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SUMMARY

The complexmulti-step process of glycosylation occurs in a single cell, yet current
analytics generally cannotmeasure the output (the glycome) of a single cell. Here,
we addressed this discordance by investigating how single cell RNA-seq data can
be used to characterize the state of the glycosylation machinery and metabolic
network in a single cell. The metabolic network involves 214 glycosylation and
modification enzymes outlined in our previously built atlas of cellular glycosyla-
tion pathways. We studied differential mRNA regulation of enzymes at the organ
and single cell level, finding that most of the general protein and lipid oligosac-
charide scaffolds are produced by enzymes exhibiting limited transcriptional
regulation among cells. We predict key enzymes within different glycosylation
pathways to be highly transcriptionally regulated as regulatable hotspots of
the cellular glycome. We designed the Glycopacity software that enables investi-
gators to extract and interpret glycosylation information from transcriptome
data and define hotspots of regulation.

INTRODUCTION

The structural diversity of a cellular glycome is daunting; it comprises glycans found on proteins, proteo-

glycans, and lipids, as well as free oligosaccharides (Cummings, 2009). Glycosylation is the most abundant

and diverse posttranslational modification of proteins (Schjoldager et al., 2020). Most (>85%) proteins traf-

ficking the secretory pathway are glycosylated (Steentoft et al., 2013; Zielinska et al., 2010) and most pro-

teins in the nucleus and cytoplasm undergo O-GlcNAcylation (Hart, 2019), which greatly amplifies the pro-

teome by producing diverse proteoforms with different functional properties and myriad functions

(Aebersold et al., 2018; Spiro, 2002; Varki, 2017).

The glycosylation processes of proteins and lipids involve a complex metabolic network of sequential enzy-

matic steps employing at least 174 glycosyltransferases, 35 sulfotransferases, and 3 epimerases (together,

theglycogenes), whoseproperties to a large extent determinewhichproteins becomeglycoproteins, where

the glycans are positioned on the proteins, and the structures of the elaborate glycans attached (Schjold-

ager et al., 2020). Arguably, the principal factor that determines the outcome of the glycosylation network

in a cell is the available repertoire of glycosyltransferases. The kinetic properties of glycosyltransferase en-

zymes are largely equipped with sufficient acceptor and donor substrate preferences, kinetic efficiencies

and subcellular localization signals for unsupervised attachment and stepwise assembly of oligosaccharides

in the secretory pathway. This has allowedus to assemble a global atlas of cellular glycosylationpathways, as

well as assigning glycosyltransferases directing these pathways (Joshi et al., 2018; Narimatsu et al., 2019;

Schjoldager et al., 2020). The atlas of glycosylation pathways describes the topology of a generic glycosyl-

ation network in a cell. We hypothesize that from cell to cell, differential transcriptional regulation of glyco-

syltransferases will impact the availability of different pathways in the network to the glycosylation processes

and will be amajor factor in regulating diversity and shape of the cellular glycome. This is clearly a simplistic

view andwe already know that many other factors will affect glycosylation, including acceptor substrate and

donor sugar availabilities, competition among enzymes, co-factors, pH, chaperones and glycosidases,

residence time in the secretory pathway, the compartmental organization of the glycosylation machinery

(Moremen et al., 2012; Schjoldager et al., 2020; Welch and Munro, 2019), and more general factors such

as cellular stress and e.g., malignant transformation (Moremen et al., 2012).

The glycosylation machinery is organized into not only relatively stringent sets of pathway specific enzymes

that coordinate biosynthesis of distinct core glycan structures (of which humans have 17), but also into

1Copenhagen Center for
Glycomics, Department of
Cellular and Molecular
Medicine, Faculty of Health
Sciences, University of
Copenhagen, Blegdamsvej 3,
2200 Copenhagen N,
Denmark

2Lead contact

*Correspondence:
joshi@sund.ku.dk

https://doi.org/10.1016/j.isci.
2022.104419

iScience 25, 104419, June 17, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

ll
OPEN ACCESS

mailto:joshi@sund.ku.dk
https://doi.org/10.1016/j.isci.2022.104419
https://doi.org/10.1016/j.isci.2022.104419
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104419&domain=pdf
http://creativecommons.org/licenses/by/4.0/


pathway non-specific enzymes that often share substrates among several pathways and result in generation

of common scaffolds and different terminal modifications (Cummings, 2009; Schjoldager et al., 2020). The

diversity in the glycome arises from the unique structural scaffolds built within each glycosylation pathway,

from elaborations on these scaffolds using repeated common structural motifs, and from diversity in com-

mon terminal modifications. Regulation of this diversity relies not only on unique glycosyltransferases di-

recting individual steps in the biosynthesis, but also the use of isoenzymes with partly overlapping and

partly unique functions as this provides for options for differential regulation of subtle structural changes

in the glycome. The latter group of isoenzymes is still incompletely understood, and these currently pose

the main challenge for predicting the cellular glycosylation capacity from expression data of glycogenes

(Schjoldager et al., 2020).

Glycosylation takes place in the individual cell, and the glycome by-and-large results directly from the or-

ganization of the metabolic glycosylation network in the cell. We cannot see the results of this process in a

single cell using current structural analytics, and most of our understanding of the glycome stems from

direct structural analysis of heterogeneous cell or tissue preparations, and thus informs us of an averaged

snapshot of the glycan structures found in many cells (�Caval et al., 2021; Khoo, 2019; Lageveen-Kammeijer

et al., 2021; Levery et al., 2015; Thaysen-Andersen and Packer, 2014). An exception to this is the use of

glycan-binding probes (lectins, antibodies, glycan-binding proteins) for binding to cells and tissues, and

this approach, although limited by the number of specific probes to the majority of glycan structures (Bojar

et al., 2021), suggests that expression of select glycan structures can be highly regulated on cells during the

cell cycle and during cellular maturation and differentiation (Dabelsteen et al., 1991; Park et al., 2021;

Thomas, 1971). Today, the best chances to circumvent the heterogeneity of cell populations come from

technologies that have already broken the single cell barrier. Single cell transcriptomics (and soon prote-

omics) offers a methodology to capture the state of the glycosylation machinery, i.e., the expression levels

of the enzymes involved, at the single cell level, which can be used to predict the cellular glycosylation

capacity and glycome outcome.

Thus, the rapidly emerging high quality single cell RNA-seq transcriptomic data offers a unique opportunity

for the glycomics field to probe the regulation of glycosylation enzymes at the single cell level. Key to uti-

lizing this information is the ability by which we can transform it to provide useful information about the

glycosylation outcome, i.e., the glycome. Single cell RNA-seq experiments typically capture the most high-

ly expressed genes, and so technical dropouts are more biased toward lowly expressed genes (Hicks et al.,

2018) relative to traditional bulk sequencing (Svensson et al., 2017). These challenges make it difficult to

ensure that the complete glycogene repertoire can be extracted and analyzed from any given single cell

dataset. Here, we hypothesized that we can quantify transferase levels at the cell type level by performing

an in-silico amplification of signal from clusters of single cells, rather than relying on quantifying transferase

levels in each cell directly. This approach enabled us to map the broad contours of the landscape of

transcriptional variation for all glycogenes from the organ to single cell level. The map reveals specific

glycosylation pathways that are present in defined cell types and enables estimation of the ranges of

expression for glycogenes in healthy organs and cells, which we then use to predict key hotspots in

regulation of cellular glycosylation and the glycome. We used the data to develop a software package

Glycopacity, which we have also made available as a web tool online at https://glyco.me.

RESULTS

Patterns of regulation at the organ level

We first turned to organ-level bulk RNA-seq data to identify hotspots of regulation in the glycosylation

network (Figure 1A), building on our previous analysis that applied a simplistic metric (Tau) to identify

hotspots (Joshi et al., 2018). For this new analysis we aimed to understand the behavior of two aspects

of regulation between organs: 1) the overall capacity for glycosylation inferred by all detectable/active

mRNA transcripts of glycogenes (i.e., the glycosyltransferase and glycan sulfotransferase genes) and 2)

the baseline and dynamics of transcripts for individual glycogenes among organs. We hypothesize that

the latter will provide for useful reference ranges of transcript quantitation for the single cell data.

The rainbow depiction of glycosylation pathways

We have over recent years refined an atlas of glycosylation pathways (Schjoldager et al., 2020) that orga-

nises the glycogenome (currently defined as a set of genes primarily comprising 174 genes encoding

glycosyltransferases, and 35 encoding sulfotransferases) into 17 distinct glycosylation pathways, and three
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further groups that do not belong to any specific pathway (non-specific elongation, capping and sulfation).

