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Abstract: Horizontal gene transfer (HGT), an important evolutionary mechanism observed in
prokaryotes, is the transmission of genetic material across phylogenetically distant species. In recent
years, the availability of complete genomes has facilitated the comprehensive analysis of HGT and
highlighted its emerging role in the adaptation and evolution of eukaryotes. Endophytes represent
an ecologically favored association, which highlights its beneficial attributes to the environment,
in agriculture and in healthcare. The HGT phenomenon in endophytes, which features an important
biological mechanism for their evolutionary adaptation within the host plant and simultaneously
confers “novel traits” to the associated microbes, is not yet completely understood. With a focus on
the emerging implications of HGT events in the evolution of biological species, the present review
discusses the occurrence of HGT in endophytes and its socio-economic importance in the current
perspective. To our knowledge, this review is the first report that provides a comprehensive insight
into the impact of HGT in the adaptation and evolution of endophytes.
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1. Introduction

Horizontal gene transfer (HGT) refers to the transmission of genetic material across the genomes
of biological organisms by processes other than fertilization. HGT is a universal phenomenon observed
in bacterial, fungal, and eukaryotic genomes [1,2]. However, it occurs infrequently and only serves as
an alternative process for the exchange of genetic material between distantly related species. HGT is
relatively more common in prokaryotes than eukaryotes [3–5]; studies have shown that approximately
81% of genes have transferred through HGT, in 181 sequenced prokaryotic genomes [6].

In the past decade, the availability of eukaryotic genomes through high-throughput sequencing
has promoted the research on the occurrence and mechanism of HGT in eukaryotes [7]. Additionally,
information about whole prokaryotic genomes has made it convenient to study HGT between
distantly related species [8], specifically in terms of organismal evolution and ecological adaptation
for survival [9,10]. HGT has been observed previously between Alternaria and Fusarium fungi [11],
nematodes and insects [12,13], humans and bacterial pathogens [14], plants and silkworms (Bombyx
mori) [15], and plants and fungi [16]. Extensive investigations on the significance of the HGT
phenomenon in prokaryotic evolution (e.g., archaea and bacteria) revealed a possible mechanism for
acquiring novel traits during the evolutionary course [17]; however, in eukaryotes, this phenomenon
was presumed to be uncommon [18,19]. Moreover, the transmission and integration of the
transferred genes might provide several beneficial attributes, including prokaryotic adaptation during
environmental changes [20,21], acquisition of new traits/functions [22], and evolutionary adaptation in
eukaryotes [23,24].
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Endophytes represent the ecologically favored association between plants and microbes, providing
multiple advantages for the plant and the environment. Endophytic associations are gaining momentum
socio-economically due to their potential applications in agriculture, industries, and healthcare.
The HGT phenomenon in endophytes, which highlights an important biological mechanism for
their evolutionary adaptation within the host plant and simultaneously confers “novel traits” to the
associated microbes, remains less studied. Studies in endophytic bacteria revealed its role in toluene
biodegradation and disease reduction in wheat (Triticum durum) and corn (Zea mays) [25]. Moreover,
scientists hypothesized that genetic recombination between plants and endophytes might have led to
the inclusion of metabolic pathway genes in the host plant [26]. Table 1 provides a summarized account
of the HGT events reported in plant–endophyte associations. Although HGT has been observed
across different species, the implications of HGT occurring from a plant to its associated endophytic
microbe presents an important and alternative process for addressing ecological and social concerns
through environment-friendly approaches. Since there is very little information available about HGT
in endophytes, the authors aimed to highlight the significance of HGT in endophytes, through a current
perspective. The evolutionary importance of HGT across kingdoms, specifically its mechanisms and
potential roles in addressing socio-economic and ecological concerns, has been extensively discussed.
To our knowledge, this systematic review is the first report that emphasizes the emerging trends in
HGT research on endophytes and its significance in the present time.

Table 1. A summarized account of the HGT events reported in plant–endophyte associations.

No. Endophyte HGT Phenomenon Beneficial Role(s) Ref.

