandari, unpublished). GAT1 (first GABA trans-
porter out-group) does not transport betaine, creatine, or
taurine [32]. This result profoundly demonstrates the abil-
ity of phylogenomic methods to provide key insight
regarding the rise of functional specificity divergence.

Due to its association with a number of diseases, includ-
ing depression and anxiety, Parkinson's disease, and

Table 1: Summary of subfamilies identified within the NSS family.1

Subfamily 
Designation

Description Number of 
Sequences

Osmolytes Two distinct groups of GABA transporters (11 and 12, respectively). Also includes: creatine (6), taurine (9), and 
betaine transporters (6). Two remain ORFans.

46

Biogenic amines Two distinct groups of dopamine transporters (13 and 6, respectively). Also includes: norepinephrine (13), 
epinephrine (1), and serotonin (11) transporters.

44

Renal system Only 7 sequences are characterized, of which: 5 are isolated from the renal system; 1 is an intestinal brush 
border proline transporter; and the last was found in the brain. Due to the location of the branch point, the 
sequences highlighted in dark purple in Figure 1 are also included; however, no experimental evidence is 
available to confirm or refute this.

24

Amino acid #1 Mainly includes proline (5) and glycine (10) transporters; 3 are generically annotated as "amino acid" 
transporters.

18

Amino acid #2 3 generically annotated as "amino acid" transporters and 2 ORFans. 5
Prokaryotic Bacterial and archaeal transporters (includes LeuTAa). Nearly all are from genome sequencing projects and lack 

robust biophysical characterization of functional specificity.
44

1 An exact summary of all experimentally characterized and ORFan sequences are provided in Additional file 1.
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orthostatic intolerance [20,37-39], the biogenic amine
transporter subfamily is probably the most biomedically
interesting subgroup of the NSS family. All members of
this subfamily transport common neurotransmitters
within the brain, including dopamine, norepinephrine
and epinephrine, and serotonin. The first three are all cat-
echolamines (which are synthesized from the amino acid
tyrosine), whereas serotonin (5-hydroxytryptoamine) is a
derivative of the amino acid tryptophan. ConSequently,
while all four are aromatic amines, there is significant
chemical diversity discriminating the catecholamines
from serotonin. It is again encouraging that this chemical
distinction between substrates (Figure 2b) is recapitulated
within the subfamily phylogeny (Figure 3b). Functional
studies have shown that in general, the catecholamine
transporters transport all catecholamine substrates (albeit
with differing affinities), whereas they discriminate
against serotonin. Conversely, the serotonin transporter
favors serotonin and discriminates against catecholamine
substrates [40].

There are several significant differences between the two
amino acid transporter subfamilies. For example, the first
(amino acid #1) is much larger than the second (18 vs. 5
sequences). Further, the first is much better biophysically
characterized than subfamily #2; there is only one ORFan
within amino acid #1 (which represents 5.5%), whereas
three out of five are ORFans within amino acid #2. Within
subfamily #1, most of the sequences are experimentally
characterized as either glycine or proline transporters,
whereas some are simply annotated as amino acid trans-
porters. Across the subfamily, there is only one ORFan,
which, based on its out-group consensus, has now been
functionally assigned as a glycine transporter. In the
smaller subfamily #2, three of the sequences are experi-
mentally annotated as amino acid symporters. The other
two, which are diverged from the first three, remain
ORFans.

Of the remaining two subfamilies, one is composed of a
wide variety of Archaeal and Bacterial symporters; this

Chemical diversity of the osmolytes and biogenic aminesFigure 2
Chemical diversity of the osmolytes and biogenic amines. (a) All of the osmolytes are of similar size and are zwitterionic. 
Moreover, the separation of charge in each is nearly equal. (b) The biogenic amines (which are common neurotransmitters 
within the brain) are all aromatic amines. As one would expect based on the chemical diversity within the biogenic amines, 
there is an evolutionary split between the serotonin and catecholamine transporters.
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class includes LeuTAa. We generically designate this sub-
family prokaryotic. In fact, this subfamily could be further
subdivided into a variety of different out-groups. How-
ever, we chose not to further subdivide this portion of the
tree due to the fact that there are no conserved functional
distinctions present. Nothing else obvious (i.e., organis-
mal taxa, functional annotation, etc.) appears to cluster in
the same way as the prokaryotic subfamily. Nevertheless,
consistent with the work of Quick et al. [41], there is a mix
of eleven and twelve transmembrane homologs within
the prokaryotic subfamily, whereas the other subfamilies
are always twelve.

The final subfamily, designated as Renal, is generically
labeled based on the fact that six of the seven experimen-
tally characterized sequences are found within the kidney
and/or intestine. The seventh is found in the brain. The
remaining 17 sequences within the subfamily are unchar-
acterized. Unfortunately, only one of the uncharacterized

sequences can be annotated using the phylogenomic
approach described above. This is because the experimen-
tal annotations are clustered within only two regions of
this diverse subfamily. Based on the location of the
branch point, we also include the homologs highlighted
in dark purple within the Renal system subfamily; how-
ever, no experimental support for this prediction is cur-
rently available. In addition, the experimental
characterizations of the seven proteins are not very
informative. Six are generically annotated as "Sodium-
and chloride-dependent transporters," while the seventh
is a proline/hydroxyproline transporter called the IMINO
system.

Overall assessment of functional site predictions
The previous section clearly demonstrates that observed
functional differences within the NSS family are consist-
ent with its phylogeny. This information is important for
broadly understanding familial diversity. However, being

Expansion of the (a) osmolyte and (b) biogenic amine portions of the phylogenetic treeFigure 3
Expansion of the (a) osmolyte and (b) biogenic amine portions of the phylogenetic tree. Seven of the 46 osmolyte sequences 
remain experimentally uncharacterized (indicated by arrows). Annotations of the remaining sequences are indicated. Using a 
phylogenomic approach, we assign functions to five of the seven. The remaining pair (indicated by question marks) is still with-
out functional annotation. Similarly, there are five uncharacterized sequences within the biogenic amine subfamily; we have 
assigned function to all five. Branch points 1 and 2 designate the differentiation of the two GABA symporter out-groups. Color 
differences within each out-group correspond to functional distinctions discussed within the text.
Page 6 of 23
(page number not for citation purposes)