This atlas is represented in the rainbow depiction of basic glycosylation steps, covering all known glycosidic

linkages known to be formed in human cells (Figure S1). The rainbow depiction distinguishes between gly-

cogenes that serve functions in specific glycosylation pathways and those that serve multiple pathways and

hence are designated pathway non-specific. This provides a framework for relatively reliable prediction of

the glycosylation outcome for 2/3 of the glycogenes, whereas the residual 1/3 comprising pathway

non-specific glycogenes enable predictions of linkages but not reliable prediction of the types of

glycoconjugate involved.

Sourcing of organ transcriptomic data

Bulk RNA-seq transcriptomic data (GTEx and TCGA) from human organs were downloaded from the

recount2 resource (Collado-Torres et al., 2017), and we retrieved count data covering 36 organs and

10,402 samples (Figure 1B, Samples and organ information listed in Table S1). We normalized the count

data using TMM (Robinson et al., 2010), producing counts-per-million (CPM) for each gene and sample,

which we then normalized to the average expression level of a panel of housekeeping genes (see STAR

Methods). This yielded CPM values that could be compared between organs for 224 glycogenes (which

include the glycosyltransferases, sulfotransferases, one chaperone (C1GALT1C1), one hexokinase

(POMK), three epimerases, one deacetylase, and nine genes with a glycosyltransferase domain whose

activity is currently unknown).

A

B C D

Figure 1. Development of a tool to identify hotspots of regulation on the metabolic glycosylation network

(A) We have over recent years been curating knowledge and mapping out the network of genes that control glycosylation

in cells (the rainbow representation of glycosylation pathways, Figure S1). The availability and activity of glycogenes that

make up glycosylation pathways within this network help to define the capacity for glycosylation that each cell can

perform. Individual pathways in the network are regulated differently, and we used data mining of mRNA transcriptional

data to better understand how this network is differentially regulated between organs and cells.

(B) Using organ-level bulk RNA-seq data, we estimated overall glycosylation capacity, and the spread of gene expression

values to identify hotspots of regulation of the glycogenome.

(C) We further refined these hotspots of regulation by increasing the granularity of regulation from the organ level to the

single cell level. Using single cell RNA-seq data, we performed an analysis that enabled predictions of the ubiquitous and

regulated parts of the glycome from over 200 different cell types from human organs and tissues.

(D)We have created a software package tomake these tools for predicting the glycosylation capacity from bulk and single

cell RNA-seq data accessible to the research community as an R package and a website at https://glyco.me. The software

package enables generation of heatmaps predicting hotspots of regulation for glycosylation, and can predict not only the

overall capacity for glycosylation from input expression data, but what part of this capacity is likely regulated. See also

Figure S1, Tables S1 and S2.
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Metrics to identify hotspots of regulation of glycosylation

We previously calculated a quantitative measure for the ubiquity of expression of glycosyltransferases

using Tau (Joshi et al., 2018). The Tau metric provided for a simplified view into the regulation of glycosyl-

transferases that could easily identify genes that were highly expressed in few tissues but could not identify

which genes were downregulated in only few organs, or report the magnitude of variation in expression for

less extreme cases. To remedy this, we chose to calculate two metrics for each glycogene for the normal-

ized data: the first metric is the percentage of organs where the average CPM (overall samples) for each

glycogene is above a minimal cut-off. This metric contributes to our understanding of the overall capacity

for glycosylation for each organ. The second metric is the inter-quartile range (IQR) of CPMs across all

samples for each glycogene, which informs us about the magnitude of variation in mRNA expression

between organs.

This allowed us to generate a visual map of the glycosylation capacities. The overall glycosylation capacity

for an organ (i.e., the overall repertoire of glycogenes with detectable transcripts) determines if pathways

within the glycosylation network are open to be followed or blocked and thus inactive. From the active

pathways of the glycosylation network, we can thus predict the glycosylation outcome.

We chose to use a minimum cut-off of 1 CPM (as used by the GlycoMaple tool (Huang et al., 2021)) for

the normalized organ RNA-seq data, and calculated the overall repertoire of glycogenes with CPMs (as

calculated before normalization to housekeeping genes) that pass this cut-off for each organ, plotting

the percentage of organs where each glycogene CPM passes the cut-off filter (Figure 2A, full figure in

Figure S2A). The data revealed that most glycogenes are minimally expressed in at least 66% of organs,

and a minority are expressed specifically in fewer than 33% of organs. The genes expressed in fewer organs

(orange/red color) are likely specifically expressed in these organs, and so are to be considered hotspots in

regulation of glycosylation at the organ level.

Next, we chose to quantify variability in transcript quantitation across all organs by calculating the IQR

(spread) of CPM values for each glycogene for all samples contributing to the organ data. To avoid issues

with low expression of glycogenes, we again apply the 1 CPM cut-off before applying housekeeping gene

normalization, and then calculating the IQR values. We expect that the glycogenes that follow the same

transcriptional programming in different organs (i.e., the same quantity of transcripts for the gene are pre-

sent in different organs) will correspondingly have low IQRs, whereas those with non-uniform expression

between organs (i.e., there are different quantities of transcript for the gene in different organs) will

have higher IQRs.

For most glycogenes that we examined, the IQR of CPM values varied from 0.0–0.9 (approximately a

2.5-fold change from lowest to highest), this is a narrow range, best exemplified with the ALG family of

genes (Figure 2B, top histograms). In contrast to glycogenes with narrow spreads, a subset of genes

have IQRs greater than 0.9, (greater than an approximate 2.5-fold between lowest and highest expression),

exemplified by the ST3GALs Figure 2B, bottom histograms). The 33 genes with the largest difference in

expression between organs have at least a 4-fold difference between the lowest and highest expression

level. The genes with the largest IQRs are candidates to be considered as hotspots in regulation of

glycosylation. Full histograms for all glycogenes are available in Figure S3A.

We visualized the IQR data in combination with the information collected about overall capacity per organ,

which revealed additional hotspots of regulation on the heatmap (Figure 2A) in addition to the red/orange

hotspots. These hotspots are associated with genes that are both ubiquitously expressed and regulated to

different levels of expression either within or between organs (fully saturated blue color). Between the

hotspots related to overall capacity, and those related to IQR, the hotspot glycogenes are largely located

in the elongation and capping steps, or are members of large isoenzyme families, in agreement with our

previous observations when calculating variability using Tau (Joshi et al., 2018).

Patterns of regulation at the single cell level

Sourcing of single cell transcriptomics data

We next aimed to investigate how to use single cell data to reveal whether differences in glycosylation

capacity and variability in expression levels are also seen between single cells in organs. We chose to

use a repository of uniformly processed single cell data (The Tabula Sapiens Consortium, 2022) because
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of the quality of cell type annotations made available for each cell as part of the dataset, and the confidence

in the uniform quality of data coming from a single consortium. The Tabula Sapiens data is a first draft single

cell transcriptomic atlas comprising data from 24 different tissues and organs and a total of 162 unique cell

types are annotated in this dataset.

Although we based most of our analysis on human data, we also used mouse single cell datasets (from

PanglaoDB (Franzén et al., 2019)) to validate select observed patterns and to increase the coverage of

neuronal cell types. In summary, from both the data sources we selected data produced using Chromium

A

B

Figure 2. Identification of hotspots of regulation in the glycosylation network from organ-level data

(A) Extract of a glycogene based heatmap indicating the hotspots of regulation found on the glycosylation network (Full heatmap available in Figure S2A).

The percentage of organs that glycosylation capacity is found in is mapped to the color (blue, orange and red according to increasing organ specificity),

whereas the spread of the expression values maps to the saturation of the colors: desaturated colors are less regulated between organs, whereas more

saturated colors are differentially regulated. Genes that are ubiquitous and stably expressed are desaturated blue (e.g., ALG2/6), whereas the genes with a

large IQR (or spread) in expression values between fewer specific cells is a bold red color (e.g., B3GNT6).

(B) Illustrative examples of histograms of normalized gene expression values for ALG genes that have narrower spreads (top) and for sialyltransferases that

have broader spreads for expression values (bottom). Histograms for all glycogenes are available in Figure S3A. Glycan symbols are drawn according to the

SNFG format (Neelamegham et al., 2019). See also Figures S2, S3 and S6.
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10X with unique molecular identifiers (UMI) and smartseq2, covering approximately 24 organs in human

and 30 organs in mouse (Figure 1C).

