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PUMA facilitates EMI1-promoted cytoplasmic Rad51
ubiquitination and inhibits DNA repair in stem and progenitor
cells
Jin Wook Kang1, Zhiyan Zhan2, Guangzhen Ji1, Youzhou Sang 3, Daohong Zhou4, Yanxin Li2, Haizhong Feng 3 and Tao Cheng 1

Maintenance of genetic stability via proper DNA repair in stem and progenitor cells is essential for the tissue repair and
regeneration, while preventing cell transformation after damage. Loss of PUMA dramatically increases the survival of mice after
exposure to a lethal dose of ionizing radiation (IR), while without promoting tumorigenesis in the long-term survivors. This finding
suggests that PUMA (p53 upregulated modulator of apoptosis) may have a function other than regulates apoptosis. Here, we
identify a novel role of PUMA in regulation of DNA repair in embryonic or induced pluripotent stem cells (PSCs) and immortalized
hematopoietic progenitor cells (HPCs) after IR. We found that PUMA-deficient PSCs and HPCs exhibited a significant higher double-
strand break (DSB) DNA repair activity via Rad51-mediated homologous recombination (HR). This is because PUMA can be
associated with early mitotic inhibitor 1 (EMI1) and Rad51 in the cytoplasm to facilitate EMI1-mediated cytoplasmic Rad51
ubiquitination and degradation, thereby inhibiting Rad51 nuclear translocation and HR DNA repair. Our data demonstrate that
PUMA acts as a repressor for DSB DNA repair and thus offers a new rationale for therapeutic targeting of PUMA in regenerative cells
in the context of DNA damage.
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INTRODUCTION
Stem cells are undifferentiated cells with the potential of self-
renewal and differentiation into various kinds of cell types during
the development and lifetime. Progenitor cells are intermediate
proliferative cells that can further mature into functional cells in a
specific lineage(s). Because stem and progenitor cells are
responsible for the tissue regeneration under homeostatic
conditions and after injury, respectively, any mis-repaired DNA
damage in these cells can be transmitted to their differentiated
progeny, thus compromising tissue integrity and function.1

Therefore, a proper DNA repair capacity is required for stem or
progenitor cells to maintain the genomic stability.2 However, if
these cells have enhanced ability to use error-prone DNA repair
mechanism to repair DNA damage, it can lead to genetic
instability to facilitate the formation of tumor-initiating cells or
tumor stem cells.3

PUMA (p53 upregulated modulator of apoptosis) is a direct p53
target gene that encodes a BH3-only proapoptotic protein.4–6 It
has been reported that lymphoid cells,7 myeloid hematopoietic
progenitor cells (HPCs),8 and intestinal progenitor cells9 are
resistant to ionizing radiation (IR) in the absence of PUMA.
Moreover, inactivation of PUMA provides significant radioprotec-
tion at the level of hematopoietic stem cells,10 thereby conferring
striking long-term survival of the exposed mice after lethal dose of

IR. Interestingly and puzzlingly, no increase of hematopoietic
malignancies was observed in the long-term survived animals
after exposure to a high-dose of IR.10 These striking and unique
phenotypes cannot be explained by the reduced apoptosis in the
stem and progenitor cell compartments in the absence of PUMA.
We hypothesize that, the no increased malignancy may be at least
in part attributable to an enhanced DNA repair in the PUMA-
deficient cells. This study was designed to test this hypothesis.
In the present study, we show that PUMA knockout (KO)

pluripotent stem cells (PSCs) and HPCs underwent enhanced
double-strand break (DSB) repair via homologous recombination
(HR) and nonhomologous end joining (NHEJ) after exposure to IR.
PUMA KO cells preferentially used HR repair because they express
higher levels of nuclear Rad51. We show that ectopic expression of
PUMA reduces Rad51 expression and enhances Rad51 ubiquitina-
tion and degradation, whereas depletion of PUMA results in a high
level of Rad51 in association with a reduction in Rad51
ubiquitination. Moreover, PUMA-mediating Rad51 ubiquitination
was dependent on EMI1 (early mitotic inhibitor 1; also known as
FBXO5 and FBX5), an F-box protein,11 which has been shown to be
involved in the regulation of Rad51 ubiquitination and HR DNA
repair in breast cancer.12 We found that PUMA formed a ternary
complex with Rad51 and EMI1 in the cytoplasm, and facilitated
Rad51 ubiquitination by EMI1 in PSCs and HPCs. Taken together,
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our results demonstrate that PUMA can repress Rad51-mediated
HR repair via promoting its ubiquitination by EMI1. Therefore,
targeted inhibition of PUMA has dual beneficial effects against IR,
i.e., protecting the cells from IR-induced apoptosis and maintain-
ing genomic instability.