BMC Bioinformatics 2007, 8:397 http://www.biomedcentral.com/1471-2105/8/397
able to interrogate specific residue differences at func-
tional sites generally provides more insight than interro-
gations at nonfunctional sites. ConSequently, we also
assess the ability of sequence-based methods to accurately
predict important sites within the family. In this report,
we attempt to predict functional sites using a variety of
different bioinformatic approaches. Note that Soyer and
Goldstein [42] similarly published an impressive group of
functional site predictions within the NSS family using a
site class model of evolution. Our report is distinguished
from theirs in four ways: (i) they did not have the hind-
sight of the LeuTAa structure, (ii) we apply a broader array
of functional site prediction strategies, which we find pro-
vide both orthogonal and complementary results, (iii) we
attempt to correlate the evolutionary differences with
functional divergence, and (iv) using published mutagen-
esis studies of the most well-characterized members of the
NSS family (serotonin, dopamine, and GABA transport-
ers), we provide extensive evidence supporting the relia-
bility of our bioinformatic approach in predicting
functional sites in protein families.

From the LeuTAa structure (see Figure 4), a canonical set of
34 functional sites has been identified [10]. The func-
tional sites include the two unwound transmembrane hel-
ices (TM1 and TM6) at the leucine-binding site, residues
directly involved in substrate binding, two Na+ binding
sites, two extended interaction networks at the cytoplas-
mic and extracellular gates, and one residue (Glu62) that
stabilizes the unwound TM6 helix. The 34 functional sites
are detailed in Table 2. Here, we apply six different func-
tional site prediction strategies (see Methods for details).
The six methods are based on phylogenetic motifs [43],
conserved motifs [43], individual site conservation, the
Consurf [44] conservation algorithm (which is called
Rate4Site [45]), evolutionary trace [46], and prediction of
specificity determining positions [47]. Table 3 describes
each method's performance on the complete benchmark,
whereas Table 4 provides performance assessment across
the structurally observed binding sites, the predicted cyto-
plasmic gate residues and the predicted extracellular/peri-
plasmic gate residues.

Using phylogenetic motifs (PMs), many of these func-
tional sites are predicted. PMs, which are a functional site
prediction strategy we have developed [43], are sequence
alignment regions that mirror the overall familial phylog-
eny. PMs are calculated using the MINER program [48].
Across a wide array of (mostly globular) proteins, PMs
have been shown to consistently correspond to functional
sites defined by both surface loops and active site clefts.
However, the method has only been sparsely applied to
integral membrane proteins. The last column in Table 2
demonstrates that PMs correspond to the majority of the
known functional sites. In fact, PM coverage (defined as

the number of correct predictions within the benchmark
dataset) is the best of the five methods considered. On the
other hand, this sensitivity comes at the cost of specificity.
The accuracy (defined as the ratio of correct to total align-
ment positions predicted) of the PM predictions is only
0.24 (see Table 3), which is the lowest of the six methods.
Overall, PM predictions are ranked fourth (of six) when
both accuracy and coverage are considered (see Table 3 for
the definition of overall performance).

Conserved regions (i.e., traditional motifs) are also iden-
tified using MINER. MINER identifies these regions based
on a calculated False Positive Expectation (FPE) value for
each alignment window [43]. Windows with smaller FPEs
are more conserved, and thus less likely to be encountered
within a database by random chance. Table 3 indicates
that the FPE method has a good balance between sensitiv-
ity and specificity; however, this balance is only main-
tained in predictions of the binding sites (see Table 4).
Nevertheless, its overall performance is the second best of
the methods presented here (see Additional file 3). A cur-
sory analysis of the last column Table 2 suggests that FPE
predictions are orthogonal to the PM predictions. It fol-
lows that a simple union of the PM and FPE prediction
sets predicts 26 of the 34 functional sites. We develop this
Union approach because, while there is frequently over-
lap within the PM and FPE results [43,49], they are funda-
mentally based on two distinct (albeit related)
phenomena. PMs are based on phylogenetic topology,
whereas FPE is based on sequence conservation. The cov-
erage of the Union approach is extremely good. In fact, it
predicts all nine Na+ binding sites and ten of twelve leu-
cine-binding site residues.

Four additional prediction techniques are considered: site
conservation, Rate4Site [45], evolutionary trace [46], and
predictions of specificity determining positions [47]. The
site conservation (SC85) approach simply returns posi-
tions that are conserved greater than 85% within the mul-
tiple sequence alignment. While simplistic, this approach
can be quite powerful (see Table 3). In fact, it is deter-
mined to have the best overall performance of any
method considered. Interestingly, SC85 does very well on
predictions of the cytoplasmic and extracellular/periplas-
mic gate residues (coverage = 1.00 and 0.80, respectively).
Its coverage of the binding site residues is 0.46.

Akin to SC85 is Rate4Site, which attempts to describe the
relative evolutionary rate at each position within the
alignment using either Bayesian [50] or Maximum Likeli-
hood [45] statistics. In both, phylogenetic tree topology
and stochastic evolutionary considerations are consid-
ered. Impressively, the accuracy of Rate4Site, which is the
best of the five methods, is 0.37 (Table 3). It tied for sec-
ond in overall performance. When considering the bench-
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The entire LeuTAa structure is shown with the α-carbons of the 34 known functional sites highlighted; the binding site residues are colored red, cytoplasmic gate residues are colored green, and extracellular/periplasmic gate residues are colored purpleFigure 4
The entire LeuTAa structure is shown with the α-carbons of the 34 known functional sites highlighted; the binding site residues 
are colored red, cytoplasmic gate residues are colored green, and extracellular/periplasmic gate residues are colored purple. 
The leucine substrate and sodium ions are rendered in spacefill and colored blue.



BMC Bioinformatics 2007, 8:397 http://www.biomedcentral.com/1471-2105/8/397
mark subsets, Rate4Site does better than SC85 on the
binding site residues, but does much poorer on the two
gate subsets.