Calculating glycogene expression levels for individual cell types

Single cell RNA-seq analyses typically take advantage of dimensionality reduction methods followed by

subsequent clustering of datapoints for single cells (Butler et al., 2018) to identify which cells have similar

transcript profiles and thus can be inferred to belong to a cell type by interrogating marker genes. For the

data we selected to analyze, we relied on both the identified clusters of single cells and the cell type an-

notations as calculated by the maintainers of Tabula Sapiens and PanglaoDB. Clusters of single cells can

generally be considered representative of a particular cell type, and hence referred to as one cell type.

The clustering process determines a boundary between cell types, and does not adequately capture inter-

mediate states in processes such as maturation, or include more dynamic aspects such as the state of the

cell cycle. Because the data collected for each single cell in a cluster carries high error rates and are prone

to technical dropouts, we had to use clusters of single cells instead, which provides an in-silico amplification

of the gene expression data by combining counts for a cluster (i.e., an enrichment of cells of the same cell

type). We treat these clusters as pseudo-bulks for that individual cell type, and the corresponding mRNA

gene expression quantitation from the cluster as a pseudo-bulk transcript quantitation (Lun et al., 2016),

referred to as a pseudo-bulk quantitation from here on (see STAR Methods for calculation). After filtering

and basic quality control, we calculated the pseudo-bulk quantitation for all genes for 229 individual cell

types from Tabula Sapiens (Human), and 2317 individual cell types from PanglaoDB (Mouse).

Apart from the previously mentioned limitations regarding the quantitation of lowly expressed genes and

technical dropouts, the analysis of single cell data must consider factors that can affect downstream anal-

ysis. A major factor is that grouping cells into clusters is highly dependent on the choice of algorithm and

the parameters chosen when applying the algorithm, such that any group of cells could be decomposed

into smaller clusters of cells given the right application of a clustering algorithm. Similarly, larger clusters

may be decomposed into smaller clusters even though the cells that comprise the cluster may be similar in

identity. Clusters of single cells that are made up from larger numbers of cells are more reliable for calcu-

lating the pseudo-bulk quantitation for a gene, especially when the gene is expected to be expressed

lowly. Rarer cell types, that are assigned only to smaller clusters (<200 cells in a cluster, and approximately

half of all cell types from the datasets) will likely be overlooked by our methodology.

Pseudo-bulk quantitation values from single cell data are broadly similar to organ-level expression
data

To determine if pseudo-bulk quantitation values for all individual cell types reflect the overall levels and

variability of expression from organ data, we normalized the pseudo-bulk quantitation values for each

gene for each individual cell type using the same set of housekeeping genes used in the organ-level anal-

ysis. Next, we log-transformed these values, and calculated the IQR andmean. For most of the glycogenes,

these normalized pseudo-bulk quantitation values showed approximate agreement with the organ level

transcriptomic data (Figure S3A). Overall, the means of the normalized transcript quantitation values

(i.e., CPM or pseudo-bulk quantitation) for each gene correlated reasonably well between organ and single

cell data (Pearson correlation coefficient, r = 0.63, two-tailed t-test, p = 2.68E-26, n = 222, Figure S3B),

whereas the correlation of IQRs showed poor global correlation (Pearson correlation coefficient,

r = 0.46, two-tailed t-test, p = 8.03E-13, n = 222, Figure S3C).

We noticed that in general, the IQR was higher for normalized pseudo-bulk quantitation values compared

to the corresponding values from organ data, which we thought could be explained by the increased gran-

ularity of single cell data reflecting more variation in gene expression levels than the average values from

heterogeneous cell type populations in organ data, and abundance data for each cell type being erased

during the transformation into cell type level data. We plotted the correlation of IQR between organ

and individual cell type data, binning correlations by organ-level IQR and finding that the highest

correlation could be seen for organ-level IQRs in the interval between 0.5 and 1 (Pearson correlation

coefficient, r = 0.43, two-tailed t-test, p = 2.71E-06, n = 108, Figure S3D), which confirmed that the

correlation between IQR at the organ level and individual cell type level is strongest for lower IQR values.

At higher IQR values, both the strength of correlation, and significance drop, lowering overall confidence in

the correlation. Together this indicates that expected IQRs at the cell type level can most reliably be

estimated from organ level data for glycogenes with lower IQRs.
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To further verify that we were estimating the ranges of values for transcript correctly, we used an alternative

method to estimate the real expression values from underlying single cell data. We selected scTransform

(Hafemeister and Satija, 2019) to calculate gene-wise expected expression values. For a small set of avail-

able benchmark data, we applied this method to count data across all cells within a dataset to estimate the

ranges of expression values and validate our calculation method for pseudo-bulk quantitation values. After

performing the same set of normalizations and log-transformations as for the organ RNA-seq and pseudo-

bulk quantitation data, a visual inspection of the data showed that the ranges of values were similar,

confirming that our transformation of single cell data into cell type level, pseudo-bulk quantitation data

did not introduce any large discrepancies into the data (Figure S3A).

The reasonable agreement between the organ and pseudo-bulk quantitation estimates of gene expression

implies that we could make use of organ-level data to estimate upper and lower expression values for each

glycogene, assuming that the ranges we derive from the organ-level data is representative of the typical

range of expression of glycogenes in healthy humans, as all samples from the organ level data are from

healthy donors. Normalized pseudo-bulk quantitation values that lie between the upper and lower values,

indicate that the gene is expressed in the typical healthy range, whereas normalized quants outside the

range of healthy upper and lower expression values are correspondingly highly and lowly expressed. We

collated this reference range data into a reference table (Table S3), and incorporated this into an R pack-

age, so that we could predict whether a glycogene is not expressed, lowly expressed, or highly expressed –

based only on the data present in a user-supplied single sample or cluster from a single cell analysis.

Although most glycogenes demonstrate a general agreement between the ranges of values for bulk and

single cell data, for a minority of genes the ranges of values are offset with respect to the bulk values (both

higher and lower) (Figure S3A). This error is particularly prominent for e.g., the Galnt2 gene in the mouse

data, where very few transcripts are detected for this gene, despite substantial evidence that it is in fact

expressed.

Metrics to identify hotspots of regulation for single cells

Overall glycosylation capacity in individual cell types

As with organ-level data, we next calculated which individual cell types have minimal expression of each

glycosyltransferase so as to estimate the overall glycosylation capacity. To realize this, we calculated a

cut-off for pseudo-bulk quantitation values that would work similarly to the 1 CPM cut-off we used for organ

data. Using a human HEK293 cell line reference dataset where both bulk RNA-seq and single cell RNA-seq

was performed (Ding et al., 2020), we examined the relationship between the bulk RNA-seq TPM values and

calculated pseudo-bulk quantiations. The highest pseudo-bulk quantitation values for all genes ranged up

to approximately 4.5, whereas TPM values ranged up to approximately 10,000 (Figure S4A). Glycogenes in

HEK293 cells are expressed up to a pseudo-bulk quantitation value of approximately 1, and bulk RNA-seq

TPM of 100 (Figure S4B), and the TPM and pseudo-bulk quantitations showed good agreement with each

other (Spearman correlation coefficient, rs = 0.825, one-tailed t-test, p = 3.1E-45, n = 177, using all cells).

Given the good agreement, we proceeded with estimating the cut-off as a minimal pseudo-bulk quantita-

tion (Figure S4C), and margin of error as a function of the number of single cells that make up the cluster for

the pseudo-bulk. In this way, we could calculate the confidence that pseudo-bulk quantitation values are

above or below the minimal cut-off, with more certainty given to pseudo-bulk quantitation values

calculated from clusters containing more cells due to smaller margins of error.

Similarly to the organ level analysis, we defined overall glycosylation capacity based on the set of

glycogenes whose pseudo-bulk quantitation values for an individual cell type passed the cut-off filter (Fig-

ure S5A). The percentage of individual cell types that expressed each gene above the cut-off value was

plotted in a heatmap (excerpt in Figure 3A, full figure in S2B). The data indicates that the capacity to initiate

glycosylation across all glycosylation pathways is present in nearly all cell types identified from the reference

dataset (major tissues, and the total number of cell types from each tissue that we examined are listed in

Table S2). However, in contrast to the organ-level data, many of the glycogenes identified as ubiquitously

expressed at the organ level are only expressed in up to 33% of cell types, indicating as expected that more

differential expression of other glycogenes are ‘‘hidden’’ in the heterogeneous cell source from organ data.

Despite this we observed that approximately 60% of the glycogenes are expressed in at least 50% of cell

types, and 50% are expressed in at least 80% of cell types (Figure S5B). This suggests that a large proportion

of the glycogenes are not regulated by being switched on and off between cell types.
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Higher than average expression as a hotspot of regulation for an individual cell type

Single cell data offers the opportunity to identify the cell types where glycogenes are heavily regulated.