RESULTS
PUMA deficiency increases DNA repair in both PSCs and HPCs
following IR
γH2AX foci have been widely used as a sensitive indicator for DNA
DSB.13 We used immunofluorescence staining to quantify γH2AX
foci-positive cells in response to IR. The number of γH2AX foci-
positive cells in unirradiated PUMA WT and KO PSCs and HPCs was

low, but increased immediately after 2 Gy IR (Fig. 1a, b). At 2 and
8 h post-IR, the percentage of γH2AX foci-positive cells signifi-
cantly decreased in PUMA KO PSCs compared to that in WT PSCs
(Fig. 1a, b). Flow cytometry analysis also showed that the percent
of γH2AX-positive cells in PUMA KO PSCs following IR were lower
than that in WT PSCs (Supplementary Fig. 1a, b). The persistence
of γH2AX foci in WT cells after IR indicates that some of the
damage remains unrepaired.14 Alkaline comet assay was per-
formed and the results from this assay confirmed the finding with
γH2AX foci assay (Fig. 1c, d). To rule out the compounding effect
of less apoptosis in the absence of PUMA, we also quantified
Annexin V-positive apoptotic cells at 8 h post-IR (2 Gy) and found
that the number of apoptotic cells in WT PSCs were comparable to
those in PUMA KO PSCs (Supplementary Fig. 1c, d). These results
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Fig. 1 Knockout of PUMA enhances IR-induced DNA repair in PSCs and HPCs. a Representative images of γH2AX foci in PUMA wild type (WT)
and KO PSCs and HPCs after IR. Scale bars, 10 μm. PSCs and HPCs were treated with 2 Gy IR and then fixed at 0, 2, 8, or 24 h for γH2AX staining.
b Quantification of γH2AX foci in a. The percentage of positive cells (≥10 γH2AX foci) is shown. c Representative images of comet tails in PUMA
WT and KO PSCs or HPCs at indicated time points after treated with 2 Gy of IR. Scale bars, 250 μm. d Quantification of comet tail intensity in c.
e, f Quantification of HR (e) or NHEJ (f)-positive cells in PUMA WT and KO PSCs or HPCs. At 48 h after I-SceI transfection, PUMA WT or KO PSC
and HPC cells with stable expression of a pDR-GFP or pEJ5-GFP reporter were treated with 2 Gy IR and then harvested at 8 h for analysis, using
flow cytometry to examine recombination induced by I-SceI digestion. Dead cells were excluded by PI staining. Data are representative of
three independent experiments with similar results. Error bars, SD. *P < 0.05, **P < 0.01
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demonstrate that PUMA inhibits IR-induced DNA repair in PSCs
and HPCs.
Two major pathways involved in the repair of DSBs in eukaryotic

cells are HR and NHEJ. Accumulating evidence suggests that HR
and NHEJ cooperate and compete with each other at DSB sites to
facilitate efficient repair and promote genomic integrity.15 To
investigate the mechanisms by which PUMA KO enhances DSB
repair in PSCs and HPCs, we generated PUMAWT and KO PSCs and
HPCs stably expressing HR reporter DR-GFP or NHEJ reporter EJ5-
GFP, and then performed HR and NHEJ analysis. As shown in Fig.
1e, the percentages of HR-repaired cells in PUMA KO PSCs
significantly increased compared to that in WT PSCs. A similar

result for NHEJ repair was found in PUMA WT and KO HPC (Fig. 1f).
These data demonstrate that PUMA mediates DSB repair via both
HR and NHEJ in stem cells.