The last two methods analyzed both attempt to predict
alignment positions that define subfamily specificity. Evo-
lutionary trace (ET) is one of the most widely used meth-

ods to predict protein functional sites [51,52]. The
approach looks for positions that are conserved within
out-groups on an input phylogenetic tree [46]. The stand-
ard application of the approach is to then map both trace
residues and conserved positions to a representative struc-
ture. However, ET predictions without structure can also
provide good functional site predictions [53]. Numerous

Table 2: Structural assessment of the functional site predictions.1

LeuTAa rGAT1 rSERT hDAT Structural location Description Experimental evidence Predicted by2

(a.) Substrate/Na+-binding sites

G20 G59+ G94+ G75 TM1a Na+ binding site [2–95] P,S,R,E
N21 Y60+ Y95+ F76+ TM1a Leu binding site [94–99] None
A22 A61 A96 A77 TM1a Leu & Na+ binding sites None F,R
V23 I62+ V97 V78 Unwound TM1 Na+ binding site [95] F
G24 G63+ D98+ D79+ Unwound TM1 Leu binding site [95, 97, 100, 101] F,R,E,D
L25 L64+ L99+ L80+ TM1b Leu binding site [92, 95, 102] P,F,S,R,E
G26 G65+ G100+ A81 TM1b Leu binding site [92, 95] P,F,S,R
N27 N66+ N101+ N82 TM1b Na+ binding site [92, 95] P,F,S,R,E
E62 E101+ E136+ E117+ TM2 Stabilizes TM6 unwound region [55–58] P,F,S,R,E

V104 L136- I173+ V152+ TM3 Leu binding site [93, 96, 103–105] None
Y108 Y140+ Y176+ Y156+ TM3 Leu binding site [106–108] F,S,R
F252 F293 F334 C319+ TM6a Leu binding site [109] P,F,S,R
F253 F294+ F335+ F320+ TM6a Leu binding site [93, 98, 103, 110] P,F,S
T254 S295+ S336 S321+ TM6a Leu & Na+ binding sites [108, 110, 111] P,F,E
S256 G297 G338 G323+ Unwound TM6 Leu binding site [112] P,F,E
L257 L298+ P339+ V324 Unwound TM6 Leu binding site [110, 113] P
G258 G299 G340 G325+ Unwound TM6 Leu binding site [98] P
F259 L300 F341+ F326- Unwound TM6 Leu binding site [93, 98, 103] P
G260 G301 G342 G327+ Unwound TM6 Leu binding site [112] P,S,E
N286 N327+ N368 N353 TM7 Na+ binding site [111, 114] P,F,R
A351 L392 L434 L418 TM8 Na+ binding site None F,R,E,D
T354 D395+ D437 D42+ TM8 Na+ binding site [111, 115] P,F,R,E,D
S355 S396+ S438+ S422 TM8 Leu & Na+ binding sites [93, 103, 111] P,F,S,D
I359 T400 G442+ G426 TM8 Leu binding site [93, 103] None

(b.) Cytoplasmic gate

R5 R44+ R70 R60+ Cytoplasmic gate [116] S
W8 W47+ W82 W63+ Cytoplasmic gate [58, 116] S
S267 S308 S349 S334 Cytoplasmic gate None S,R,E
Y268 Y309- Y350 Y335+ Cytoplasmic gate [57, 106, 115] S,E
D369 D410 D452 D436+ Cytoplasmic gate [58, 115] S,E

(b.) Extracellular/periplasmic gate

R30 R69+ R104+ R85+ TM1b Extracellular gate [57, 92, 95, 97, 117] P,F,S,R,E
Y47 Y86+ Y121 Y102+ TM2 Extracellular gate [106, 108] P,F,S,R,E

Q250 Q291+ Q332 Q317+ TM6a Extracellular gate [57, 108, 110] P,F,S,R,E
E290 S331+ S372 L355 TM7 Extracellular gate [111, 114] P
D404 D451 E493+ D476+ TM10 Extracellular gate [58, 104] P,S

1 The importance of the functional site benchmark has been clearly established by Yamashita et al. from the LeuTAa structure [10]. Residue numbers 
correspond to those of LeuTAa, rGAT1, rSERT, and hDAT (columns 1–4, respectively). Residues shown in bold with + are those whose functional 
role is supported by experimental data. Residues shown in bold with - are those whose functional role is not supported by experimental data. Our 
literature search failed to find mutagenesis evidence for residues without boldface. The criterion for positive experimental confirmation was a 
minimum of two-fold reduction in substrate uptake rate and/or affinity of the single site mutant compared to WT.2 Six unique bioinformatic 
approaches were utilized in order to predict functional sites within the NSS family. The methods employed are: P = phylogenetic motif, F = false 
positive expectation, S = site conservation, R = Rate4Site, E = evolutionary trace, and D = SDPpred.
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reports have shown that the approach does a very good
job of identifying known functional sites; see Lichtarge et
al. for a recent review [54]. In an analogous way, SDPpred
(Specificity Determining Position prediction) uses mutual
information to identify alignment positions where the
amino acid distribution is closely associated with the

functional specificities. Here, both are the two worst per-
forming methods considered overall; the overall perform-
ance of ET and SDPpred is 0.35 and 0.19, respectively.
Nevertheless, ET does have respectable coverage on both
of the gate subsets (0.60 in both cases); its coverage of the
binding site subset is only 0.38. The overall coverage

Table 4: Performance of the various functional site prediction schemes across all functional sites.1

Method Binding sites Cytoplasmic gate Extracellular gate

(a.) Unique methods

Phylogenetic motif 0.68; 0.18; 0.38 0.00; 0.00; 0.00 1.00; 0.06; 0.33
False positive expectation 0.63; 0.29; 0.43 0.00; 0.00; 0.00 0.60; 0.06; 0.28

Site conservation 0.46; 0.19; 0.31 1.00; 0.09; 0.93 0.80; 0.07; 0.33
Rate4Site 0.54; 0.28 0.39 0.20; 0.02; 0.10 0.60; 0.07; 0.28

ET 0.38; 0.16; 0.26 0.60; 0.05; 0.27 0.60; 0.05; 0.27
SDPpred 0.21; 0.56; 0.36 0.00; 0.00; 0.00 0.00; 0.00; 0.00

(b.) Hybrid methods

Union (PM + FPE) 0.88; 0.18; 0.41 0.00; 0.00; 0.00 1.00; 0.04; 0.32
Intersect_2 0.71; 0.20; 0.40 0.60; 0.04; 0.26 0.80; 0.05; 0.31
Intersect_3 0.42; 0.35; 0.38 0.20; 0.02; 0.10 0.60; 0.07; 0.28
Intersect_4 0.33; 0.36; 0.34 0.00; 0.00; 0.00 0.60; 0.14; 0.33
Intersect_5 0.13; 0.33; 0.22 0.00; 0.00; 0.00 0.60; 0.33; 0.45

1 Each cell of the table includes: coverage; accuracy; and overall performance of the method on each subset of the complete benchmark dataset. The 
three subsets are defined in Table 2.