1. Pseudomonas putida
W619-TCE Bacteria to bacteria Trichloroethylene degradation [24]

2. Burkholderia cepacia strain
FX2 Bacteria to bacteria Biodegradation of toluene, disease

reduction on wheat and corn plants [25]

3. Epichloe (syn.
Neotyphodium) Endophytic fungi to grasses Adaptation for angiosperms [27]

4. Agrobacterium tumefaciens Plants to endophyte Phytoremediation of arsenic
contaminated soil [28]

5. Endophytic fungi Plants to endophyte Production of secondary metabolites [29]
6. Endophytic fungi Plant to endophyte Production of secondary metabolites [30]

7. Burkholderia cepacia L.S.2.4 Bacteria to bacteria Phytoremediation of toluene and
organic pollutants [31]

8. Rhizophagus irregularis Bacteria and plants to fungi Evolution and symbiotic adaptation
of the arbuscular mycorrhizal fungi [32]

2. HGT in Nature: An Overview

The phenomenon of HGT differs from the vertical transmission of genetic material from parent to
offspring [33,34]. Distinct patterns in HGT were observed through endosymbiosis and introgressive
hybridization [35]. HGT was first discovered in 1928 by Griffith, who demonstrated that virulence
factor was transferred between pneumococcal strains in mice. Since this discovery, the accessibility to
“big data” provided by the sequencing of complete genomes has led to the identification of transferred
genes in multiple taxonomic groups [36]. However, the importance of HGT in eukaryotic genome
evolution [37–39], is an emerging research area in the present time and is extensively explored.

The discovery of HGT across diverse biological species suggests its strong evolutionary role and
highlights its significance in species adaptation and survival. For example, fungi and ciliates acquired
the genes for carbohydrate metabolism from a ruminant animal [40,41]. Studies have suggested the
role of HGT in facilitating microbial adaptation to adverse conditions in the environment [42] and
inside the host plant [43]. In the past few years, the information on HGT events in whole eukaryotic
genomes was limited and genomic information at the taxonomic level was unavailable. However,
studies utilizing whole genome sequences and high throughput technologies revealed that HGT events
in eukaryotic genomes, particularly in the plant kingdom, have a crucial impact on plant evolution [44].
In particular, the comprehensive phylogenetic analyses of genomes in 6 plant species, together with
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other prokaryotic and eukaryotic genomes, identified 1,689 genes that were similar to fungi, indicating
the exchange of genetic material between plants and fungi [44], consequently resulting in novel
traits arising in plant genomes. Moreover, studies reviewed the possibilities of HGT occurring from
plants to endophytes, to determine potential applications for the production of bioactive secondary
metabolites via the endophytic fungi [29]. Endophytic fungi can produce secondary metabolites,
hence, it was hypothesized that HGT between the host plant and associated fungi was responsible for
the production of bioactive secondary metabolites [30]. The study also discussed the possibilities of
different mechanisms on how an endophytic fungus acquired genetic traits from the host plant and
whether HGT was beneficial for the adaptation and survival of the organisms in association [29,30].

3. The Mechanisms of HGT

HGT differs from other mechanism of genetic transmission since it does not involve
parent–offspring inheritance, and therefore, might occur between distantly related species. Furthermore,
the transfer of genetic material is rapid, rendering it an important mechanism for microbial adaptation
to new environmental niches [45,46]. There are several mechanisms for HGT across different taxonomic
groups (with different frequencies) as determined by the genetic distance between two biological
organisms [47]. Several studies have shown HGT across biological species, specifically in archaea [48],
bacteria [2,45], and eukaryotes [49]. The HGT phenomenon has been widely studied in bacteria and
archaeal genomes; however, this is not the case in eukaryotes.

The HGT mechanisms in prokaryotes, including transformation, conjugation, and transduction,
have been well documented; however, HGT in eukaryotes might be more complex, particularly in
plants, and might involve vector-mediated or direct pathways [50]. The direct pathway might occur
through direct DNA exchange [18], while vector-mediated pathway requires the use of vectors such
as bacteria, fungi, virus, etc. [51,52]. Moreover, HGT between nuclear and plastid genomes have
been reported [53], i.e., between plant mitochondrial genomes [54] via bacteria-mediated [46,55] and
parasitic insect-mediated HGT [56]. Studies have also suggested the possibility of virus-mediated
HGT from plants to other genomes via pathogen, transgenic bacteria (e.g., Agrobacterium tumefaciens),
virus [57], fungi [58], and nematodes [59].