PUMA-deficient PSCs and HPCs express elevated Rad51 compared
to PUMA WT
To elucidate the molecular mechanism by which PUMA deficiency
promotes DSB repair, we investigated the effects of PUMA KO on
the expression of the important proteins involved in HR and
NHEJ.16 As shown in Fig. 2a, unirradiated PUMA WT and KO PSCs
expressed a low level of the HR proteins Rad51, BRCA1 (breast
cancer type 1), MRE11 (DSB repair nuclease), and RPA1 (replication
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Fig. 2 Knockout of PUMA elevates Rad51 in PSCs or HPCs. a Immunoblotting (IB) of Rad51, 53BP1, and PUMA expression in PUMA WT and KO
PSCs or HPCs after IR. PSCs and HPCs were treated with 2 Gy IR, and then collected at 0 or 8 h post-IR for IB analysis. Actin was used as a
control. b Quantification of positive cells with Rad51 foci in PUMAWT and KO PSCs at indicated time points after IR. c Representative images of
Rad51 foci in PUMAWT and KO PSCs after IR. Scale bars, 10 μm. d Effects of PUMA re-expression on expression of Rad51 and 53BP1 in PUMA KO
PSCs after IR. Lentivirus-mediated PUMA was infected into PUMA KO PSCs, and then selected the clones of transfected cells expressing a
similar level of PUMA as that PUMA WT cells. e Effect of re-expression of PUMA on HR repair in PUMA KO PSCs. f IB of expression of Rad51 and
53BP1 in PSCs or HPCs with a Rad51 shRNA. g Effect of Rad51 knockdown on PUMA-mediated HR repair. Data are representative of three
independent experiments with similar results. Error bars, SD. *P < 0.05, **P < 0.01, ***P < 0.001
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protein A1), the NHEJ protein 53BP1, p53, and p21. Their
expression was elevated after IR (Fig. 2a). However, compared
with WT PSCs, PUMA KO PSCs expressed a significantly higher
protein level of Rad51 and p21, whereas the levels of other
proteins in these cells were similar between the two types of cells
(Fig. 2a). Rad51 plays a central role in HR repair17,18, and p21 is a
major target of p53 activity and has been reported to be
associated with DNA repair via NHEJ.19,20 Thus, PUMA may
regulate HR and NHEJ repair via Rad51 and p21, respectively.
Next, we measured mRNA expression for these DNA damage

repair proteins and found no significant changes in their
expression in PUMA WT and KO PSCs after IR, except p21 mRNA,
which was elevated in PUMA KO cells after IR (Supplementary Fig.
2a). We further determined the effects of PUMA KO on the mRNA
expression of ATR (serine/threonine kinase), ATM (ataxia telan-
giectasia mutated), and another NHEJ gene XRCC4 (X-ray repair
cross complementing 4)16 and found that the expression of
XRCC4, but not ATM or ATR was elevated in PUMA KO PSCs after IR
(Supplementary Fig. 2a). Since XRCC4 is a key regulator for NHEJ
repair,21 this data further supports that PUMA regulates NHEJ
repair. We then performed immunofluorescence staining to
quantify Rad51 and 53BP1 foci-positive cells in response to IR.
Consistent with the results in Rad51 protein levels in Fig. 2a, PUMA
KO significantly increased the formation of Rad51 foci compared
with the WT in PSCs (Fig. 2b, c). Although 53BP1 mRNA expression
was not induced in PUMA KO PSCs by IR, PUMA KO significantly
increased the formation of 53BP1 foci in PUMA KO PSCs compared
to that in the WT PSCs (Supplementary Fig. 2b, c), suggesting that
PUMA may inhibit NHEJ repair.
Given that Rad51 is a critical regulator for HR repair and the

mechanism by which PUMA regulates Rad51 protein levels is still
unknown, we next investigated the mechanism by which PUMA
regulates Rad51 protein expression and HR DSB repair. First, we
transfected PUMA KO PSCs with PUMA and selected the clones of
transfected cells expressing a similar level of PUMA as that PUMA
WT cells. Compared to the empty vector (EV) control, re-
expression of PUMA inhibited IR-induced Rad51 upregulation,
but not 53BP1 expression (Fig. 2d), and suppressed PUMA KO-
induced HR (Fig. 2e) and NHEJ (Supplementary Fig. 3a) repair to a
level similar to that seen in PUMA WT PSCs. We also constructed a
doxycycline-inducible PUMA system, and found that inducible
expression of PUMA suppressed IR-induced HR and NHEJ repair in
PSCs and somatic HEK293T cells (Supplementary Fig. 3b, c),
suggesting that PUMA overexpression suppresses DSB repair. We
then knocked down Rad51 using a shRNA and found no
significant difference in cell proliferation between PUMA WT and
KO cells, with or without the transfection of Rad51 shRNA at 8 h
post-IR (Supplementary Fig. 3d). Knockdown (KD) of Rad51 did not
impair 53BP1 protein expression (Fig. 2f), but inhibited HR repair in
WT PSCs and HPSCs after IR (Fig. 2g). Moreover, Rad51 KD
attenuated PUMA KO-enhanced HR repair (Fig. 2g). Taken
together, these results demonstrate that PUMA deficiency can
promote IR-induced DSB repair via Rad51-mediated HR pathway
in PSCs and HPSCs.

