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Background: Acetylcholinesterase is irreversibly inhibited by organophosphate and carbamate
insecticides allowing its use in biosensors for detection of these insecticides. Drosophila
acetylcholinesterase is the most sensitive enzyme known and has been improved by in vitro
mutagenesis. However, its stability has to be improved for extensive utilization.

Results: To create a disulfide bond that could increase the stability of the Drosophila melanogaster
acetylcholinesterase, we selected seven positions taking into account first the distance between C3
of two residues, in which newly introduced cysteines will form the new disulfide bond and second
the conservation of the residues in the cholinesterase family. Most disulfide bonds tested did not
increase and even decreased the stability of the protein. However, one engineered disulfide bridge,
1327C/D375C showed significant stability increase toward denaturation by temperature (170 fold
at 50°C), urea, organic solvent and provided resistance to protease degradation. The new disulfide
bridge links the N-terminal domain (first 356 aa) to the C-terminal domain. The quantities
produced by this mutant were the same as in wild-type flies.

Conclusion: Addition of a disulfide bridge may either stabilize or unstabilize proteins. One bond
out of the 7 tested provided significant stabilisation.

Background

Acetylcholinesterase (AChE, EC 3.1.1.7) is a serine hydro-
lase, which catalyzes the hydrolysis of acetylcholine. This
enzyme is the target of organophosphate and carbamate
insecticides which phosphorylate or carbamoylate the ser-
ine of the active site blocking the hydrolysis of the neuro-
transmitter acetylcholine. The post-synaptic membrane
then remains depolarized and synaptic transmission can-
not take place so the insect dies. These compounds are

used to control proliferation of various agricultural pests:
insects, acari and nematodes. One of the consequences is
that pesticide residues remain in the environment and are
potentially toxic for all animals, including humans since
cholinergic transmission is well conserved. Insecticide res-
idues can be detected with biosensors using AChE as bio-
logical element to detect low levels of contaminants in
crops, soil, water or food samples [1,2].
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Table I: Production ratio of mutant in baculovirus compared to wild type enzyme. Reference is the wild type DmAChE which was
produced at 52 nanomoles per liter of culture. *: significant difference, n: number of batches analyzed

Relative production

Mutant code Mutated amino-acids Grade (MODIP) distance (Cp) in tertiary structure (/3\) n mean Standard error
ml R24/A169 B 3.65 5 1.43 0.71
m2 1327/D375 C 3.77 20 1.06 0.73
m3 L354/A456 C 3.56 19 022* 0.26
m4 T369/M476 A 3.62 15 0.04* 0.07
m5 L388/Q427 C 3.70 16 0.96 0.63
mé A452/S533 B 391 7 0.73 0.45
m7 T464/S543 D 3.96 8 0.77 0.47

Drosophila AChE (DmAChE) was found to be the most
sensitive enzyme when compared to enzymes of non-
insect origin and in-vitro-mutagenesis has permitted the
selection of enzymes up to 300-fold more sensitive [3,4].
But like most enzymes from mesophilic organisms,
DmACHhE is not stable, and this instability precludes its
utilization in biosensors. It can be stabilized by additives:
proteins such as bovine serum albumin, reversible inhib-
itor, polyethylene glycol or by encapsulation in liposomes
[5-8]. Another way to stabilize the enzyme is to use in vitro
mutagenesis to modify the primary structure of the pro-
tein. Elimination of a free cysteine and mutation of the
hydrophobic residues at the protein surface into
hydrophilic residues have been used to increase the stabil-
ity of DmAChE [9,10]. Here we focused on another
method: engineering new disulfide bridges.

Disulfide bonds are present in most extracellular proteins,
where they presumably stabilize the native conformation
by lowering the entropy of the unfolded form [11] or by
decreasing the unfolding rate of irreversibly denatured
proteins [12,13]. This stabilizing property makes disulfide
bond cross-linking an attractive strategy for engineering
additional conformational stability into proteins by site-
directed mutagenesis [14].

DmAChE is a dimer linked to membrane via a GPI anchor.
There are eight cysteines in each monomer [15]. Six are
involved in intrachain disulfide bonds, they are highly
conserved in the protein family and their mutations result
in inactivation of the protein. One cysteine is involved in
an interchain disulfide bond and one, at position 290
(328 using precursor numbering) remains free [16,17].
The aim of this work was to stabilize DmAChE by intro-
ducing new disulfide bonds.