Studies have shown that adaptation of bacteria to host plant involves diversification and
evolutionary processes, while switching from parasitism to mutualism [60]. The bacterial transition
to intracellular lifestyle induce various ecological changes. The sequencing of bacterial genomes has
yielded significant insights about bacterial population dynamics and evolution, by highlighting gene
recombination, deletion and gene amplification events [60]. Moreover, it has been seen that bacteria
classified in different phylogenetic clades differ in host adaptation. The co-integration of endosymbiont
into host and adaptation to intracellular lifestyle render changes in bacterial genes, conferring the
function of mutualism to bacteria. The endophytic association further makes the bacterial genome
to co-evolve with the host genome, characterized by reduction in bacterial genome evolution [60].
Moreover, studies have shown that the HGT event occurring in symbiotic and pathogenic bacteria is
responsible for functional divergence in different phylogenetic clades [61,62]. The host adaptation by
endophytes confers distinct advantages to associated microbes and helps in its adaptation and survival.
The inclusion of new functions via HGT (gene duplication and functional divergence) facilitates greater
interaction with the respective host organism [63].

4. Significance of HGT in The Evolution of Biological Organisms

The HGT phenomenon, widely regarded as a mechanism favored by evolution, aids the acquisition
of novel traits by the associated species. Previous studies have reported the transfer of genetic
material between microorganisms [63,64] and many examples of gene transfer across species are also
well-documented [33]. Studies discussing the significance of HGT in the evolution of biological species
and its contradiction to phylogenetic relationships between organisms are deemed controversial.
Several studies have reported the transfer of genes via HGT between similar and different biological
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species, between different domains, and across kingdoms [39]. The role of HGT in evolution has been
well-reported in bacteria and archaea, in contrast to eukaryotic genomes.

4.1. HGT in The Evolution of Prokaryotes

The role of HGT in prokaryotic evolution depends on the amount of genes transferred, their
integration in microbial genomes, and the phylogenetic relationship between different species [39].
Successful HGT is mediated by the transduction, conjugation, and transfection processes and depends
on the stable integration of the transferred genetic material. The differences between the transferred
genes might be observed due to the barriers limiting gene transfer and various selective forces acting
on HGT. As an explanation, Jain et al. [65] hypothesized that the genes involved in maintaining cell
functions are more likely to participate in HGT than those involved in DNA replication, translation,
and transcription, which are responsible for transmitting genetic information [65]. However, other
scientists suggested that functional categorization of genes as a prediction method for HGT is not
absolute. Moreover, the genetic distance between biological species during the course of evolution is
another factor influencing HGT; gene transfer is frequent in closely related species and less common in
distantly related species [6,66]. Wagner and colleagues [67] studied 438 complete prokaryotic genomes
and found 30 cases of gene transfer among distantly related clades, showing a lesser frequency of HGT
occurrence in species with a larger evolutionary distance between them [68].

The occurrence of HGT in prokaryotic genomes challenged the construction of phylogenetic
relationships between biological species. The existence of HGT events in microbial genomes make it
difficult to establish a correct phylogenetic relationship between microbes; however, it was suggested
that the main genes are not transferred and a phylogenetic tree might be constructed using this
pattern [68,69]. Furthermore, the genes can be cloned in E. coli, indicating that HGT events were not
limited by any barriers [70]. The HGT phenomenon, showing the transfer of genetic material between
different organisms in one generation, displays a striking contrast to the neo-Darwinian concept of
evolution. However, after the gene transfer by HGT, the natural selection process determines the
gene selection for spread into other populations [71]. In the present context, the phenomenon of
HGT, together with other mechanisms namely hybridization, gene duplication, and gene acquiring
mechanisms might be regarded as an evolutionary process [2,72,73].