PUMA binds to cytoplasmic Rad51 and regulates its ubiquitination
and degradation
Based on the aforementioned results that PUMA regulates the
expression of Rad51 at the posttranscriptional level, we postulated
that PUMA may modulate Rad51 ubiquitination and degradation.
To test this possibility, we firstly determined if PUMA binds to
Rad51. As shown in Fig. 3a, immunoprecipitation (IP) analyses
showed that PUMA is associated with Rad51 in PUMA WT, but not
KO PSCs and HPSCs after IR.
Next, PUMA WT and KO PSCs were transfected with His-tagged

ubiquitin (His-Ub) and then exposed to IR or not. As shown in Fig.
3b, Rad51 was weakly ubiquitinated without IR. However, after IR,
ubiquitinated Rad51 was markedly increased. Compared with the

PUMA WT cells, KO cells showed no change in Rad51 ubiquitina-
tion at the basal level, whereas Rad51 ubiquitination in PUMA KO
cells was significantly reduced after IR (Fig. 3b). To further confirm
our finding, we transfected PUMA KO cells with WT PUMA along
with different amount of His-Ub and found that the ectopic
expression of PUMA in the cells promoted Rad51 ubiquitination
after IR (Fig. 3c), which became more visible after the cells were
treated with the proteasome inhibitor MG132 to inhibit Rad51
ubiquitination and degradation (Fig. 3c). Consistent with this, KO
of PUMA significantly attenuated the degradation of endogenous
Rad51 in PSCs and HPCs in response to IR (Fig. 3d, e). This result
demonstrates that PUMA can promote Rad51 ubiquitination and
degradation in PSCs and HPCs in response to IR.

PUMA associates with cytoplasmic Rad51 and EMI1
Rad51 ubiquitination was reported to be regulated by EMI1,12 F-
box DNA helicase 1 (FBH1, also known as FBXO18 or FBX18),22 and
ubiquitin C-terminal hydrolase L3 (UCHL3).23 Thus, we performed
IP and Immunoblotting (IB) analyses of PUMA, EMI1, and Rad51 in
PSCs and HPCs with or without IR. As shown in Fig. 4a,
endogenous PUMA interacted with EMI1, but not with FBH1 or
UCHL3. Next, we co-expressed Flag-PUMA with HA-EMI1 in
HEK293T cells and found that PUMA bound to EMI1 (Fig. 4b). To
further validate this observation, we performed glutathione S-
transferase (GST) pull-down analysis and found that purified
recombinant PUMA interacted with EMI1 (Fig. 4c).
Since EMI1 was shown to be localized not only in the nucleus

but also in the cytoplasm, we determined whether PUMA
colocalizes with EMI1 in the cytoplasm. As shown in Fig. 4d, IF
staining showed that PUMA and EMI1 colocalized in the cytoplasm
in PSCs after IR. We further performed cytoplasmic and nuclear
fractionation, and found that PUMA interacted with EMI1 and
Rad51 in the cytoplasm in PSCs after IR (Fig. 4e). The significant
level of cytoplasmic Rad51 had been observed in numerous
studies,24,25 which contributed to a DNA damage-induced increase
in nuclear Rad51 levels.26 Thus, these results demonstrate that
PUMA interacts with cytoplasmic EMI1 and Rad51.
Given that EMI1-promoted Rad51 ubiquitination in response to

the treatment with a PARP inhibitor,12 we determined whether
EMI1 regulates PUMA-mediated Rad51 ubiquitination and DNA
repair by knocking out EMI1, using a single-guide RNA (sgRNA) in
PUMA WT and KO PSCs or HPCs. As shown in Fig. 4f, EMI1 KO
decreased Rad51 ubiquitination in WT PSCs or HPCs after IR
compared with the control. Moreover, KO of EMI1 further
decreased Rad51 ubiquitination and increased Rad51 protein
levels in PUMA KO PSC or HPC cells, suggesting that PUMA may
facilitate EMI1-mediated Rad51 ubiquitination and degradation.
Consistent with this observation, EMI1 KO decreased γH2AX foci
formation in WT PSCs or HPCs and further in PUMA KO cells (Fig.
4g, h). These data provide further support to the notion that
PUMA inhibits DNA repair in a EMI1-dependent manner.