Instead of using the IQR across all cell types, we looked to find the individual cell types where glycogenes

were more highly expressed compared to the average level in all cells. We chose not to investigate lower

expression of genes because these lower bounds of expression likely overlap with the limits of detection for

single cell RNA-seq. The centred-log-transform (CLR) of pseudo-bulk quantitation values can quantify the

A

B

Figure 3. Identification of hotspots of regulation in the glycosylation network from single cell data

(A) As with Figure 2, an extract of the glycogene based heatmap indicating hotspots of regulation. The full heatmap is available in Figure S2B. An increased

number of hotspots are visible on the heatmap when the granularity of the data is increased. The overall glycosylation capacity, as percentages of cells that

genes are expressed in (from none to over 60% of cell types) are plotted using color on a heatmap, whereas an indicator of specific expression - the number of

cell types that that have higher expression of each gene (relative to all cells) modulates color saturation. Genes that are expressed more highly in more cells

use saturated colors.

(B) The percentage of cell types that express glycogenes from the different gene categories (See rainbow figure, Figure S1). The initiation and elongation

genes in the GALNT and MGAT isoenzyme families do not contribute to shape areas and are shown at the top of the plot because of their behavior being

significantly different from the other genes in their respective groupings. Glycan symbols are drawn according to the SNFG format (Neelamegham et al.,

2019). See also Figures S2, S4, S5, and S6 and Table S4.
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magnitude of variation from the mean values across all cell types. We calculated the CLR for all glycogenes

in all cell types and integrated this measurement into the heatmap (excerpt in Figure 3A, full figure in S2B).

The CLR enabled us to not only identify the hotspots of regulation in a cell-type manner, but also to find the

genes that demonstrate little variation of expression in most cell types. 63 genes were expressed highly

(CLR value >1) in between 45 and 77 individual cell types (out of 229 total), 58 genes are expressed highly

in between 22 and 44 of cell types, and 102 genes were rarely highly expressed (at most 21 individual cell

types), including many members of the ALG genes, STT3A/B, MGAT1 and MGAT2, GALNT2 and POFUT1/

2. The gene that is most commonly expressed at higher levels amongst cell types is MFNG (Figure S2B). The

data reflects the trends observed from the organ data, where elongation and capping genes as well as

isoenzyme families are more regulated than initiation and core extension genes (Figure 3B).

Overall glycosylation capacities of a single cell, and hotspots of the glycosylation network

The combined overall glycosylation and hotspot data (Figure 3A) reveals additional detail over the

simplistic model of binary regulation of capacities between cell types. The data highlights that amongst

the elongation and capping steps, certain features are equally as ubiquitous as those in initiation steps

(e.g., type2 N-acetyl-lactosamine (LacNAc) chains and a2-3 sialylation). This ubiquity is provided for by

‘‘workhorse’’ genes in isoenzyme families that vary little in expression and are always present in most

cell types (e.g., B4GALT1/3/4, B3GNT2 and ST3GAL3). Other isoenzyme families have more members

that are regulated by toggling expression in individual cell types, supplementing the capacity of workhorse

genes. Finally, a minority of genes can be ubiquitously expressed but also are hotspots of regulation,

showing capacity for modulation (as evidenced by higher CLR values), boosting expression in a subset

of cell types (as seen in for example, the sialyltransferases).

Although the initiation steps appear rather ubiquitously available in cells, it is important to note that the

initiation of the GalNAc-type O-glycosylation orchestrated by the large family of the polypeptide

GalNAc-transferases (GALNTs) has members that exemplify each of these patterns of regulation: Five

workhorse enzymes (GALNT1, GALNT2, GALNT7, GALNT10 and GALNT11) are ubiquitously expressed

and are mostly not regulated between cell types in Tabula sapiens (light blue); whereas GALNT3/6/12

are hotspots, often up-regulated in different cell types (over 80 cell types). The remaining 12 GALNTs

are most regulated and expressed in specific cell types (red).

The capacity to perform sialylation is ubiquitous, and all cell types have the capacity to catalyze sialic acid

linkages: a2-3 (mostly provided by ST3GAL1-5), a2-6 Gal (mostly provided by ST6GAL1), a2-6 GalNAc

(mostly provided by ST6GALNAC4), and a2-8 linkages (mostly provided by ST8SIA4). The expression pat-

terns of the ST3GALs are unique with respect to this family, as our understanding of the specificities of

these transferases implies that at least for O-linked (ST3GAL1/2) and glycolipid (ST3GAL3/5) sialylation,

these genes are co-expressed ubiquitously as seemingly redundant pairs. All cell types are predicted to

have capacity for a2-3 sialylation of O-glycans, 27 cell types are predicted to lack a2-3 sialylation capacity

for N-linked glycans, although for 22 cell types this activity could possibly be provided for by ST3GAL3. On

top of a common capacity for sialylation, this capacity may be ‘‘boosted’’ (i.e., the total expression of en-

zymes from within an isoenzyme family increases) through higher expression of the hotspot genes

ST3GAL4/5 in at least approximately 20% of cell types.

Three distinct patterns of glycogene regulation identified

Figure 4 summarizes the predictions for glycosylation deducible from our analysis and presents the key

findings of cell type specific regulation of glycosyltransferases. Three general themes in regulation of

the glycosylation network emerge from our analysis:

1. Ubiquitous glycosylation. Nearly all cell types are predicted to express the glycogenes required to

initiate glycosylation in each of the 17 major strict pathways, and to a large extent are also predicted

to have the capacity to perform core extension in these pathways (Figure 4A). Glycogenes that follow

this pattern of regulation are all at least minimally expressed and pseudo-bulk quantitation values

demonstrate little variability between cell types (low CLR values). Where the capacity is encoded

for by an isoenzyme family, these are all/mostly ubiquitously expressed, leaving little possibility

for binary cell type regulation at the transcriptional level. Where expression is most variable between

cells (e.g., B3GNT5), these specific genes show evidence that they could be often modulated at the

mRNA level between cell types (high CLR values).
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2. Cell type specific glycosylation. A group of glycosylation features are encoded for by genes that are

primarily expressed in a cell type specificmanner (Figure 4B). These features include the blood group

antigens (ABH, Lewis, SE), most non-GAG sulfation (including sulfatide biosynthesis), LacDiNAc and

type1 chain LacNAc extensions, as well as the polymerization steps of matriglycan extension (i.e., the

extension by LARGE1/2). Also cell type regulated are GPI side chains, ganglio and globo-series

glycolipid biosynthesis (Fenderson et al., 1987; Kannagi et al., 1983; Liang et al., 2010), bisecting

A

D

E

B C

Figure 4. Common and unique glycosylation capacities of cell types

(A–C) The three main patterns of hotspots of regulation for the glycosylation network, summarizing data from Figures 3A and S2B. The ubiquitously

expressed workhorse glycogenes label the glycosylation feature synthesised by them.Workhorse genes labels are shown with a background fill matching the

colors used in the heatmap from Figure 3A.

(A) A core glycosylation capacity is common to all cell types, synthesized by glycogenes that are ubiquitously expressed, mostly showing little regulation

between cell types, with the exception of the features labeled by genes in bold, that could be regulated from cell to cell. Not shown are the ubiquitous

pathways for EOGT, Core M1 O-Mannosylation, C-Mannosylation, POGLUT1/2 type and POFUT2 type EGF glycosylation, collagen glycosylation and OGT

nucleocytoplasmic glycosylation.

(B) Celltype specific glycan features that are synthesised by glycogenes that are specifically regulated to cell types.

(C) Glycan features that are encoded for by glycogenes that are members of isoenzyme families, of which one member is ubiquitously expressed, but the

other members demonstrate patterns of cell type specificity. The bar charts show the number of cells that a single member up to all members of the

isoenzyme family is expressed in. The dark portions of the bar charts indicate when at least one of the workhorse genes is expressed, whereas the light gray

portion indicates the number of cells where none of the workhorse genes are expressed.

(D) Estimation of the uniqueness of glycan epitopes that can be encoded on PolyLacNAc chains. The most unique cells (approximately nine cell types for

each) can produce Lea structures without any I-branching present or produce type2 chains without any Lex present at all.

(E) Uniqueness of PolyLacNAc features (I-branching, Lea/x) broken down by cells that can produce specific glycoconjugates. Glycan symbols are drawn

according to the SNFG format (Neelamegham et al., 2019).
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GlcNAc (known to be tissue-specific (Miwa et al., 2012)) and Core3/4 O-GalNAc (Iwai et al., 2005) and

Core M2 O-Man glycans (Sheikh et al., 2017).