4.2. HGT in The Evolution of Eukaryotes

HGT has been well-documented and is considered to be a key evolutionary factor in prokaryotic
genomes; however, its significance in eukaryotes remains undetermined [38,49]. The frequency of
occurrence and role of HGT in eukaryotes are being increasingly discussed, in light of the evolution
process. The availability of whole genome sequences revealed the occurrence of HGT in eukaryotes,
with the transfer of bacterial genes from ruminant host to fungi and ciliates [40,41]. With the sequencing
of whole genomes and increasing availability of “big data” on eukaryotes, the significance of HGT in the
adaptation of eukaryotes is being widely recognized [33,38,74]. Phylogenomic studies on several fungal
genomes have identified multiple HGT events, which is the largest among eukaryotic genomes [75].
The sequencing and analysis of 60 fungal genomes revealed the existence of approximately 700 genes
of prokaryotic origin, transferred through HGT [75]. Several examples of HGT in fungal genomes
have highlighted the benefits to the fungal host, including adaptation to extreme environments [76],
clustering of secondary metabolic genes [77,78], and pathogenicity to the host plant [79], suggesting
that HGT conferred beneficial traits to the fungi and assisted in the adaptation to new environments.
These studies indicate that HGT events play an important role in eukaryotes and that investigating
a large number of eukaryotic genomes would provide better insights about the significance of HGT
in the adaptive divergence of eukaryotes [80]. In addition, 57 gene families were assumed to be
transferred from prokaryotes or fungi to the genome of the moss, Physcomitrella patens via HGT [81].
These acquired genes afforded multiple beneficial functions, specifically the biosynthesis of hormones
and plant defense, leading to plant adaptation from aquatic to terrestrial habitat [81].
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5. Recent Approaches to Detect HGT in Genomes

The identification and annotation of complete genomes in biological organisms have shown the
frequent occurrence of HGT events, resulting in a chimeric organism, with multiple DNA from different
genomes. Considering the emerging importance of HGT events in the evolutionary process [82],
understanding the HGT phenomenon is crucial to learn about novel functions, such as the emergence of
antibiotic resistance [83] and prediction of gene functions [84]. Several approaches are available for the
identification of HGT events in whole genomes, depending on the type of HGT process. These methods
are enumerated below:

Studying gene distribution patterns: Gene transfer between different species results in the
acquisition of new genes. Therefore, studying gene distribution patterns with uneven occurrence
might lead to the identification of HGT events. However, uneven distribution patterns might also be
caused by processes such as sequence divergence or gene loss [82]. Additionally, analysis of gene
distribution patterns can be used to detect homologous gene recombination.

Comparison of phylogenetic trees: One possible method to determine the occurrence of HGT
event is the analysis of phylogenetic trees of different genes, based on the assumption that HGT
events might lead different genes to have different evolutionary trees. However, this method is not
accurate since various factors, such as ortholog/paralog misidentification, occurrence of convergence,
and incorrect alignment of gene sequences [85–87], might lead to incorrect conclusions. Although the
phylogenetic methods do not always correctly predict the HGT events among closely related species,
it is still a method of choice in analyzing the genomes of biological organisms. Moreover, this method
is based on extensive information about the number of genes.

Studying unusual genome composition: A consistent uniformity is present in genome composition
and phenotype and the presence of foreign genes due to HGT events can be detected by identifying
genomic regions with unusual composition (e.g., codon usage) [88]. This method requires the complete
genome sequence of one species for the estimation of HGT events. However, since non-uniform
genome composition might also result due to mutation, natural selection, and HGT [89], as well as the
presence of biological vectors (e.g., bacteriophages), this method is not reliable for predicting HGT
events between species with similar genome composition and HGT events that occurred long ago [82].

Similarity search between genomes: A common method for the identification of HGT events
in genomes is to search for maximum similarity between genes. HGT is very likely between genes
of distantly related species. This is a common and fast method, however, its disadvantages include
less accuracy and uncertainty regarding the number of best matches to search for, identification of
orthologs, and uncertainty with multi-domain proteins [82,90]. For an effective and methodical study
to identify HGT events in biological species, one or more of the above mentioned methods were used in
combination. However, the methods depend on the different type of gene transfer and their occurrence
during the course of evolution.

6. HGT and Endophytes

The mutualistic association between endophytes and host plants has beneficial consequences
for both plant development and microbial adaptation. In the evolution of biological species, HGT
events were considered to be a strong, evolutionary mechanism for conferring new traits and assisting
adaptation to adverse environments. However, reports on gene transfer between plants and endophytes
were limited, suggesting that a more comprehensive research is required for understanding HGT
signatures and their possible implications on the associated organisms. Significant studies on HGT
in endophytes include the following—genetic manipulation of P. putida W619-TCE, an endophyte of
poplar plant for degradation of TCE soil contaminant [91]; arsenic hyperaccumulation in endophytic
bacteria [28]; toluene phytoremediation by endophytic bacteria [92]; endophyte-mediated toluene
degradation and growth promotion in T. durum, Z. mays, and B. cepacia [25]. These studies highlighted
the potential of HGT events in conferring novel traits to either of the associated species and their
significance in ecological and biotechnological studies. In addition, studies on HGT in plant-associated
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bacteria, specifically Rhizobium and Xanthomonas, revealed its significance as a mechanism for plant
adaptation and survival [93]. Studies have also suggested the transfer of four cluster genes, through
HGT in sugarcane endophyte Burkholderia seminalis TC3.4.2R3, where it is suggested to be a possible
adaptation mechanism. Further studies on the four-gene cluster would provide valuable information
about the biosynthetic mechanism of antifungal compounds [94].