PUMA promotes Rad51 ubiquitination by EMI1
To understand how PUMA promotes Rad51 ubiquitination by EMI1,
we constructed three PUMA-truncated mutants (Fig. 5a). When HA-
tagged EMI1 was co-expressed with each of these PUMA-truncated
mutants, D1, D2, and D3 in HEK293T cells, EMI1 interacted with the
D3, but not D1 or D2, suggesting that the C-terminal fragment
(amino acids 131–193) of PUMA is required for its interaction with
EMI1 (Fig. 5b). We further detected Rad51 interaction with PUMA
truncation mutants and found Rad51 also interacted with the D3,
but not D1 or D2 (Fig. 5c). In addition, compared to the EV control,
ectopic expression of WT PUMA promoted EMI1-mediated Rad51
ubiquitination (Fig. 5d). Ectopic expression of PUMA D3 mutant but
not that of the D4 mutant enhanced EMI1-mediated Rad51
ubiquitination (Fig. 5d). These data demonstrate that the C-
terminus of PUMA binds to both EMI1 and Rad51 to promote
Rad51 ubiquitination and degradation.
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To demonstrate how PUMA promotes EMI1-mediated Rad51
ubiquitination, we co-expressed Flag-tagged PUMA with HA-
Rad51 WT or F129A mutant in HEK293T cells to investigate
whether F129A mutation impairs PUMA association with Rad51.

The F129A mutant was reported to impair Rad51 binding to
EMI1.12 As shown in Fig. 5e, we found that compared to Rad51 WT,
F129A mutation promoted Rad51 association with PUMA. We
further co-expressed V5-EMI1 and HA-Rad51 WT or F129A mutant
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with or without PUMA in HEK293T cells, and revealed that the
F129A mutation decreased Rad51 association with EMI1 and
PUMA promoted EMI1 association with Rad51 WT, but not the
F129A mutant (Fig. 5f). In addition, the F129A mutation attenuated
EMI1 association with PUMA (Fig. 5g), suggesting that Rad51,

PUMA, and EMI1 may form a ternary complex and the F129A
mutation may change the structure around the F129 residue to
affect its association with PUMA and EMI1. We then performed
cytoplasmic and nuclear fractionation and found that F129A
mutation inhibited EMI1-mediated cytosolic Rad51 ubiquitination
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in HEK293T cells (Fig. 5h), which is consistent with a previous
report.12 Ectopic expression of PUMA increased EMI1-mediated
cytosolic Rad51 ubiquitination and the F129A mutant impaired
PUMA-enhanced Rad51 ubiquitination (Fig. 5h). Taken together,
these data demonstrate that PUMA increases EMI1 association
with Rad51, and thereby promotes EMI1-mediated cytosolic Rad51
ubiquitination.

Knockout of PUMA promotes IR-induced Rad51 nucleus
translocation and focus formation, HR repair, and cell survival
The nuclear translocation of Rad51 induced by IR or genotoxic
stress is required for its role in repair by HR,26–28 which is
consistent with the reports that Rad51 focus formation requires
Rad51 translocation into the nucleus after DSB induction.26,28,29 To

explore whether PUMA affects Rad51 nucleus translocation, we re-
expressed shRNA-resistant Rad51 WT and F129A mutant in PUMA
WT/shRad51 and PUMA KO/shRad51 PSCs and HPCs (Fig. 6a).
Compared to the WT, PUMA KO decreased Rad51 WT protein
accumulation in cytosol and increased its accumulation in nucleus
after IR (Fig. 6b). The F129A mutation of Rad51 further decreased
the levels of cytosolic Rad51 protein and increased nuclear Rad51
protein accumulation (Fig. 6b). This data suggests that PUMA KO
may promote Rad51 cytoplasm-to-nucleus translocation probably
in part by inhibiting cytosolic Rad51 ubiquitination and
degradation.
Next, we determined the effects of PUMA KO on Rad51 focus

formation, HR repair, and cell survival in response to IR. Compared
with WT Rad51, re-expression of shRNA-resistant Rad51 F129A
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mutant increased Rad51 focus formation in PUMA WT PSCs and
HPCs after IR (Fig. 6c, d). Re-expression of the F129A mutant in
PUMA KO PSCs and HPCs further enhanced Rad51 focus formation
(Fig. 6c, d). Then, we performed HR repair analysis and revealed
that compared to Rad51 WT, re-expression of the F129A mutant
markedly promoted HR repair in PUMA WT and KO PSCs and HPCs
(Fig. 6e). Moreover, the enhancement of HR repair was the highest
in PUMA KO cells (Fig. 6e). Consistent with PUMA KO-enhanced