3. Glycosylation by members of isoenzyme families that include workhorse glycogenes. Glycosylation

steps directed by families of isoenzymes with partial redundant functions pose challenges in predict-

ing outcomes of their expression. Because the individual specificities of members of the isoenzyme

family often remain obscure, it is hard to predict whether co-expression of members of isoenzyme

families is, for example, a cellular response to an increased workload for this particular type of glyco-

sylation, or whether distinct activities of the isoenzymes are required. The patterns of expression of

glycogenes within this group (Figure 4C) suggest that the latter explanation is favored. Each isoen-

zyme family includes one or more workhorse glycogenes that provide for glycosylation capacity in

nearly all cell types. However, most cell types will typically express between 2-3 members of the

isoenzyme family (although the GALNTs are expressed together typically in groups of 8–9), and

the remaining isoenzymes are typically sporadically expressed in different cell types.

Transcriptional regulation of glycogenes cannot encode for unique epitopes

Glycan recognition by receptors (e.g., antibodies (Temme et al., 2021), selectins (McEver, 2015), lectins

(Bojar et al., 2021), and carbohydrate-binding modules (Lombard et al., 2014)) mediates selective

recognition of cells. The recognized features are generally well-defined with respect to terminal glycan

structures as presented in Figure 4D, whereas it appears that recognition for at least some glycan-bind-

ing proteins involve more complex features (Cohen and Varki, 2014). Nevertheless, we attempted to es-

timate the minimum number of cells that can be addressed by programming glycosylation to present

unique terminal glycan epitopes. Around 20 glycans features show evidence of restricted expression

to specific cell types (Figure 4D). Type1/2 chain biosynthesis and elaboration provide for an opportunity

to synthesise unique epitopes that can be read by molecules such as galectins and selectins. We calcu-

lated the number of cells that have capacity to produce either type1 or type2 chains, Large-I branching

and Lex/a fucosylation, to estimate the number of cells that can produce unique epitopes based on these

features (Figure 4D). The most unique cells are those that can produce Lea without branching, or

branched type2 chains without fucosylation. The least unique cells are those that can produce branched

type2 chains with Lex, followed by Lex without branching. Across glycosylation pathways (Figure 4E), cells

that can produce Core3 glycans demonstrate the most specific programming for LacNAc chain exten-

sion, with the capacity to synthesize branched LacNAc chains and Lea in most cells. Cells that produce

lacto-series glycolipids also demonstrate a slight specificity toward synthesis of Lea and I-branching

together.

Examples of hotspots in the glycosylation network correlated with experimental results

We next delineated hotspots of regulation in different cell types of two organs (large intestine and kidney),

from human and mouse (Figure 5A). Lymphocyte and unknown cell types were filtered from the large intes-

tine and kidney datasets, and cell types from clusters that included fewer than 200 cells were not included,

which reduced the number of cell types available for each organ to those presented in Figure 5. The human

dataset from the large intestine includes enterocytes, goblet cells, Paneth cells, fibroblasts and transit

amplifying cells. The mouse data includes subdivisions for enterocytes, goblet cells and paneth cells.

The kidney cells are annotated as ‘‘epithelial cells’’ from human, and given their expression of LRP2, we

can assume they are functional differentiated proximal tubule cells. Mouse kidney cells include proximal

tubule cells, distal tubule cells and intercalated cells. Mouse kidney cell types also include incorrectly an-

notated ‘‘acinar cells’’ which were annotated with a much lower confidence than the majority of acinar cells

annotated in PanglaoDB. We excluded these cells from the heatmap.

Figure 5. Predicted hotspots of regulation from single cell analyses of multiple organs

(A) Heatmap of the predicted hotspots of regulation on the glycosylation network for cells from human large intestines and kidneys, as well as mouse large

intestine and kidneys. The predicted regulated genes are arranged according to the rainbow figure, into initiation, core extension, elongation and capping

groups. Pathway specificity is indicated by the initiating monosaccharide for the pathway. Heatmap points are colored according to the criteria used to

include the gene as a hotspot: If the gene is ubiquitously expressed, the CLR is used to give a blue of varying saturation (most saturated is the highest

expression), and if the gene is specifically expressed it is colored orange or red if it has been observed expressed in fewer than 66% or 33% of cells

respectively. The CLR for genes scales point size.

(B) Example glycan structures predicted to be synthesized in goblet cells in mouse and human, based on the regulated glycosylation capacity are drawn. The

glycans are labeled with the genes that regulate the feature from the hotspot heatmap. Glycan symbols are drawn according to the SNFG format

(Neelamegham et al., 2019). See also Table S3.
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Extracting the hotspots of regulation from our analysis, we identified a set of 99 genes as hotspots of regu-

lation across all the cell types. The patterns of predicted hotspots of regulation demonstrate organ and

species similarities, e.g., intestinal cell types from human are often regulated more similarly with each

other, than between mouse and human. Among the identified hotspots we were able to correlate several

of these with experimentally determined glycosylation changes. For example, the GALNT11 isoform is

known to be widely expressed in cells and with a remarkably high level of expression in the kidney proximal

tubule epithelial cells (Schwientek et al., 2002), where the specific role of GALNT11 has been described

(Tian et al., 2019; Wang et al., 2018), and although the gene is ubiquitously expressed, it is accordingly

seen with higher expression in kidney proximal tubule epithelial cells (Figure 5A).

An interesting species (mouse-human) difference in O-glycan core structures has been described for

goblet cells, with both common and unique differences in GalNAc-type O-glycosylation capacity between

these cells in different organisms. We investigated these changes in detail using the heatmap (Figure 5A),

illustrating the different and common capacities for glycosylation (Figure 5B).

Initiation/core extension

47 glycogenes involved in pathway specific initiation and immediate extension steps of glycosylation have

been identified as hotspots of regulation. GALNT4/Galnt4 are predicted to be expressed in goblet cells,

and querying the data reveals that MUC1/Muc1 is also expressed in goblet cells. This correlates with the

role of GALNT4 in glycosylating the single threonine glycosite (PDTRmotif) in the tandem repeat sequence

of MUC1, as originally determined by in vitro assays (Hassan et al., 2000) and more recently also shown in

HEK293 cells (Nason et al., 2021). The GalNAc-type O-glycosylation pathways split at the core extension/

branching step between a pathway to synthesize Core1 andCore2 glycans, and the pathway for synthesis of

the Core3/4 glycans. Both species have capacity for synthesis of Core1 and Core2 glycans (C1GALT1/

C1GALT1C1 and GCNT3 respectively in humans), whereas only humans express B3GNT6 in goblet cells,

and so the capacity to produce Core3 and Core4 glycans is not predicted to be present in mouse (Arike

et al., 2017; Thomsson et al., 2012).

Goblet cells in human also demonstrate a boost in expression of LFNG, which appears to be in agreement

with a role of this modification in maintaining intestinal homeostasis (Kadur Lakshminarasimha Murthy

et al., 2018). The high expression of B3GNT5 in humans supports previous reports of lacto-series glycolipid

biosynthesis in the intestine (Holmes et al., 1987; Magalhães et al., 2015). The high expression of the gan-

glio-series transferase B3galt4 is in agreement with mass spectrometry data for mouse intestines (Arike

et al., 2017).

Elongation/capping

Human goblet cells produce primarily type1 LacNAc chains (human specific B3GALT5), whereas mice can

produce repeated LacNAc chains using the default type2 chain pathway (similarly to humans (Holmes et al.,

1987)). Furthermore, these chains are commonly fucosylated by FUT4 between the two organisms, whereas

humans also express FUT6 and FUT3 (the latter of which can synthesize type1 Lewis, or Lea structures).

As suggested by the transcriptomic analysis, Core2 O-GalNAc structures are likely sulfated in mice

(Arike et al., 2017). Mice perform internal a2-6 sialylation on the GlcNAc residue of LacNAc chains

(Thomsson et al., 2012), and ST6GALNAC5/6 have been reported to be able to synthesize disialyl Lea

glycans (Tsuchida et al., 2003). Our analysis supports evidence for low expression of St6galnac6 in goblet

and Paneth cells (data in Table S3), alongside the expression of B3galt5 to synthesize type1 LacNAc chains

(Figure 5A). The expression of ST6GALNAC6 is higher in human goblet cells compared to mice. In contrast

to this, a2-6 sialylation on GalNAc is exclusive to humans, and is likely catalyzed by ST6GALNAC1, whose

expression is supported by the transcriptomics. Despite the predicted expression of ST6GAL2 in goblet

cells, there is little evidence for a2-6 Gal sialylation, as SNA does not bind in colon, even after unmasking

with a deacetylase (Murayama et al., 1997), and other data suggests that ST6GAL2 has very limited

specificity (Krzewinski-Recchi et al., 2003; Takashima et al., 2003).