Table 3: Coverage and accuracy of the various functional site prediction schemes across all 34 functional sites.

Method Coverage1 Absolute Accuracy2 Relative Accuracy3 Overall Performance4

(a.) Unique methods

Phylogenetic motif 0.62 (21) 0.24 (89) 0.55 (38) 0.40
False positive expectation 0.53 (18) 0.35 (51) 0.90 (20) 0.43

Site conservation 0.59 (20) 0.35 (58) --- 0.45
Rate4Site 0.50 (17) 0.37 (46) --- 0.43

ET 0.44 (15) 0.27 (56) --- 0.34
SDPpred 0.12 (4) 0.27 (15) --- 0.19

(b.) Hybrid methods

Union (PM + FPE) 0.77 (26) 0.22 (116) 0.45 (58) 0.42
Intersect_25 0.71 (24) 0.29 (84) --- 0.46
Intersect_35 0.56 (19) 0.44 (43) --- 0.50
Intersect_45 0.32 (11) 0.50 (22) --- 0.40
Intersect_55 0.18 (6) 0.67 (9) --- 0.37

1 Coverage describes the fraction of correctly predicted functional sites from Table 2; the raw count is provided in parentheses. 2 Absolute accuracy 
is defined as the ratio of correct predictions to total alignment positions predicted (provided in parentheses). 3 Because the PM, FPE, and Union 
methods are based on alignment windows (versus individual sites within the alignment), relative accuracy is also calculated. Relative accuracy is 
similar to absolute accuracy, but describes the ratio of correct predictions to the total number of alignment windows (also provided in 
parentheses). 4 Overall performance is calculated as the Cartesian distance between (coverage, accuracy) of each method and that of a perfect 
method (coverage = 1.00, accuracy = 1.00). The distance is normalized such that a method with 0.00 coverage and accuracy would have a value of 
unity, which is then subtracted from one in order to stay consistent with the coverage and accuracy scales. 5 The Intersect predictions describe a 
hybrid approach composed of the unique prediction strategies. Whenever the number of predictions for a particular site are greater than the 
intersect value, that site is put forth as a prediction (e.g., Intersect_2 represents the intersection of any two unique methods). Due to poor 
performance, the SDPpred method is not considered within the Intersect results.
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(0.12) of the SDPpred method is very poor; however, due
to so few predictions, its accuracy is reasonable (0.27).

Taken together, the functional site predictions are quite
impressive. All but three of the functional sites are pre-
dicted by at least one method. There is also appreciable
overlap within the predictions. Across the five unique
methods, 20 of the 34 functional sites are predicted by at
least three different techniques; four more are predicted
by two methods. Additional file 4 details the results from
prediction methods across the entire LeuTAa sequence.
Except for SDPpred, the coverage of each unique method
is always better than 0.44 (Table 3). However, consistent
with earlier investigations [43], the coverage by ET is
slightly poorer than those of other approaches. Impres-
sively, the coverage by Union is 0.77. The absolute accu-
racy is best for Rate4Site (0.37); however, FPE and SC85
are very close (both are 0.035). This, of course, makes
sense as all three methods highlight sequence conserva-
tion. Curiously, as demonstrated below, there is little
overlap between the FPE and SC85 predictions.

While the coverage of the PM approach is the best, the
absolute accuracy of the PM method (and consequently,
the Union method) is substantially lower than the others.
Note that it could be argued that simply comparing abso-
lute accuracy is not a fair metric since PM, FPE, and Union
are based on alignment windows. SC85, Rate4Site, and ET
predictions are based on single alignment positions,
whereas the window-based prediction identifies five sites
at a time, meaning the denominator of the accuracy ratio
is increased. As such, we introduce relative accuracy,
which is defined as the number of correct predictions/
total number of alignment windows predicted (Table 3).
The relative accuracies of these three approaches are sub-
stantially higher than all absolute accuracies. We do not
want to overemphasize these results as, again, this is not a
perfect comparison – one should never make too much of
comparisons of apples and oranges! Nevertheless, the
absolute and relative accuracies provide an accuracy range
that is in qualitative agreement with the other approaches.

Predictions of specific functional site sets
The leucine substrate, two sodium ions, and a chloride
ion are co-crystallized within the LeuTAa structure. The
biological importance of the leucine and sodium ion
binding sites is unambiguous, thus it follows that know-
ing how well the methods predict the leucine and sodium
ion binding sites is imperative to their assessment. (Note
that the significance of the chloride ion-binding site,
which is structurally remote from the others, is still being
debated, thus it is omitted from this analysis.) Within the
functional site benchmark, 14 residues are defined as part
of the leucine-binding site, whereas nine constitute the
sodium ion binding sites (see Table 2). Three residues

(Ala22, Thr254, and Ser355) are involved in both. Figure
5 clearly indicates that the five different methods result in
substantially different predictions. Interestingly, the two
methods based on sequence windows (PM and FPE) have
better coverage of these residues (14 and 16, respectively).
While it is straightforward to view their increased coverage
as a simple fact that they predict sequence chunks, this is
not the case. In fact, the total number of alignment posi-
tions predicted by FPE is less than SC85 and ET. The other
three methods (SC85, Rate4Site, and ET) predict 11, 14,
and 9, respectively. The poor coverage of the leucine-bind-
ing site by ET and SDPpred, both of which look (at least
in part) for subfamily specific residues, is particularly
notable. The good coverage of the Leucine-binding site by
the remaining conservation measures suggests that the
general binding site location is conserved across the fam-
ily; however, results from the class specific methods (ET
and SDPpred) suggest that the exact details of the trans-
porter-substrate interaction are likely defined by a differ-
ent set of residue positions across the family. Figure 5g
color-codes the binding site residues by the number of dif-
ferent methods that predict them. Encouragingly, 71% of
the binding site residues are predicted by at least two dif-
ferent methods, and 59% of the binding sites are pre-
dicted by at least three different methods. Coverage of the
binding site and extracellular/periplasmic gate residues is
also quite good. The coverage of each by three or more
methods is 67% and 60%. Only one (10%) of the cyto-
plasmic gate residues is predicted by three or more meth-
ods.