Results

Mutation

There are 35 potential disulfide bridges in DmAChE if we
consider that every distance between two Cp of 3.6 to 4 A
is suitable to form a disulfide bridge following the muta-

tion of the two residues in cysteines. Among them, we
selected 7 using two criteria: the two amino-acids
involved should not be conserved in the cholinesterase
family and a serine at these positions is present in one of
the available sequences [18]. All these 7 disulfide bonds
were predicted by MODIP, automated software for mode-
ling disulfide bonds in proteins [19] with grades A (ideal
stereochemistry), B (geometrically suitable but with dis-
torted stereochemistry) and C (sites close enough to allow
the formation of a disulfide bond) [20]. We verified that
the engineered disulfide bonds were formed by assaying
free sulthydryl groups with the Ellman reagent in the pres-
ence of 6 M urea. The results were consistent with the
expected disulfide bonds. We verified that the new
cysteines did not promote a higher degree of polymerisa-
tion. SDS-gel electrophoresis performed in non-reducing
conditions showed that all mutants were dimeric proteins
like the wild type: introduction of cysteines did not pro-
vide additional intersubunit interactions in the mutants.

In our conditions, production of wild type DmAChE in
insect cells via the secretory network is 52 nmoles per liter,
five bridges did not significantly affect this protein pro-
duction; two, m3 and m4 decreased production and no
mutation increased production (Table 1).

Heat denaturation

We first analyzed denaturation with the most common
method used to study protein denaturation: incubation at
high temperature. The stability of the mutated protein was
estimated by studying irreversible thermal inactivation at
several temperatures (from 35 to 65°C) and plotted the
first-order denaturation rate constant (kd) against the
reciprocal of the absolute temperature (°K-1). It appeared
that one bridge (m2) increased thermostability while one
(m6) decreased it (Fig. 1).

Urea and organic solvent denaturation, protease
sensitivity

Stability was assayed with three denaturing agents. In all
cases, denaturation was irreversible and followed appar-
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Table 2: Relative stability of mutated AChEs. For each mutation, the t50 ratio (t50 mutant/t50 wild type) was calculated for each
denaturation agent (*: significant difference. n: number of independent batches analyzed)

mutation n 50°C 20% acetonitrile 4 M urea. 0.1 mg/mL pronase.
ml | 2 0.43* 0.40* 0.27*
m2 10 170% 2.11* 12.35% 1.60*
m3 9 |.4 0.85 1.87* 2.37%
m5 6 0.47* 0.13* 0.05* 0.17*
mé 2 0.05* 0.33* 0.26* 0.71
m7 2 0.73 0.94 0.71 0.79

Active site

C-term l
N

Figure 3

Position of mutation m2 (1327/D375). The cross link has
been colored in red. The disulfide bridge links two sub-
domains of the protein.

ent first order kinetics. Stability was characterized by the
half-life (t5,), the time at which 50% of an initial enzy-
matic activity is preserved. The half life of the wild type
protein was 13.6 min. in 4 M urea. Protease was used as a
denaturant because a protein's resistance to proteolysis
increases with its conformational stability due to the fact
that the susceptibly to proteolysis reflects the rate of local
unfolding [21,22]. The half life of wild type DmAChE was
13.9 min in 0.1 mg/ml pronase. Detection of insecticides
in food requires their extraction with organic solvent.
Although the solvent should be eliminated before the
assay, low amounts may remain in solution and inactivate
the enzyme. We used acetonitrile as model because it is
soluble in water. The half life of the wild type protein was
1.7 min in 20% acetonitrile. The thermostability provided
by bridge m2 is conserved for other denaturing agents
(Table 2). Identically, the low stability provided by bridge

m6 is found again. In addition, low stability was found for
bridges m1 and m5.

Specific activity

The specific activity of the mutants, and the patterns of the
pS curves, were not significantly changed with the intro-
duction of new bridges (Fig. 2). This suggests that
entrance of the substrate into the active site as well as the
catalytic efficiency was not affected by the mutations.

Discussion

From the first works of Villafranca et al. [23] and Perry and
Wetzel [24], introduction of non-native disufide bonds
has been used to stabilize proteins [25-34]. These suc-
cesses pushed us to use this technique to stabilize
DmAChE.

The effect of addition of disulfide bridges was either
stabilization or destabilization

Most new disulfide bonds introduced in DmAChE did not
affect protein stability, one decreased stability. Destabili-
zation has sometimes been reported [35,36]. This insta-
bility has been interpreted as the result of atypical sets of
dihedral angles in newly formed disulfide bridges [37],
from stabilization of the denatured state [38] or from
reduction of disulfide bonds followed by disulfide
exchange or chemical reaction of the SH groups formed
[39,40]. Attempts to predict destabilization by modeling
using MODIP failed, suggesting that selected positions
were too flexible for a fulfilling prediction.