Beyond the intestinal and kidney data presented in the heatmap, we also uncovered evidence that corrob-

orates a unique expression pattern for B3gnt6 in themouse, where we predict that many neuronal cell types

express this gene (data in Table S3). This was unexpected based on our understanding of the limited

expression of Core3 glycans in mucosa. RNA-seq data from Human Protein atlas and GTeX supported

quantification of B3gnt6 transcripts in the brain. Tabula sapiens included very little human neuronal
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data, but a recent report on glycomics of the human brain reported that Core3 glycans could be detected

(Wilkinson et al., 2021).

The well-characterized HNK1 epitope is primarily regulated by the B3GAT1 enzyme, and has been

described as being primarily expressed in neuronal tissues. The human dataset we are analyzing has few

neuronal cell types included, yet we predicted that a number of cells had the capacity to produce this

epitope. We predict expression of B3GAT1 in a small group of cell types that correlates with experimental

detection of expression of CD57: T-cells (Markey and MacDonald, 1989); photoreceptor cells and Müller

cells (Uusitalo et al., 2003); and epithelial cells from the prostate (Wahab and Wright, 1985) (data in

Table S3).

DISCUSSION

We posit that to accommodate the diverse and distinct glycosylation pathways co-occurring in the ER and

Golgi compartments without detrimental crosstalk and interference, the many glycosyltransferases and

sulfotransferases involved in glycosylation largely autonomously coordinate the ordered assembly of the

glycome using intrinsic sufficient substrate specificities and kinetic properties. Here, we have taken a first

step toward probing the regulation of the glycome at the individual cell level by analyzing single cell

transcriptome data, and although we demonstrate that this is a promising avenue to bypass analytical

roadblocks, we also identify the sensitivity and quality of transcriptomics data as the major challenge for

success. Cells in complex organisms must regulate glycosylation processes with a high degree of precision

to tailor the glycome to fulfill the great variety of known functions assigned (Schjoldager et al., 2020), and

decades of immunohistochemical studies with individual cell resolution (Dabelsteen et al., 1991) and more

recently MALDI-TOF imaging of N-glycans on formalin-fixed paraffin-embedded tissue sections (currently

unable to resolve single cells) (McDowell et al., 2021; Powers et al., 2013), confirm distinct features of the

glycome on individual cells and related populations of cells. Transcriptional and/or translational regulation

of the enzymes directly involved in synthesis is arguably the easiest way to provide for regulation of the

glycome (Huang et al., 2021; Mandel et al., 1990; Paulson and Colley, 1989). Our analyses find that one-third

of the glycosylation genes appear to be under little cell and tissue specific regulation, and these genes are

characterized by encoding enzymes primarily directing basic initiation and core scaffold assembly of

glycans on proteins and lipids (Figure 4). The remaining majority of genes exhibit varying degrees of cell

specific regulation in terms of both on-off and high-low expression in different cell types. Many of these

could be identified as hotspots in regulation of glycosylation, and as examples, we identified 65 and 109

glycogenes as hotspots of regulation in kidney and intestinal cells respectively, from both mouse and

human data. Thus, our study indicates that the part of the core glycosylation machinery that synthesizes

the core of the glycome is ubiquitously present in all cells, whereas structural variations including sites

of O-glycan attachment and terminal modifications are differentially regulated in cells.

Our analysis of single cell transcriptome data provides a first draft of the transcriptional landscape of the

glycosylation genes and predicted glycosylation capacity in cell types. Given limitations in the technology

used to gather this data, we could only sketch the broad outlines of the mRNA regulatory landscape and

identify apparent hotspots of regulation. The two overriding limitations for our analysis were that (1) the

lower levels of expression of glycogenes challenge our ability to quantify expression levels at the single

cell level, and thus identify biologically relevant changes in expression; and (2) pseudo-bulk quantitation

values are representative of the average expression for a cell type corresponding to a cluster of single cells

and as a result is highly sensitive to how clusters of cells are classified. Thus, to fully appreciate the magni-

tude of transcriptional regulation of glycogenes more accurate quantification of mRNA at the lower end is

needed. Nevertheless, we believe that the strategies set out in this study are widely applicable to the

rapidly emerging single-cell transcriptomics data (as recently exemplified in a study of pancreatic ductal

adenocarcinoma (Rodriguez et al., 2022)), and we aim to apply this to single cell data from all human tissues

to reveal the complete diversity in regulation of glycogenes.

Relation between transcriptional regulation of glycogenes, expression of enzyme proteins,

and the glycosylation output

Application of transcriptomics or proteomics provides insights into the expression of the enzymes involved

in glycosylation, and thus the components of themachinery that are available to perform glycosylation. This

information still leaves a need for transformation of enzyme data to the actual produced cellular glycome.

On-off regulation of glycogenes clearly can result in changes in the glycome, a feature that has been
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exploited in the many knockout studies of glycogenes in animal models (Lowe and Marth, 2003; Stanley,

2016) and more recently in cell lines (Narimatsu et al., 2019). Direct evidence for specific regulation of

the glycome by expression of a specific glycosyltransferase is however limited. Investigators have used

in situ hybridization to probe glycogene expression (Ten Hagen et al., 2003; Rausch et al., 2015; Yamamoto

et al., 2004), but direct relationship with expression of the corresponding enzyme and glycan products are

generally unexplored. To our knowledge one of the few examples of direct analysis of enzyme protein and

corresponding glycan product is the co-appearance of the blood group A glycan and the blood group A

glycosyltransferase in cells during epithelial differentiation in stratified squamous epithelia (Mandel et al.,

1990). The stratified squamous epithelium with its well-defined cellular maturation and differentiation

pathway provided some of the earliest evidence for tight regulation of the cellular glycome in stepwise

fashion as cells move upwards toward terminal differentiation (Dabelsteen et al., 1984; Mandel et al.,

1991), and the characteristic loss of blood group A in oral cancer was also accompanied by loss of the

glycosyltransferase (Mandel et al., 1992). However, the latter study also highlighted that expression of

the blood group A glycosyltransferase is necessary, but not sufficient for production of the blood group

A glycan as found in colon tissue, where the absence can be explained presumably by competitive

mechanisms with other glycosyltransferases and lack of substrate. These studies, however, did not include

analysis of the transcriptional regulation of the blood group A gene in the cells. A general void in appro-

priate antibodies to glycosyltransferases has hampered direct correlations of enzyme protein expression

with gene transcript and glycan products at the individual cell level (Steentoft et al., 2019). Furthermore,

few examples of transcriptional regulation of glycosyltransferases in direct response to specific functional

requirements exist, and perhaps the only with direct experimental support is the transcriptional regulation

of GALNT3 in response to phosphate to serve its role in regulating FGF23 and phosphate homeostasis

(Chefetz et al., 2009; Takashi et al., 2019).

The consequences of graded low-high expression of glycogenes on the glycosylation output are unclear.

Whereas it seems logical that an increase in the amount of a glycosyltransferase enzyme in a cell would lead

to an increase in glycosylation efficiency, this may not be the case given the complex and intertwined

pathways of glycan assembly, where multiple enzymes utilize the same substrates, and isoenzymes have

overlapping functions but potentially different subcellular localizations. It is conceivable that most

glycosyltransferases in fact are present at supersaturated levels given that our transcriptional analysis

suggest rather ubiquitous expression levels and, for example, that extremely high levels of expression of

recombinant therapeutic glycoproteins in mammalian cells do not appear to exhaust the cellular glycosyl-

ation capacity (Narimatsu et al., 2021). We previously explored the effect of graded expression of two poly-

peptide GalNAc-transferases (GALNT2 and GALNT11) (Hintze et al., 2018), and interestingly found that

enzyme expression levels did not affect their redundant contributions to theO-glycoproteome presumably

because GalNAc-transferase isoenzymes for these substrates are already supersaturated, whereas

their non-redundant contributions for a few specific protein substrates were tightly regulated by the

enzyme dose. This is likely applicable to all the many glycosylation steps that are regulated by isoenzymes

with partly redundant functions, and installed to enable differential regulation of select features of the

glycome.

Transcriptional and translational regulation of glycosyltransferases

Limited knowledge of mechanisms of transcriptional regulation of most glycogenes is available, although

considerable information has been accumulated for select genes such as B4GALT1, ST6GAL1, and OGT.