Rad51 focus formation and HR repair, compared to Rad51 WT, re-
expression of the F129A mutant increased cell radioresistance in
PSC/shRad51 and HPC/shRad51 cells (Fig. 6f). In addition, PUMA
KO in combination with re-expression of the F129A mutant further
enhanced stem cell radioresistance (Fig. 6f), suggesting that
targeting the PUMA-EMI1-Rad51 axis has the potential to confer a
survival advantage to stem cells. Taken together, our data
demonstrate that IR-induced PUMA interacts to both cytosolic
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Rad51 and EMI1, and promotes Rad51 association with EMI1,
which facilitates EMI1-mediated cytosolic Rad51 ubiquitination
and degradation, thereby leading to inhibition of Rad51-mediated
HR repair and enhancement of IR-induced cell death (Fig. 6g).

DISCUSSION
Molecular mechanisms underlying DNA repair in stem and
progenitor cells are essential in assuring the quality of tissue
regeneration after damage. Previous studies by our and other
laboratories have shown that the loss of PUMA led to the long-
term survival of mice following lethal irradiation,9,10,30 which was
largely attributed to the high resistance of tissue stem and
progenitor cells within the radiosensitive tissues, such as
hematopoietic system and intestine to IR. Interestingly, however,
tumorigenesis was not increased within those long-term survivors
after lethal irradiation in the absence of PUMA. Moreover, in our
recent study with induced pluripotent stem cells (iPSCs), we
observed that PUMA deficiency was associated with reduced DNA
damage and fewer chromosomal aberrations in iPSCs, as opposed
to p21 or p53 deficiency.31 These beneficial effects of PUMA
deletion cannot be explained by the previously documented role
of PUMA in the apoptotic pathway. In this study, we demonstrate
a novel mechanism by which PUMA KO enhances IR resistance in
PSCs and HPCs through elevating DSB DNA repair.
As far as our knowledge, we report for the first time that PUMA

negatively regulates DSB DNA repair. Our data demonstrated that
the expression of Rad51 protein, a critical regulator of HR repair, is
upregulated by PUMA KO in response to IR. PUMA binding to EMI1
and Rad51 in the cytoplasm promoted EMI1-mediated cytoplas-
mic Rad51 ubiquitination and degradation, and thereby inhibited
Rad51 nuclear translocation and HR DNA repair, leading to
increased sensitivity to IR in PSCs and HPCs. Our data are
consistent with previous reports that the nuclear translocation of
Rad51 induced by IR or genotoxic stress is required for its role in
DNA repair by HR26–28 and Rad51 ubiquitination reduces Rad51
cytoplasm-to-nucleus translocation.22,27 Since double KO of PUMA
and EMI1 further increased Rad51 protein stability in PSCs and
HPCs and a couple of E3 ligases were reported to regulate Rad51
ubiquitination,22,23,27 it is possible that other E3 ligase also
collaborates with PUMA in Rad51 ubiquitination process. Our
results also revealed that PUMA negatively regulates NHEJ DNA
repair in PSCs and HPCs. Although the mechanism by which
PUMA modulates NHEJ DNA repair is still unclear, our data suggest
that it may be related to p21 and XRCC4 in the regulation of NHEJ
repair.16,19,20 This phenomenon warrants further investigation.
NHEJ activation provides an additional and plausible explanation
for why PUMA deletion can result in improvements in the
maintenance of PSC reprogramming and cell survival, without
resulting in chromosomal instability.
Given our new results shown here, targeted inhibition of PUMA