Across the canonical set of functional sites, all but three
(Asn21, Val104, and Ile359) are predicted by at least one
method. All three are part of the leucine-binding site. Of
these three, none is conserved greater than 35%, indicat-
ing a lack of strong evolutionary pressure acting on these
positions. Curiously, all three make van der Waals con-
tacts with the leucine substrate. Particularly interesting are
Val104 and Ile359. With just a handful of exceptions,
both positions are chemically conserved; the positions are
almost exclusively hydrophobic. This result makes sense
within the context of hydrophobic amino acid and bio-
genic amine transporters (see Figure 2b) as both groups of
substrates are amphipathic with large nonpolar regions
that could interact with the hydrophobic binding site res-
idues – they form the base of the binding site pocket
around the leucine sidechain (see Additional file 5). How-
ever, it is not clear how nonpolar residues at these two
positions can interact with the osmolytes or polar amino
acids, both of which have charged groups on both ends of
the substrate. This ambiguity is presented to highlight the
more gratuitous shortcomings of the sequence-based
approaches employed here, and will likely have to wait for
further structural studies to be resolved. In spite of the ina-
bility of the methods to predict these two sites, all five
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methods predict sites proximal (within five alignment
positions) to Ile359, and three of the methods (all but ET
and PM) do the same for Val104.

The extracellular/periplasmic gate residues, which are
proximal to the leucine/Na+ binding sites, are generally
predicted well by SC85 and PMs, which correctly predict
all five and four positions, respectively. FPE, Rate4Site,
and ET predict three of the five. Conversely, there is more
diversity within the cytoplasmic gate residue predictions.
SC85 predicts all five, whereas PMs and FPE fail to predict
any; the other methods fall somewhere in between. SDP-
pred fails to predict any cytoplasmic or extracellular/peri-
plasmic gate residues. When considering the unwound
transmembrane helices, complementarity between pre-
diction schemes is similarly observed. Only FPE is able to
predict the unwound regions of TM1, whereas only PMs
predict all five unwound residues in TM6. Glu62 is
thought to stabilize the unwound region in TM6. All five
methods predict Glu62 to be functional. Remarkably,
mutation of equivalent residues in at all three eukaryotic
homologs (rSERT, hDAT, and rGAT1) confirms that this
position is important [55-58]. Additionally, mutagenesis
experiments reinforce the importance of the cytoplasmic
gate residues, extracellular/periplasmic gate residues, and
the leucine/Na+ binding sites (see Table 2).

Complementarity and overlap within the predictions
As alluded to above, an important conclusion from this
work relates to the high degree of complementarity
between the different prediction methods. A cursory anal-
ysis of the results clearly suggests that the methods pro-
vide different prediction sets. Complementary between
each pair of prediction sets is described by vector orthog-
onality (see Table 5). Orthogonality is calculated as the
Euclidean distance between a vector pair representing two
different functional site prediction sets. Each vector has 34
dimensions (corresponding to the 34 functional sites
identified in Table 2). Each dimension is simply a binary
possibility (1 = correctly predicted functional site; 0 =
missed functional site). The values are then adjusted such
that two completely orthogonal sets have a score of 1.0,
whereas completely identical sets would have a score 0.0.
The FPE/Rate4Site pair is the most similar; the pair has 26
(out of 34 possible) matches when comparing their pre-
diction sets. After excluding SDPpred, which predicts far
few functional sites than the other methods, it is surpris-
ing that methods ostensibly based on the same approach
(phylogeny in the case of the PM and ET pair and conser-
vation in the case of FPE and SC85 pair) are the most dis-
similar – they each have 16 mismatches. Nevertheless, the
extent of orthogonality is fairly consistent across all possi-
ble pairs, the average and standard deviation is 0.66 and
0.09, respectively.

We also investigate how predictions based on simple
intersections of the various unique methods improve pre-
diction accuracy. Meaning, only positions that are simul-
taneously predicted by multiple methods are put forth as
a prediction. Due to poor overall performance, SDPpred is
excluded from this analysis. Moreover, SDPpred only pre-
dicts positions that are predicted by at least three other
unique methods. Table 3 demonstrates that the simple
Intersect method clearly improves performance. Only
nine positions are concurrently predicted by all five
schemes. As discussed above, one corresponds to Glu62;
three others correspond to binding site residues; and three
correspond to extracellular/periplasmic gate residues.
When a site is predicted by any four methods, 22 are pre-
dicted, half of which are included in the functional site
set. Impressively, relaxing the criterion to any three meth-
ods raises the coverage and accuracy to 0.56 and 0.44,
respectively. When any two methods intersect, the accu-
racy is reduced to 0.29 (which is within the range of the
individual methods), but the coverage increases to an
impressive 0.71. Interestingly, Figure 6 indicates that pre-
dictions with better support, meaning they are predicted
by multiple methods, are more likely to cluster around the
leucine-binding site and the proposed transport route
(discussed below). It will be quite interesting to determine
from future investigations if the Intersect predictions (vs.
individual methods) do a better job of predicting posi-
tions that exhibit a functionally deleterious phenotype
upon mutation.