Variation in splicing of glycogenes does not appear to be a major factor for glycosylation enzymes, as

functional variants have only been identified and characterized for a few genes. The relatively simple

domain structures of most glycosyltransferases (for GT-A and GT-B, a single domain) means that these

genes are less amenable to regulation of catalytic activity through alternative splicing. However, enzymes

with a multi-domain architecture offer more opportunities for splicing to modulate function. For example,

OGT encodes for three splice isoforms of the enzyme, which differ in the number of N-terminal tetratrico-

peptide repeat motifs (Lazarus et al., 2006). GALNT13 can be alternatively spliced, resulting in changes to

the lectin domain (Festari et al., 2017), although this is not a major factor for most members of the GALNT

family (Bennett et al., 1998). Splice isoforms can also affect themembrane tethering of glycosyltransferases,

for example, an alternative isoform of ST6GAL1 without a stem and transmembrane domain exists

(Dall’Olio, 2004; Dorsett et al., 2021), or B4GALT1 can encode for both a long and short isoform, the former

of which localizes to the cell surface (Lopez et al., 1991). The regulation of glycosyltransferase residency

time occurs via control of retrograde trafficking (Liu et al., 2018; Welch et al., 2021) and Golgi dynamics
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as well as by limited proteolytic processing in the juxtamembrane regions (for type 2 transmembrane GT-A/

B fold enzymes) by e.g., SPPL3 and furin (Shifley and Cole, 2008; Voss et al., 2014). The sialyltransferase

ST6GAL1 is regulated by BACE-1 cleavage producing a secreted ectodomain (Kitazume et al., 2001;Wood-

ard-Grice et al., 2008) that has been proposed to serve important roles in extracellular glycosylation of im-

munoglobulins (Irons et al., 2020). The Drosophila fringe glycosyltransferase regulating O-Fuc O-glycan

extension on Notch is largely secreted but could be retained functionally with a chimeric GALNT2/fringe

design to demonstrate glycosylation function (Brückner et al., 2000). Three human fringes exist, and lunatic

fringe (LNFG) is similarly to the single Drosophila fringe mainly secreted through furin proprotein process-

ing (Shifley and Cole, 2008), and the regulation of this cleavage is essential for vertebrate somitogenesis

(Shifley et al., 2008; Williams et al., 2016). Finally at the individual protein level, local steric constraints on

glycosyltransferases can also affect the final glycosylation found on proteins (Thaysen-Andersen and

Packer, 2012).

Predicting glycosylation capacities and the glycome

Prediction of the glycome so far has largely focused on a few well-studied glycosylation pathways (N-linked

and O-GalNAc type) to build mechanistic models of the pathway based on kinetic models of glycosylation

(Fisher et al., 2019a,2019b; Krambeck and Betenbaugh, 2005), linear model simplifications that improve the

computational tractability of kinetic models (Spahn and Lewis, 2014), or design of capacity based models

that combinatorically predict glycan repertoires based on glycosyltransferase reaction patterns (Huang

et al., 2021; Kawano et al., 2005; McDonald et al., 2016). Approaches to prediction of the glycome that

calculate the glycome output from enzyme kinetics and substrate specificities provide power in their ability

to capture the part of the glycosylation process involving coordination of machinery components, but

modeling the complete glycosylation process in this manner is a formidable challenge, which is amplified

by the dearth of data to support this task. Systems approaches to prediction of the glycome have proven

their utility by recapitulating the coordination of glycosylation through intrinsic properties, and working

around the limitations of the input data (structural data that is influenced by lab-to-lab variation (Ito

et al., 2016), and convoluted measurements of the glycome from heterogeneous cells), but less heteroge-

neous glycomic profiling data is likely required to recapitulate other factors affecting glycosylation in a

computational model. Along these lines, DNA-barcoded lectin methods that link the transcriptome of

single cells to the lectins that bind to the cellular glycome provide a possible direction for collection of

this data (Kearney et al., 2021; Minoshima et al., 2021). We are optimistic that a combination of existing

prediction approaches with machine learning approaches to deconvolute the complexity of factors

regulating the glycosylation machinery could yield facile computational predictions of the glycosylation

outcome.

Software tools for predicting cellular glycosylation and the glycome

Here, we developed and make available an analysis framework that simplifies the process of predicting

glycosylation capacity from RNA-seq data at both bulk and single cell levels. Using the R language, we

have created a software package that can be integrated into other data analyses, that enables the predic-

tion of both baseline glycosylation capacity, as well as prediction of differential glycosylation capacity from

transcriptomic data. The software package takes advantage of calculated IQR ranges from our analyses

and generates a visual representation of the glycosylation capacity given the input data. As we continue

to update our predictor of glycosylation capacity, the software package will be updated. We have also

made a simplified version of the functionality included in the package available on the website https://

glyco.me.

Conclusions and future applications

Our study provides a first attempt to use single cell RNA-seq transcriptomics data to study glycosylation

and the glycome at the individual cell level. Although challenges clearly still exist we demonstrate that

important information can be extracted with the current quality of data, and we present the Glycopacity

software that enables investigators to use the approach more widely. We can use the obtained knowledge

about regulatory hotspots of glycosylation and highly regulated glycogenes to validate and to develop and

focus study designs into biological functions of glycosylation. Targeted proteomics, and when sensitivity

allows single cell proteomics, can provide the next level of insights into the repertoire of glycosylation

enzymes to further support the prediction of cellular glycosylation capacities and glycome outcomes. In

summary, the atlas of glycosylation pathways and Glycopacity software provide tools toward single cell

glycomics.
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Limitations of the study

The patterns and trends that are predicted in this study rely on the quality of the transcriptomic data that

are used. Not all organs are sampled within both the organ-level and single cell datasets used, and not all

cell types are represented. For single cell datasets, the cell types are computationally assigned, and thus

may be erroneously labeled, or lack sufficient resolution to distinguish between cell types. Furthermore, the

sensitivity of RNA-seq technologies to the low level of expression of glycosyltransferases place limitations

on our ability to sensitively quantify glycogene expression levels.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Hiren J Joshi (joshi@sund.ku.dk).

Materials availability

N/A.

Data and code availability

d This paper analyses existing, publicly available data. The accession numbers for the datasets are listed in

the Key resources table.

d All original code (i.e., scripts to produce figures and a R package) has been deposited at Zenodo and is

publicly available as of the date of publication. Accession numbers and DOIs are listed in the Key re-

sources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

Lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

N/A.

METHOD DETAILS

Organ-level dataset description

We retrieved two independent bulk transcriptomic count datasets produced by the GTEx and TCGA

consortiums, and hosted by the recount2 repository (Collado-Torres et al., 2017; GTEx Consortium,

2013). We selected all GTEx (all healthy), and the solid tissue normal samples (i.e., healthy) samples from

TCGA for use in our analyses. Downloaded count data was first normalized to remove batch and sample

biases using the trimmed mean of M values (TMM) method, available as part of the EdgeR software pack-

age (Robinson et al., 2010). Next, we used the same software library to calculate the counts per million

(CPM) value, which is then log-transformed.

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Glyco.me website This paper https://glyco.me

RGlycopacity R package This paper https://github.com/CopenhagenCenterForGlycomics/

Rglycopacity

https://doi.org/10.5281/zenodo.5793266

R scripts for analysis This paper https://github.com/CopenhagenCenterForGlycomics/

Dworkin2022_iScience_figures

https://doi.org/10.5281/zenodo.6481636

Panglao DB

(mouse chromium 10x)

https://doi.org/10.1093/

database/baz046

https://panglaodb.se/bulk.html

Tabula Sapiens V3.0 https://doi.org/10.6084/

m9.figshare.14267219.v3

https://figshare.com/articles/dataset/Tabula_Sapiens_

release_1_0/14267219/3; RRID:SCR_004328

scTransform datasets This paper Table S4

HEK293 mixture data https://doi.org/10.1038/

s41587-020-0534-z

https://singlecell.broadinstitute.org/single_cell/study/SCP426/

single-cell-comparison-mixture-data; RRID:SCR_007073
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Since CPM values represent mRNA quantification as a proportion of the total reads mapped, and

sequencing depth could vary between datasets, we decided to normalize the CPM values to a panel of

housekeeping genes (shown in Figure S6), which makes the quantification of transcripts more robust to

variation in sequencing depths. We surveyed candidate housekeeping genes by calculating benchmark

correlation data between GTEx and TCGA CPMs for glycogenes from breast, lung, and prostate samples,

rotating through the panel of candidate housekeeping genes. As all housekeeping genes performed simi-

larly on the benchmark (Pearson correlation 0.86–0.89), we decided to make our normalization method

robust to the absence of subsets of housekeeping genes, calculating the geometric mean of expression

for all detectable housekeeping genes (CPM >0) in a sample, and then normalizing glycogene expression

to this. We evaluated this normalization method using our benchmark, observing excellent performance

(Pearson correlation 0.88, two-tailed t-test, p = 2.85E-180, n = 587, Figure S6).