seems to have dual beneficial effects against IR, i.e., protecting the
cells from IR-induced apoptosis and maintaining genomic stability.
It was reported that PUMA can mediate IR-induced bone marrow
leukocyte attrition by induction of apoptosis, which in turn
stimulates the proliferation of HSPCs to repopulate the depleted
compartments.32 Since the irradiated HPCs may carry IR-induced
oncogenic lesions, their proliferation and expansion may even-
tually lead to malignant transformation. In contrast, in PUMA-
deficient mice, leukocyte survival removes impetus for mutant
stem cells to repopulate, thus prevents IR-induced thymic
lymphoma development.32 PUMA deficiency also increases
reprogramming efficiency in the absence of c-Myc, and this may
be due to elevated cellular senescence to eliminate DNA damage
induced by reprogramming into iPSCs.33 We previously demon-
strated a beneficial effect of PUMA deletion as opposed to p21 or
p53 absence on the chromosomal stability in established iPSC
lines.31 Although context-dependent outcomes of PUMA deletion

have been reported, overlapping mechanisms between DNA
damage and oncogenesis exemplified by the p53 pathway
represent a major challenge for the therapeutic use of stem
cells.34,35 Given the comparable levels of PSC reprogramming,
preservation of cell survival is accompanied by reduced DNA
damage, fewer chromosomal alterations, as well as less strong
resistance to radiation or DNA damage-induced apoptosis without
increased incidences of malignancies in the absence of
PUMA,10,30,32,36 PUMA may serve as a more desirable target for
selective protection of normal tissue and stem cells than other
molecules in the p53 pathway.
In summary, our findings reveal a novel, yet unconventional

mechanism of PUMA in response to DNA damage and this
mechanism is independent of cell apoptosis. Therefore, this new
mechanistic insight further justifies that PUMA is an attractive
target in stem and progenitor cells to enhance tissue regeneration
after DNA damage. Although this possibility remains to be fully
explored in varied preclinical settings, our current study may hold a
promise for clinical applications by targeting PUMA in the patients
with defective HR repair or undergoing DNA damaging regimen.

MATERIALS AND METHODS
Cell culture and ionizing radiation
Wild-type (D3 strain, ATCC) and PUMA KO mouse PSCs were
cultured on irradiated MEF (CF1 strain, Chemicon). Wild-type and
PUMA KO murine HPCs, IL-3-dependent cell lines, were cultured in
IMDM (Gibco) with IL-3. Cells were exposed to 2 Gy IR in a
Shepherd Mark I 68 Irradiator (JL Shepherd).

Antibodies and reagents
The following antibodies were used in our studies: GST (1:1000, sc-
138) and PUMA (1:10, sc-19187; Santa Cruz Biotechnology);
FBXO18 (Fbh1; 1:500, #ab58881), 53BP1 (1:500, #ab175933), PUMA
(1:1000 for IB, ab4963), Lamin B1 (1:1000, ab133741), UCHL3
(1:1000, ab244371), RPA70 (1:1000, ab176467), MRE11 (1:500,
ab214), BRCA1 (1:1000, ab131360), and Rad51 (1:10, 51RD01;
Abcam); anti-γH2AX [phosphor-Histone H2A.X(Ser139) (1:1000,
20E3, Cell Signaling Technology); anti-Flag M2 (1:1000 for IB, 1:100
for IF, F3165, Sigma-Aldrich); anti-HA (1:2000 for IB, 1:100 for IF,
#66006-1-Ig), anti-β-actin (1:5000, #66009-1-Ig), and anti-lamin B1
(1:5000, #66095-1-Ig; Proteintech Group); and anti-EMI1 antibody
(1:50 for IF, JG35-83, #NBP2-76833, Novus Biologicals or 1:1000 for
IB, #385000, Life Technologies). The secondary antibodies were
from Life Technology or Jackson ImmunoResearch Laboratories.
Cell culture media and other reagents were from Hyclone,
Invitrogen, Sigma-Aldrich, and Fisher Scientific.

Immunofluorence staining assay
PSCs were grown on coverslips for 12 h before IR. For HPCs,
irradiated cells were cytospun onto each slide using CytoSpin
(Thermo Fisher Scientific). Cells were fixed, permeabilized,
blocked, and stained with each antibody. For nuclear foci
observation, nucleus images were acquired using a Zeiss Axio
Observer.Z1 microscope and AxioVision (4.7.1.0) software (Carl
Zeiss Microimaging Inc.). For subcellular localization observation,
each slide was photographed using a FluoView FV1000 confocal
microscope and FV10-ASW (02.01.01.04) software (Olympus).