6.1. HGT as A Function of Ecological Adaptation

Plants are dynamic communities colonized by complex microbial communities that influence plant
growth and development. The association of microbial communities with host plant provides multiple
advantages to both the microbe and the host plant. These microorganisms spend a part of or an entire
life cycle inside the plant and might be present externally (rhizosphere) or internally (endosphere).
Studies have suggested that the association of a microbe influences plant growth and development and
confers resistance to environmental stresses [95,96], while in exchange, the plant assists in microbial
adaptation and survival [97]. Some key studies have suggested the horizontal transmission of bacterial
endophytes via soil [98], colonization of the root endosphere via the rhizosphere [99], through aerial
tissues [100], and as host plant colonization.

The HGT phenomenon was a key event that conferred novel traits to both prokaryotes and
eukaryotes, during evolution [36,38,101]. An example of HGT between plants is the presence of
the mitochondrial intron sequence in a number of angiosperms [102]. A similar study showed the
acquisition of mitochondrial genes from algae and angiosperms to Amborella trichopoda, through HGT
events [103]. However, the HGT of nuclear genes from prokaryotes to plants is relatively rare [18,36,97].
Whole-genome sequencing of plants, namely Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, and
Sorghum bicolor revealed fewer HGT events, suggesting their less frequent occurrence. One remarkable
example is the first reported HGT of the β-1,6-glucanase gene from endophytic fungi to grasses [27].
The study performed de novo sequencing and assembly of the ryegrass genome and discovered the
presence of the β-1,6-glucanase gene. Moreover, the transfer of β-1,6-glucanase gene from endophytic
fungi to perennial ryegrass, suggested an evolutionary adaptation in angiosperms [27]. In the current
perspective, similar studies are essential to elucidate the mechanism and importance of HGT in the
evolution of plant-microbe associations.

6.2. Perspectives in Environment and Agriculture

Endophytic fungi have a long evolutionary history of association with land plants, affecting almost
all plant species [104]. Fungal association defines a diverse relationship with the host plant, ranging
from parasitism to commensalism and symbiosis. These organisms show very high rates of plant
infection and causes multiple diseases. Diverse fungal species might colonize the same plant, which
suggests a highly specific interaction with the respective plant host. Moreover, comparative genomics
studies suggested that these fungi display similar genomic content to their associated organism,
as well as symbiosis-specific genes [105,106]. The endophytic fungi can influence the physiology of the
host plant by protecting against pathogenic fungi [104,107,108], promoting plant growth [97,109,110],
and aiding nutrient and water uptake [111]. Moreover, studies have demonstrated the positive impacts
of plant-endophyte associations in maintaining ecological balance and their potential biotechnological
applications. Endophytic microbes have been engineered for promoting phytoremediation [91]; and
the natural process of HGT has been studied as a possible mechanism to introduce novel traits to the
host plant [112] and the associated microbe [28,92].

Recent studies highlighted the emerging importance of gene transfer events as a possible alternative
mechanism, to acquire “novel traits” for potential socio-economic applications. Studies have been
performed to understand the importance of HGT events between plants and endophytes, particularly
the acquisition of “novel traits” by the associated organisms. Some endophytes were found to improve
phytoremediation, with HGT as a possible mechanism of gene transfer. A recent study reported
that the endophytic bacteria from P. vittata were effective arsenic accumulators inside the host plant.
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The study discussed arsenic resistance and its associated genes in the endophytic bacteria, which are
responsible for arsenic accumulation [28]. In total, 116 arsenite-resistant bacteria were isolated from
P. vittata roots and characterized for arsenic tolerance. Results showed that the exchange of arsenite
transporter genes arsB/ACR3(2), possibly occurred through HGT between endophytic bacteria [28].
A similar study reported that the gene transfer between endophytic bacteria residing inside T. durum
and Z. mays, induced toluene degradation and promoted plant growth [25]. The endophyte, B. cepacia
FX2 containing the gene for catechol 2, 3-dioxygenase (C23O) on a plasmid, effectively degraded
toluene in contaminated soil [25]. The characterization of this endophytic bacteria and its functional
role in the environment was consequently established [25]. Moreover, several studies reported that
the endophytic bacteria acquire new metabolic traits and adaptation to the environment, through
HGT [42,43].

