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ABSTRACT Quantitative understanding and prediction of microbial community dy-
namics are an outstanding challenge. We test the hypothesis that metabolic mecha-
nisms provide a foundation for accurate prediction of dynamics in microbial systems.
In our research, metabolic models have been able to accurately predict species in-
teractions, evolutionary trajectories, and response to perturbation in simple synthetic
consortia. However, metabolic models have many constraints and often serve best
as null models to identify additional processes at play. We anticipate that major ad-
vances in metabolic systems biology will involve scaling bottom-up approaches to
complex communities and expanding the processes that are incorporated in a meta-
bolic perspective. Ultimately, cellular metabolism will inform predictive ecology that
enables precision management of microbial systems.
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Precise prediction and management of microbial community dynamics are a goal of
personalized medicine, industrial biotechnology, and environmental management.

A fundamental aspect of this challenge is understanding how community composition
and function emerge from lower-level information like species’ metabolism. Metabo-
lism determines the nutrients that a cell needs to survive and reproduce as well as the
compounds that a cell excretes into its environment. This basic information leads to the
hypothesis that an understanding of metabolism and the nutrient environment can
allow for prediction of bacterial phenotypes, species interactions, and emergent com-
munity properties. Since modern genomics and systems biology have provided us with
the ability to predict species’ metabolisms from sequence data, we can now rigorously
test this hypothesis. In this Perspective, we will use examples from our research to
argue that understanding species’ metabolism does in fact allow us to accurately
predict microbial interactions, evolution, and community dynamics. However, we will
also discuss important exceptions, where metabolic predictions failed. We’ll conclude
by discussing what future research we think should be prioritized to reduce the
limitations currently faced by metabolic systems biology.

We use several tools to quantitatively predict, and rigorously test, how microbial
community dynamics emerge from intracellular metabolism. Primarily, we use dynamic
genome-scale metabolic modeling to predict optimal microbial physiology from cells’
intracellular metabolic networks and the resources available in the environment (1, 2).
This method quantitatively predicts the multispecies ecosystem dynamics which
emerge from cells’ underlying metabolic capabilities by iterating through optimization
of strain-specific models and updating the environment through time (1). We fre-
quently supplement these genome-scale models with simpler Monod models (e.g.,
reference 3) to investigate general principles about how metabolites structure micro-
bial systems, as well as to include nonmetabolic phenomena. We focus our predictions

Citation Chacón JM, Harcombe WR. 2019. The
power of metabolism for predicting microbial
community dynamics. mSystems 4:e00146-19.
https://doi.org/10.1128/mSystems.00146-19.

Copyright © 2019 Chacón and Harcombe.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
4.0 International license.

Address correspondence to William R.
Harcombe, harcombe@umn.edu.

Conflict of Interest Disclosures: J.M.C. has
nothing to disclose. W.R.H. reports grant
GM121498-01A1 from the National Institute of
General Medical Sciences, NIH, during the
conduct of the study.

mSystems® vol. 4, no. 3, is a special issue
sponsored by Illumina.

Microbial metabolism is a powerful
foundation from which to predict emergent
properties and dynamics in microbial
communities.

Received 25 February 2019
Accepted 24 April 2019
Published

PERSPECTIVE
Ecological and Evolutionary Science

May/June 2019 Volume 4 Issue 3 e00146-19 msystems.asm.org 1

11 June 2019

https://orcid.org/0000-0001-8445-2052
https://doi.org/10.1128/mSystems.00146-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:harcombe@umn.edu
https://msystems.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/mSystems.00146-19&domain=pdf&date_stamp=2019-06-11


on systems comprised of some combination of the model organisms Escherichia coli,
Salmonella enterica, and Methylobacterium extorquens. We engineered a strain of each
species so that we can toggle interactions from obligate cross-feeding mutualism to
competition simply by changing the nutrients provided. Furthermore, we have curated
genome-scale metabolic models of each strain, which reduces the chance that meta-
bolic predictions will fail due to annotation errors.

We have found that metabolism is sufficient to predict species interactions and
equilibrium community composition in different nutrient environments. Genome-scale
metabolic modeling was able to predict a priori the environment-specific interdepen-
dency of our 3-species mutualism, as well as the species ratios to which the community
converged (1). Metabolic modeling was also instrumental in understanding how
changes in available nutrients impact interactions and maintenance of diversity in
cross-feeding systems. Models highlighted that as dependency on other species de-
creased, community stability depended on growth rates and which nutrients became
limiting (3). Metabolism also drives the impact that spatial location has on bacterial
interactions. For example, we were able to show that the rate of nutrient uptake
strongly influences the scale over which colonies interact (4). The degree to which a
colony competed only with neighbors increased predictably with increasing nutrient
uptake rates and decreasing nutrient diffusion. The success of these simple explorations
is promising for our ability to predict community dynamics. However, failures have also
been informative. Quantitative divergence in the expected scale of competition al-
lowed us to identify autoinhibition by toxic waste products (4). Incorporation of this
unexpected self-poisoning as a modifier of growth metabolism was critical for under-
standing dynamics in the system. Toxicity as a modifier of metabolism is likely to be a
common theme in microbial communities (5).