Comet assay
Comet assay was performed as we previously described.37 Cells
were harvested at various times post-IR and processed for alkaline
comet assay using a Comet assay® kit (Trevigen), according to the
manufacturer’s protocol. Each slide was photographed under a
Zeiss Axio Observer Z1 microscope, and the percentage of tail
intensity was computed by the Comet Assay IV software
(Perceptive Instruments Ltd.). For each analysis, 200 cells were
processed, and each experiment was repeated three times.
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HR and NHEJ assays
The HR and NHEJ assays were performed as we previously
described.37 Briefly, we generated PUMA WT or KO PSCs and HPCs
with stable expression of a pDR-GFP or pEJ5-GFP reporter38 for HR
or NHEJ, respectively. I-SceI expression vector (pCBA-I-SceI) was
transfected into the cells. The parallel transfection with pDsRed2-
ER (Clontech) was used to normalize for transfection efficiency. At
48 h after I-SceI transfection, cells were pretreated with 2 Gy IR and
then harvested at 8 h post-IR for analysis, using flow cytometry to
examine recombination induced by I-SceI digestion. Dead cells
were excluded by PI staining. For each analysis, 20,000 cells were
processed, and each experiment was repeated three times.

Quantitative real-time RT-PCR assay
Total RNAs were isolated from each cell using a RNeasy Mini Kit
(Qiagen) and reverse-transcribed using ImProm-IITM Reverse
Transcriptase (Promega) according to the manufacturer’s protocol.
PCR was performed using DyNAmo HS SYBR Green qRT-PCR kit
(Finzymes) and a 7500 Fast Real-Time PCR System (Applied
Biosystems). The relative quantitative value of the Rad51 was
normalized against β-actin. The primers were listed in Supple-
mentary Table 1.

Plasmids
PUMA, Rad51, and EMI1 cDNAs were gained from DNA core in
Shanghai Jiao Tong University and then were sub-cloned into a
pcDNA3 or pLVX vector.

Single-guide RNA knockout, shRNA knockdown, and transfection
assays
Sequences of sgRNAs were designed using the MIT online tool
(http://crispr.mit.edu). shRNAs were purchased from GeneChem
(Shanghai, China). The plasmid transfections and shRNA infections
were carried out, as we previously described.39 Briefly,
HEK293T cells were transfected with specified DNA and packaging
plasmids. Then, viruses were collected, concentrated, and
transduced into various cells, as we previously described.39

Immunoblotting and immunoprecipitation and ubiquitination assays
IB and IP and ubiquitination assays were performed, as we
previously described.39 Briefly, cells were lysed in 20 mM Tris-HCl,
pH 7.5, 150mM NaCl, 1 mM EDTA, 2 mM Na3VO4, 5 mM NaF, and
1% Triton X-100 buffer with Protease inhibitor cocktail (Thermo).
For IP and ubiquitination assays, the protein lysates were
incubated with appropriate antibodies, captured by protein A/G
plus-agarose (Santa Cruz), and eluted by sample buffer. The
proteins were resolved in SDS–polyacrylamide gel electrophoresis,
transferred to polyvinylidenedifluoride membrane, and detected
by the appropriate antibodies.

Purification of recombinant proteins and GST pull-down assay
Purification of recombinant proteins was performed, as we
previously described.39 Briefly, GST-PUMA in the plasmid pGEX-
4T-1 was transformed into Escherichia coli BL21 and purified using
glutathione beads, according to the manufacturer’s procedures.
Pull-down analysis was performed by incubating purified GST-
PUMA protein with the cell extracts from PSCs.

Cell apoptosis analysis
Cell apoptosis analysis was performed using a Annexin V-FITC
Apoptosis Detection Kit (R&D Systems, Inc., Minneapolis, MN)
according to the manufacturer’s recommendation. The flow
cytometry data were analyzed by Syan software as we previously
described.31

Cell survival analysis
Cell survival analysis was performed according to the MTT assay
method with a Cell Titer 96 Aqueous Cell Proliferation Assay kit.

Briefly, cells were collected at day 3 after 2 Gy IR, and 10 μl of
4 mg/ml MTT solution was added to each well of the 96-well plate.
The cells were subsequently incubated for 4 h in the dark. The
absorbance was measured in a microplate reader at 490 nm, and
the results were expressed as a percentage of the control.

Statistical analysis
The data were analyzed using GraphPad Prism version 5.0 for
Windows (GraphPad Software Inc.). P values were calculated using
an unpaired two-tailed Student’s t test. P values < 0.05 were
considered significant.
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