Single cell dataset description

The choice of single cell dataset was important when performing the analysis of single cell data. The criteria

we used to determine which dataset to use were: a) That datasets are uniformly processed and annotated,

b) Datasets include tissue and organ diversity so that we can sample as much diversity in glycogene expres-

sion variation as possible. The Tabula Sapiens repository of datasets is a high-quality dataset with cell types

that have been bothmanually annotated by experts and automatically annotated by the PopularVote anno-

tation pipeline (Consortium, 2022). PanglaoDB (Franzén et al., 2019) is an online repository of human and

mouse single cell datasets originating from publicly available NCBI sequence read archives (SRA) that have

been uniformly processed by the alona (Franzén and Björkegren, 2020) pipeline. Metadata associated with

each dataset that was pertinent to our analyses include the organism, tissue, per-cell cell type annotation,

barcode and t-SNE cluster number. The bulk of the data is in the form of an n cell barcode xm unique mo-

lecular identifier (umi) raw count matrix. Only Chromium10x datasets were used in PanglaoDB analyses,

whereas both Chromium10x and Smartseq2 datasets were used in Tabula Sapiens analyses.

Validation that pseudo-bulk calculation does not introduce biases

As an additional check to ensure that normalization and pseudo-bulk quantitation calculations performed

on the single cell data did not introduce any biases, we performed a separate estimation of count values

using count data from PanglaoDB, Human Cell Atlas, EBI expression atlas, and 10x genomics (Franzén

et al., 2019; Papatheodorou et al., 2020; Regev et al., 2017) (Data sources listed in Table S4). A variance

stabilizing transformation with default parameters was performed on each raw count matrix using the vst

function of the scTransform package version 0.3.2 (Hafemeister and Satija, 2019). Multiple organ systems

and cell types are represented by selected datasets, providing a good overlap with the set of annotated

systems present across clusters.

We did not integrate clusters of single cells from different experiments for this analysis, so different clusters

may represent the same cell types from different tissue samples. We believe these duplicates will not

materially affect the conclusions of this analysis, and further analyses could make use of recent algorithmic

advances to solve this problem (Stuart et al., 2019). The labeling of cell type within the PanglaoDB pipeline

cannot ensure accuracy of labels, so 2822 mouse clusters lack cell type annotation, and the cell type

annotation may be incorrect in specific cases. We have limited the risks of incorrect annotation within

our analysis by first dropping data where cell type annotation is missing, and then only relying on specific

cell type annotation for intestinal and kidney cells in mice (Figure 5).

Single cell data preparation

Raw count data from both Tabula Sapiens and PanglaoDB were prepared for analysis. The Tabula Sapiens

data required no filtering because of sufficient pre-processing. PanglaoDB raw count matrices were filtered

to include only those clusters annotated with a defined cell type (i.e., no ‘‘unknown’’ cluster cell type anno-

tations). Then using Scanpy version 1.7 (Wolf et al., 2018), the library associated with each cell barcode was

normalized so that the total counts for each cell is the same (set to 10,000 counts as per the defaults for

normalize_total). Finally values were log1p transformed using the Scanpy log1p function. To stabilize

values and remove outliers for each library, non-zero umi counts outside of the 10–90th percentile range

of all detectable counts in the library were masked by setting to a null value.
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Calculation of pseudo-bulk quantitation for a cluster of cells

To group single cells together into a cluster, we made use of the supplied cluster annotations from our

source datasets. We then treated this cluster of cells as a pseudo-bulk, calculating the trimmed mean of

the umi counts for each gene with detectable transcripts in the cluster (dropping non-zero counts outside

of the 10–90th percentile range of values for the gene in the cluster).

Cluster filtering criteria

The individual clusters of cells that were used for further analysis were selected by applying a quality control

filter to the complete set. Each cluster must have a tissue/organ and cell type annotation other than ‘un-

known’, such that we could consider each cluster as representative of a unique cell identity (i.e., a cell

type). Furthermore, we required that each cluster was made up of at least 200 cells, which we estimated

as the minimum number of cells to reliably estimate glycogene expression. To our knowledge, the

N-linked glycosylation pathway is active in all mammalian cells, and so we ensured that a set of genes

responsible for biosynthesis of the N-linked precursor (DPAGT1, ALG2, ALG13 or ALG14) were expressed

above a minimal cut-off (see below for cut-off calculation). A total of 229 human and 2317 mouse clusters

successfully passed these filters.

Normalization on housekeeping genes

As with the organ-level data, we needed to normalize the transcript quantitation for each pseudo-bulk that

was collected with potentially different sequencing depth. Using the same selection of housekeeping

genes as used for the organ level normalization, we normalized the pseudo-bulk quantitation values to

the average pseudo-bulk quantitation for the 21 housekeeping genes (Figure S6), both of which were

log-transformed so that they were comparable to the organ-level log-transformed CPMs.

Centered log ratio transform

We additionally introduced the use of the centered log ratio (CLR) transformation to the pseudo-bulk

quantitation values as a method to determine which glycogenes were highly expressed in individual cell

types without reference to the IQRs as calculated by bulk data. We calculated the CLR directly on the

pseudo-bulk quantitation values after trimmed mean calculation and filtering, using the clr method of

the compositions package (van den Boogaart and Tolosana-Delgado, 2008).

Calculation for cut-off and thresholds for single cell data

As we could not use a simple 1 CPM cut-off as per the organ level RNA-seq data, we developed a math-

ematical model to estimate the minimal pseudo-bulk quantitation that should be observed for a glycogene

for it to be considered as expressed. We based our model on analysis of a dataset of paired bulk RNA-seq

and single cell RNA-seq from human HEK293 cell lines (Ding et al., 2020). We modeled the relationship be-

tween the transcript quantitation in the bulk data and the single cell data. Our model relates the TPM values

from bulk RNA-seq to the calculated pseudo-bulk quantitations as calculated from the single cell data, for

varying cluster sizes (which we simulated by sampling clusters from the full HEK293 single cell dataset)

(Figure S4A). Correlations were the highest when using the most number of cells in a simulated cluster

(Spearmans correlation coefficient, rs = 0.898, one-tailed t-test, p = 2.2E-16, n = 34187), and the patterns

were similar when examining glycogenes only (Figure S4B). Using our model, we can read the pseudo-

bulk quantitation cut-off, and the variation in this value (i.e., cluster size dependent SD) from the intersec-

tion with a one TPM cut-off. Given a single pseudo-bulk quantitation value and number of cells in the cluster

that comprise the pseudo-bulk, we can test whether this value passes the cut-off, using a two-sided one

sample t-test on the pseudo-bulk quantitation cut-off and cluster size appropriate SD.

The model was built using a series of seven linear regression models, for different simulated cluster sizes

(n = 50, 100, 200, 400, 600, 800, 1000). The linear regressions modeled the relationships between the

average pseudo-bulk quantitation values for �200 glycogenes in 100 clusters formed by sampling all cells,

and their corresponding TPM values. For all seven models, the cut-off at one TPM was invariant to cluster

size, so we used the average cut-off as calculated by all models for this analysis (0.0054). The variance of the

cut-offs are sensitive to cluster size, so we calculated the variance in pseudo-bulk quantitation values for

224 glycogenes in 100 sampled clusters, and fit a curve to describe the relationship between cluster size

and pseudo-bulk quantitation variation at one TPM (Figure S4C).
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QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical details of experiments, including the statistical tests used, exact value of n, and what n rep-

resents can be found in results, methods and supplementary figure legends. Significance was defined as

p less than or equal to 0.05.

ADDITIONAL RESOURCES

R package glycopacity

The Glycopacity R package enables prediction of baseline glycosylation capacity and comparison of differ-

ential glycosylation capacity from transcriptomic data. Using the methods with a set of glycogenes and

their corresponding pseudo-bulk quantitation values, the baseline glycosylation capacity of each cluster

can be predicted using the previously established cut-off and threshold model. Baseline and differential

glycosylation capacity can be visualized on the rainbow depiction as overlay heatmaps to aid in compre-

hension of predicted features.

Methods for comparing differential glycosylation capacities are generalizable across quantitation method-

ologies, allowing for interchangeable comparison of user-supplied single cell and bulk datasets with

precomputed and normalized quantiles from the GTEx, TCGA, Tabula Sapiens, and PanglaoDB datasets

used in this study.

The package is available for download (URLs in the Key resources table) or via the main website at https://

glyco.me.

Glyco.me website

We have implemented the Glycopacity algorithm at our in silico glycomics analysis portal at https://glyco.

me.
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