Substrate transport route
While the unwound regions of TM1 and TM6 clearly con-
stitute the leucine-binding site within LeuTAa, Yamashita
et al. also predict that they act as joints within the protein
structure, which allow it to change conformations (out-
ward facing open ↔ closed ↔ inward facing open) during
substrate transport. This model is consistent with the gen-
eral alternating access model proposed for carriers
[5,7,24,59]. Their model predicts that substrate passage
occurs along a route defined by TM1, TM3, TM6, TM8 and
TM10. The solved LeuTAa structure is thought to be in the
closed or occluded conformation. The Yamashita model
proposes that the salt bridge between Arg30 and Asp404
(both of which are included in our 34 functional sites) is
broken when the structure occupies the outward facing
open conformation. Conformational changes within the
extracellular helices EL2 and EL4 are believed to concom-
itantly occur on loss of the salt bridge. Their model is sup-
ported by experimental data showing that EL2 and EL4
adjust during transport [60,61]. More drastic conforma-
tional changes are believed to occur on opening of the
cytoplasmic gate. On loss of a second "locking" salt
bridge, this time between Arg5 and Asp369 (both of
which are also included in our 34 functional sites), TM1a
and TM6b are believed to "swing out" via the hinges pro-
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vided by the unwound helices. This conformational
change at the cytoplasmic gate provides an opening for
the substrate and accompanying ions to dissociate into
the cytoplasm, thus completing ion/substrate cotransloca-
tion across the plasma membrane. Intriguingly, the struc-
ture suggests that the two Na+ ions and the leucine
substrate share the same permeation pathway.

Figure 7, which is the same orientation and coloring
scheme of Figure 4, shows that the known functional sites
and the functional site predictions primarily cluster along
the proposed ion/substrate permeation pathway. This
result strongly supports the model put forth by Yamashita
et al. Note that only TM1, TM3, TM6, TM8 and TM10 are
shown in Figure 7. Many of the functional site predictions
correspond to these regions. However, there are also pre-
dictions that do not explicitly correspond to these five
transmembrane helices. Nevertheless, the functional site
predictions tend to structurally cluster near the proposed
permeation pathway. The only exception to this scenario
is with SDPpred, whose predictions are commonly
removed from the proposed transport route (see Figure
7f). Similarly, as discussed above, highly supported pre-
dictions (meaning positions predicted by three or more
techniques) cluster better along the proposed permeation
route than by predictions only identified by one or two
techniques (Figure 6). The clustering of the functional site
predictions along the proposed passage route is better
established in Figure 8, which displays the Rate4Site pre-
dictions within three orthogonal views. Similar clustering
is observed in the other prediction schemes as well.

Assessment of functional sites from available mutation 
data
Since cloning of the mammalian members of the NSS
family of transporters in the early 1990s [62-68], several
laboratories have devoted considerable effort to under-
standing the structure-function relationships of these pro-
teins. In particular, site-directed mutagenesis has served as
a powerful tool with which to identify amino acid resi-
dues that govern various aspects of transporter function
(e.g., substrate binding, substrate affinities, turnover rate,
etc.). In this report, we have used representative results
gained from these functional studies in order to provide
additional support for the 34 structurally derived func-
tional sites. Note that this list is not meant to be exhaus-
tive; rather, it is simply meant to support or refute the 34
sites examined above. For this purpose, we have chosen
representative studies on the rat isoform of the serotonin
transporter (rSERT), human dopamine transporter
(hDAT), and rat GABA transporter 1 (rGAT1). These trans-
porters are chosen due to the large number of experimen-
tal studies available. As a general rule, the functional data
strongly support the data concluded by structural as well
as bioinformatic approaches (see Table 2). Of the 34 func-

tional sites present, we identify corroborating mutagene-
sis data in all but three sites (Ala22, Ser267, and Ala351).

The importance of several of the positions within Table 2
is supported by mutagenesis on multiple homologs. For
example, seven positions (Asn21, Gly24, Leu25, Arg30,
Glu62, Tyr108, and Phe253 using LeuTAa numbering)
have experimental mutants with functional phenotypes in
all three transporters investigated here (rGAT1, rSERT, and
hDAT). Curiously, residue identity is not conserved
within two of these positions (Asn21 and Gly24), suggest-
ing that these positions are important to the family's func-
tional diversity. An additional thirteen positions are
supported by experimental data in two of the homologs
surveyed. Moreover, the general importance in other sym-
porters of each functional class discussed (cytoplasmic
gate, extracellular gate, Na+-binding site, leucine-binding
site, and unwound helix) within the LeuTAa structural
description is confirmed [10]. Only three experimentally
characterized mutants lack a phenotype; however, in each
case, mutation at the equivalent position (Val104,
Phe259, and Tyr268) within one of the other two investi-
gated homologs does.

Conclusion
The results presented herein, using the NSS family as a
model system, clearly demonstrate that common bioin-
formatic methods are able to provide key functional
insight into membrane integral proteins in the absence of
structural considerations. In general, the methods are able
to both predict known functional sites and reveal clear
evolutionary discrimination between observed functional
distinctions. As such, our results (assuming they can be
generalized to other membrane integral families) clearly
establish that the employed methods represent a viable
means to guide experimental mutagenesis studies and bet-
ter illuminate functional roles within membrane integral
proteins.

More specifically, the phylogeny reveals six clear sub-
families that reflect known functional divisions across the
family. In addition, the phylogeny impressively recapitu-
lates several nuanced functional difference within well-
characterized subfamilies (i.e., the presence/absence of
substrate cross-specificity within GABA symporters and
specificity differences between the catecholamine and
serotonin symporters). Likewise, functional sites pre-
dicted from sequence reproduce most of the canonical set
from Yamashita et al. While the methods provide different
prediction sets, accuracy is substantially improved when
residues are predicted by multiple methods. The observa-
tion that the collective set of bioinformatic predictions
map to the previously proposed substrate transport route
is particularly compelling. Finally, the generality within
the importance of these sites across more biomedically
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relevant members of the NSS family is established by
comparing to the large body of experimental mutagenesis
results available within the literature.

It is remarkable that even in the absence of high-resolu-
tion structural data, earlier mutagenesis experiments and
the sequence-based functional site predictions presented

here provide sound insight into the role of various amino
acid residues in protein function. However, even with the
wealth of data now available regarding NSS sequence/
structure/function relationships, many questions remain
unanswered. For example, even though cotransport of
Na+/leucine is not Cl--coupled within LeuTAa, the structure
revealed a Cl- binding site facing the extracellular space