Beyond ecology, a metabolic approach has allowed us to make successful predic-
tions about the evolutionary trajectory of metabolically interdependent species. Game
theory and other approaches provide powerful theory for predicting the evolution of
social interactions (6). However, this theory tends to provide qualitative predictions that
rely on assumed costs and benefits. By incorporating metabolism, it is possible to
quantify fitness effects based on stoichiometric tradeoffs and to predict the mechanistic
basis of adaptation. For example, metabolic mechanisms were useful for understanding
how adding an exploiter impacted selection for cooperation in a bipartite mutualism
(7). Metabolic modeling predicted that addition of the exploiter in a structured envi-
ronment would increase selection for cooperation, by increasing the variance in
nutrient concentrations. Social evolutionary theory predicted the opposite: that adding
an exploiter would make cooperation an unfit strategy. The metabolic models ulti-
mately proved more accurate and helped us understand the mechanisms underlying
experimentally observed evolution. Dynamic, genome-scale metabolic modeling has
also proven capable of predicting the genetic basis of adaptation. We computationally
predicted the knockouts that would have the greatest impact on species’ fitness in a
mutualism (8) and then subsequently observed that one of the most consequential
knockouts repeatedly evolved in long-term experiments (9). As an important caveat,
the observed mutation was one of several solutions predicted to be equally optimal.
The fact that we repeatedly observed the same solution versus a mixture of equally
optimal solutions suggests that some important biological constraints such as gene
regulation were missing from the model.

Metabolism has also proven to be surprisingly useful for predicting how commu-
nities will respond to nonmetabolic perturbations. A metabolic approach predicts that
different types of metabolic interactions should generate different types of response to
a given perturbation. If species are engaged in nutrient competition, then inhibition of
a single species tends to increase the abundance of competitors, altering species ratios
but having little impact on total biomass (8). In contrast, metabolic interdependencies
tend to constrain species ratios such that inhibition of any species reduces the
abundance of all interdependent members of the community. In one experiment, we
challenged our three-species synthetic community with antibiotics in environments
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that either caused competition or required interdependency (10). When the species
were competing for metabolites, ecosystem productivity was not greatly affected until
the antibiotic concentration was high enough to kill all species. When the species were
metabolically interdependent, however, the growth of all species was limited by the
most drug-sensitive member (the “weakest link”). This growth limitation also occurred
when we challenged an E. coli/S. enterica interdependency with an S. enterica bacte-
riophage. However, initial metabolic predictions were not supported when we used a
phage that killed E. coli. Instead, we saw an increase in abundance of metabolically
dependent S. enterica (11). A closer examination revealed a metabolic explanation:
phage lysis released nutrients in the environment which the metabolic partner could
then scavenge, reminiscent of the “viral shunt” which cycles nutrients in marine food
webs (12). We did not predict this impact of phage a priori, though modifying our
models to include the released nutrients allowed for the experimental results to be
qualitatively recapitulated with a metabolic approach. On the one hand, the iteration
between model and experiment has proven to be a valuable tool for reconciling
deviations from metabolic theory with the underlying metabolic framework. On the
other hand, such iteration is intensive and will assuredly be harder as we move to more
complex communities.

Our work has found a metabolic perspective to be a successful predictor of some,
but not all, dynamics in small, well-defined consortia. Importantly, even when predic-
tions were incorrect they served as a useful null model that helped us to identify
processes that could be incorporated to explain observed community dynamics. It
should be noted, however, that the power to make useful predictions in our system is
strongly influenced by using well-curated models in environments with defined nutri-
ents. Looking forward, we envision two essential tasks. First, we need to improve
methods for using bottom-up approaches for predicting dynamics in complex com-
munities. In part, this will involve improving the accuracy, and therefore predictive
power, of metabolic models for uncharacterized species, for example, through better
methods to gap-fill and predict biomass composition (13). Additionally, we are likely to
need hybrid approaches that allow metabolic prediction in the context of uncertain
environments. Incorporation of phenomenological information, for example, by mea-
suring net ecological interactions (14), may be required when detailed metabolic
information is unavailable. A second major task will be to continue to enlarge our vision
of metabolism. We predict that transformative research will come from developing a
mechanistic understanding of how extrametabolic processes influence metabolism. We
have found that incorporating nonmetabolic phenomena (e.g., phage and toxicity) in
terms of their metabolic effects paved the way to accurate predictions. Optimistically,
continued research may find that nonmetabolic phenomena can be boxed into a few
categories of metabolic effects, perhaps such as those which alter the metabolic rates
and capabilities of cells (e.g., regulation, toxins, temperature, and pH) and those whose
effects alter the nutrient environments (e.g., lytic phage and hosts). Work has begun in
this direction, but there is still much to be done (15). A central goal should be to
determine major categories of metabolic modifiers, predict the information computa-
tionally, and test these predictions in controlled and more complex communities. In this
vision, the metabolic requirements, abilities, and by-products of species are the essen-
tial heart of predictive ecology, with all other phenomena acting as modifiers.
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