7. Significance and Directions for Future Research

HGT is considered to be a significant process in the evolution of prokaryotes, although it remains
less studied as a controversial subject in eukaryotes [38]. Several studies have acknowledged HGT as
a driving force in prokaryotic adaptation and survival, however, very few reports of HGT events in
multicellular eukaryotes are available [18]. In eukaryotes, genomic content constitutes mobile genetic
elements, known as transposable elements (TE), which can move from one region to another and
duplicate themselves [113]. TEs are responsible for epigenetic changes and any genomic variation,
thereby, influence the evolution of host species. Moreover, studies suggested that the movement of TEs
across eukaryotic genomes might be caused by horizontal transposon transfer (HTT), a phenomenon
linked to HGT, which plays a significant role in creating genomic variations [113].

The occurrence of HGT as a major evolutionary event has been described in various studies [36,94].
However, reports about HGT events between endophytes and plants are limited. Considering the
significance of HGT in the adaptation and evolution of biological species, an extensive and in depth
analysis on HGT events between endophytes and host plants is required. HGT research should focus
on scientific methods utilizing available genomic data for analysis, to effectively detect the occurrence
of HGT events. Current studies focusing on HGT events in eukaryotes depend on a comparative
phylogenetic tree analysis and BLAST search methods. However, several genomic processes, such as
gene duplication/deletion, introgression events, etc., have made the functional characterization of HGT
difficult in biological species. Additionally, it is difficult to explain the occurrence and mechanism of
HGT among distantly related species. No direct evidence is available on how an HGT event occurs
across biological organisms; however, vector-mediated HGT via plasmids or transposable elements
has been suggested for fungi [114]. Furthermore, studies regarding HGT in eukaryotes is limited,
hindering the analysis of genomic data using statistical methods [115]; however, researchers have
devised an advanced statistical method called coalescent statistics to study HGT in evolution [116].
The availability of high-quality genomic information and development of accurate phylogenetic
methods can revolutionize and provide a better insight about the roles of HGT events in eukaryotes.
Several challenges exist in defining the exact role of HGT in the evolution of biological species, such as
determining phylogenetic relationships between organisms in the presence of HGT and identifying the
preferred genes during HGT events, remain to be addressed.

In recent times, only a few studies have emphasized the advantages of utilizing HGT
events in endophytes, and their potential applications in environmental and agricultural research.
These studies include arsenic hyperaccumulation in endophytic bacteria [28], endophyte-mediated
toluene degradation and growth promotion in T. durum, Z. mays, and B. cepacia [25], and toluene
phytoremediation through endophytic bacteria [88]. These studies demonstrate that investigation of
HGT events in endophytes highlights their potential in conferring novel traits to either of the associated
species, consequently suggesting important ecological and biotechnological implications.
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8. Conclusions

With the progress in whole genome sequencing, the availability of “big data” has enabled the
study of entire genomes of biological organisms. The study of HGT in eukaryotic genomes has
become feasible, leading to the discovery of genes linked with HGT in different taxonomic groups of
eukaryotes [36]. In recent times, HGT events observed in plant lineages [28,108] were found to be more
common than expected. Moreover, the significance of HGT events in the evolution and adaptation
of prokaryotes and eukaryotes was established; it has emerged as a key mechanism driving several
biological processes, including insect resistance, C4 photosynthesis in grasses, parasite dynamics,
etc. [108]. In plant-associated microorganisms, the occurrence of HGT events was highlighted as
an important evolutionary process for the acquisition of “novel traits” by either the host plant or
the associated endophyte, which confers better adaptation and new functions to the organism and
might have potential environmental and biotechnological applications. Studies regarding the HGT
events in endophytes are very limited, hence, this review provides an insight on their functional role,
significance, and potential socio-economic applications, in a current perspective.
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