Structural descriptions of the functional site predictions within the leucine (top) and sodium ion (bottom) binding sitesFigure 5
Structural descriptions of the functional site predictions within the leucine (top) and sodium ion (bottom) binding sites. Red 
indicates functional residues that are predicted, whereas blue indicates not predicted by (a) phylogenetic motifs, (b) false pos-
itive expectation, (c) site conservation, (d) Rate4Site, (e) evolutionary trace, and (f) SDPpred. (g) In the last frame, residues 
are color-coded based on the number of methods (excluding SDPpred) that predict each position (0 = blue, 1 = cyan, 2 = 
green, 3 = yellow, 4 = red, and 5 = magenta). In all cases, the leucine and sodium ion substrates are colored orange.
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[10]. This is very interesting because Cl- translocation is
coupled to Na+/substrate cotransport in some members
of the NSS family [69]. A second unanswered question
stems from the fact that the LeuTAa structure fails to pro-
vide insight into the diversity of functional features (e.g.,
ion channel versus transporter modes of function)
observed in some members of the NSS family [70-72].
However, it is not surprising that these differences are not
predicted by the LeuTAa structure since it exhibits only ≤
25% sequence identity to its mammalian counterparts.
Moreover, the functional analysis by Yamashita et al. [10]
is insufficient to address such nuanced functional issues
(i.e., channel vs. transporter mode) within LeuTAa, mean-
ing that they will have to be addressed experimentally in
the future. It is expected that further combinations of
structural studies, phylogenomics, advanced functional
site prediction techniques, and mutagenesis experiments
should provide investigators with a more refined strategy
to examine motifs within the larger NSS family and, in
particular, within subfamilies where unique functional
features exist.

Methods
Sequence dataset
Special care was taken to ensure the quality of the
sequence dataset used here. The bulk of the dataset was
obtained from SwissProt [73], which is rich in eukaryotic
homologs. In order to increase the number of bacterial
and archaeal sequences, COG0733 (from the COG data-
base [74]) was added to the dataset. The LeuTAa sequence
was also added to facilitate structural assessment of the
sequence-based predictions. All sequences lacking the pri-
mary PROSITE [75] definition of the family (W- [RK]-F-
[GPA]- [YF]-x(4)- [NYHS]-G-G- [GCA]-x- [FY]) were
purged. PROSITE also contains a secondary definition of
the family. However, it is quite divergent within bacterial
and archaeal proteins, so it is ignored. All sequence frag-
ments less than 50% of the average length have also been
purged. Multiple sequence alignment, using MUSCLE

[76,77], followed by phylogenetic analysis (see below)
reveals six major subfamilies with a small number (<10)
of outliers. The outliers (one of which is an acetylcholine
symporter; the others are ORFans) were also purged due
to lack of support. The final dataset contains 181 NSS
sequences, which have been realigned using MUSCLE; the
raw MUSCLE alignment file (.fsa format) is provided in
Additional file 6. The results presented above solely use
this alignment. Comparison (results not shown) to the
recent report by Beuming et al. indicates that our align-
ment based solely on sequence information is inline with
their structurally-informed alignment [78]. Improved
multiple sequence alignment strategies (e.g., Mafft [79],
Probalign [80], and Probcons [81]) result in very similar
alignments (see Additional file 7). Moreover, with the
slight exception of the PM method, the results presented
herein are largely insensitive to the alignment differences
(see Additional file 7). For convenience, all residue num-
bering corresponds to the LeuTAa structure.

Phylogenetic analysis
Figure 2 shows the phylogenetic tree calculated on the
NSS dataset; the raw phylogenetic tree file (.ph format) is
provided in Additional file 1. The tree was generated using
the Neighbor-Joining (NJ) phylogenetic reconstruction
method implemented in ClustalW [28]. The ClustalW
phylogeny is shown here, versus more common
approaches like PHYLIP [29], because it is also used
within the calculation of phylogenetic motifs (see below).
A comparison of the NJ trees computed by ClustalW and
PHYLIP (calculated using the Protdist/Neighbor pair of
programs) revealed no major differences. In fact, all
branches clustered into the same six subfamilies in both
trees. Some minor topological differences do exist; how-
ever, they are insignificant as the main aim here is to dis-
criminate between subfamilies, and not to provide a
robust evolutionary history. Bootstrapping (1000 resam-
ples each) was done on each phylogeny using either Clus-
talW (see Additional file 2) or PHYLIP. PHYLIP bootstrap

Table 5: Complementarity within the six unique functional site prediction schemes.1

PM FPE SC85 Rate4Site ET SDPpred

PM --- --- --- --- --- ---
FPE 0.62 --- --- --- --- ---

SC85 0.62 0.69 --- --- --- ---
Rate4Site 0.66 0.49 0.59 --- --- ---

ET 0.69 0.64 0.62 0.62 --- ---
SDPpred 0.80 0.66 0.86 0.71 0.64 ---

1 Complementarity is calculated as the Euclidean distance between each vector pair describing the results within Table 2, meaning each vector has 
34 dimensions. Each dimension is simply a binary possibility (1 = predicted functional site; 0 = not predicted functional site). The values reported are 
normalized such that two completely orthogonal vectors will have a distance of one; two vectors that are absolutely the same will have a distance 
of 0.00, whereas two completely orthogonal vectors will have a distance of 1.00. The average value and standard deviation across the matrix are 
0.66 and 0.09, respectively, which corresponds to 15.0 and 4.1 differences.
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Structural superposition of all functional site predictions onto the LeuTAa structureFigure 6
Structural superposition of all functional site predictions onto the LeuTAa structure. Spheres represent α-carbons of the pre-
dicted residues, which are color-coded by the number of methods (excluding SDPpred) that predict each residue (1 = cyan, 2 
= green, 3 = yellow, 4 = red, and 5 = magenta). The four views show sites predicted by at least (a) one, (b) two, (c) three, and 
(d) four methods. In all cases, the leucine, sodium ions, and chloride ion are colored blue.
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results were calculated using the Seqboot/Consence pair
of programs.

Phylogenetic motifs
Phylogenetic motifs (PMs) are sequence alignment frag-
ments that mirror the overall familial phylogeny. In sev-
eral recent reports [43,49,82-84], we have demonstrated
that PMs represent very good functional site predictions
from sequence. PMs were calculated using MINER [48],
which is now available at [85]. Briefly, MINER uses a slid-
ing sequence window algorithm to comprehensively eval-
uate the phylogenetic similarity between each window

and the complete alignment. An input alignment, is
parsed into a series of windows of width = 5, which we
have previously demonstrated to be the most sensitive for
identifying functional regions [43]. A phylogenetic tree is
built for each alignment fragment, and similarity between
the window and complete familial tree is quantified using
a modified partition metric algorithm [84] that counts the
number of topological differences between the two trees,
meaning smaller values indicate increased similarity.