We found one mutation which stabilizes the protein
(m2). Two subdomains forming the active site may be dis-
tinguished in cholinesterases and mutations decreasing
interactions between them decrease protein stability [41].
Disulfide bridge m2 links the two subdomains of the
enzyme (Fig. 3), strengthens subdomain interactions and
increases overall stability. This suggests that the contact
area of the two subdomains is the weakest site of the pro-
tein, taking into account the hypothesis that unfolding of
a protein molecule starts at its weakest site, and local sta-
bilization of this fragile region results in global stabiliza-
tion of the whole molecule [42].
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Figure 2
Effect of mutations on acetylthiocholine hydrolysis versus substrate concentration (log scale). (blue dots): wild
type; (red dots): mutant, Acetylthiocholine concentration in micromoles per liter; v/[Et] specific activity in s°!.

Addition of new disulfide bonds may impair protein disulfide bond may result in a decrease of protein produc-

production tion since two mutations out of the seven studied, affected
Production is a key issue for application of the stable  protein production. Most probably, increasing the
enzymes in biosensors. We found that addition of a  number of sulthydryl groups in a protein decreases the
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folding efficiency by increasing the number undesirable
disulfide bonds which results in a misfolded protein.

Conclusion
Addition of a disulfide bridge may either stabilize or
unstabilize proteins.

Methods

Protein engineering

Possible sites for the introduction of disulfide bonds were
located according to Wakarchuk et al. [23], by searching
for pairs of residues for which the inter- CB distance was
between 3.6 and 4 A in the structure of DmAChE [17].

Protein production and purification

cDNA encoding DmAChE and mutants were expressed
with the baculovirus system [43]. We expressed a soluble
dimeric form deleted of the hydrophobic peptide at the C-
terminal end which is exchanged for a glycolipid anchor.
A 3 x histidine tag replaced the loop from amino-acids
103 to 136 to facilitate purification. This external loop is
at the other side of the molecule with respect to the active
site entrance and its deletion affects neither the activity
nor the stability of the enzyme. Secreted AChE was puri-
fied to homogeneity using the following steps, ammo-
nium sulfate precipitation, ultrafiltration with a 50 kDa
cut off membrane, affinity chromatography with procain-
amide as ligand, NTA-nickel chromatography and anion
exchange chromatography [7]. Residue numbering fol-
lowed that of the mature protein.

Enzyme activity

The kinetics of substrate hydrolysis was followed at 25°C
in 25 mM sodium phosphate buffer pH 7, containing 1
mg/ml BSA. Hydrolysis of acetylthiocholine, an analogue
of the neurotransmitter allowing easy detection of the
reaction product, was studied spectrophotometrically at
412 nm using the method of Ellman et al. [44], at sub-
strate concentrations ranging from 2 uM to 300 mM, in 1
cm path-length cuvettes. Activity was measured for 1
minute after addition of the enzyme to the reaction mix-
ture. The concentration of the enzymes was determined
by active site titration using irreversible inhibitors with
high affinity [45].

Denaturation

DmAChE is denatured irreversibly, AGy4 cannot be deter-
mined. Instead, the changes in the stability relative to a
wild-type protein may be defined as the rate of enzymatic
activity decrease [46]. All denaturation experiments were
performed with 10 picomoles enzyme in 1 ml 25 mM
phosphate buffer pH7 at 25°C. AChE was incubated in
denaturing conditions, aliquots were taken out at regular
times, diluted 10-fold in enzyme reaction mixture and
remaining activity was measured, since residual enzy-

http://www.biomedcentral.com/1471-2091/7/12

matic activity is related to the proportion of non-dena-
tured protein. To analyze heat sensitivity, enzymes were
incubated at 50°C and 1 mg/ml bovine serum albumin
was added to the buffer. Aliquots were mixed with cold
buffer chilled on ice and the solution was incubated at
25°C for ten minutes before recording the remaining
activity. For urea denaturation, unfolding of DmAChE was
induced by adding 4 M urea to the incubation buffer. The
effect of organic solvent was followed by incubation of the
enzyme in 20% acetonitrile. The effect of protease sensi-
tivity was determined by incubation of AChE with 0.1 mg/
ml pronase.

Abbreviations
DmAChE: Drosophila acetylcholinesterase,
acetylthiocoline, BSA Bovine Serum Albumin.

ATCh:
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