The alignment is masked prior to calculating trees on each
alignment fragment, meaning that highly gapped posi-

Structural superposition of the functional site benchmark and predictions onto the LeuTAa structureFigure 7
Structural superposition of the functional site benchmark and predictions onto the LeuTAa structure. The proposed substrate 
transport route (defined by TM1, TM3, TM6, TM8 and TM10) and the functional site predictions from each method are dis-
played in the same orientation as Figure 2. The six methods are: (a) phylogenetic motifs, (b) false positive expectation, (c) site 
conservation, (d) Rate4Site, (e) evolutionary trace, and (f) SDPpred. Coloring of the 34 functional sites is the same as Figure 
2; cyan indicates predictions not matching any of the functional sites.
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Three orthogonal views of the Rate4Site predictions superimposed onto the LeuTAa structureFigure 8
Three orthogonal views of the Rate4Site predictions superimposed onto the LeuTAa structure. Red spheres correspond to α-
carbons of the predicted residues. As can be clearly seen, the predictions cluster along the proposed transport route. Similar 
results are observed in the other methods as well. The orientation on the lower-left is the same as in Figure 6a. The view on 
the upper-left is a rotation of 90° in the x-direction, whereas the view on the lower-right is a rotation of 90° in the y-direction.
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tions (>50% gaps) are excluded. Subsequently, phyloge-
netic trees are calculated using the NJ algorithm within
ClustalW. Due to the number of tree calculations
required, distance-based trees are used to ensure compu-
tational efficiency. For example, in the case of the NSS
family, over 580 different trees must be calculated. While
we have implemented a parsimony-based version of
MINER, the added computational expense is not worth
the relatively modest increase in performance for families
of this level of divergence [84]. Phylogenetic similarity is
quantified using z-scores calculated from the raw partition
metric distribution. After all tree comparisons are made,
the PSZ threshold can be adjusted to alter what constitutes
a "hit". The threshold can be raised or lowered to be more
accommodating or stringent, respectively. Our original
PM report [43] suggests that PSZ thresholds between -1.0
and -2.0 are ideal. To facilitate large-scale analyses, we
have subsequently developed an automated threshold
determination algorithm [82]. However, the automated
threshold seems to be too stringent in this case. Here, a
PSZ threshold of -1.4 is used, which provides sufficient
discrimination between signal and noise (Additional file
8). All overlapping windows scoring below the PSZ
threshold are defined to be a single PM.

Motif identification
Traditional motifs (low sequence entropy regions) are
also identified by MINER using the False Positive Expecta-
tion (FPE) approach described in La et al. [43]. FPE is cal-
culated from the same sequence windows as the PMs; FPE
describes the probability of encountering each sequence
window randomly. The method describes each window
by a regular expression; the overall FPE for each window
is calculated as the product probability of the regular
expression. For example, the FPE of the regular expression
A [V,I,L]T [K,R]P is calculated by the equation: FPE =
p(A)·[p(V)+p(I)+p(L)]·p(T)·[p(K)+p(R)]·p(P). Back-
ground probabilities are calculated from the COG data-
base [74]. Although not theoretically rigorous, gaps are
treated as a 21st residue type. To eliminate over biasing gap
probabilities, positions with more than 50% gaps are not
tabulated when determining background probabilities.
While simplistic, the approach is computationally fast
and the results can be compared directly to the observed
PMs (see Additional file 8). Moreover, we have demon-
strated that FPE results compare very well to MEME results
[43].

Position-specific conservation measures
SC85 simply returns all positions within the alignment
that are conserved more than 85%. While simplistic,
Tables 3 and 4 clearly demonstrate the utility of the
approach. In fact, the method is determined to overall
perform the best of the five methods considered. Using a
conservation threshold of 100%, none of the residues

within the functional site benchmark are predicted. Relax-
ing the conservation threshold from 100% to 85% results
in increased coverage. Relaxing the threshold beyond 85%
does not result in improved coverage; however, it does
reduce the accuracy (see Additional file 9).

The ConSeq server [86] is used as an alternate conserva-
tion scheme [87]. In ConSeq, the evolutionary rate at each
alignment position is calculated using Bayesian or maxi-
mum likelihood statistics (here, we utilize the Bayesian
implementation) using the Rate4Site algorithm. ConSeq
reports both normalized conservation scores (whose aver-
age and standard deviation are zero and one, respectively)
and coarse-grained values range from 1 to 9. Throughout
the text, only conservation scores equal to 9 are discussed.
While the specificity is reduced, the coverage at level 8 is
extremely good; it is better than 80% (see Additional file
9). In fact, the overall performance at level 8 is exactly the
same as SC85. However, its accuracy is greatly diminished
from level 9 (0.37 to 0.25), which is why we focus on the
level 9 results.

Predictions of class-specific residues
All ET predictions are made using the Evolutionary Trace
Server, called TraceSuiteII [88], which is a commonly used
web-implementation of the approach [89]. Starting with
an input alignment, the Evolutionary Trace Server uses
PHYLIP to build a phylogenetic tree. Twenty tree parti-
tions (cut levels), which define the out-groups, are exam-
ined. As is done normally, both class specific and
conserved sites are listed as functional site predictions.
Throughout the text, cut level = 12 is discussed since it
provides the best balance between coverage and accuracy
(see Additional file 9).

SDPpred [90] is also used to predict class-specific residues
[91]. SDPpred requires an alignment and class definitions
as input; the six subfamilies discussed above are used to
define the classes. The algorithm uses an approach based
on mutual information to positions where the amino acid
distribution is consistent with the class differences. SDP-
pred also returns a statistical significance (in the form of
z-scores). Throughout the text, all predictions with z-
scores greater than 6 are considered; however, other val-
ues have little overall affect on the results (see Additional
file 9).
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ABC, ATP binding cassette; NSS, neurotransmitter/
sodium symport; LeuTAa, leucine amino acid transporter;
GABA, γ-aminobutyric acid; TM, transmembrane; PM,
phylogenetic motif; FPE, false positive expectation; SC85,
85% site conservation; ET, evolutionary trace; SDPpred,
specificity determining position prediction; rSERT, rat
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