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Abstract

Neurons are highly susceptible to DNA damage accumulation due
to their large energy requirements, elevated transcriptional activ-
ity, and long lifespan. While newer research has shown that DNA
breaks and mutations may facilitate neuron diversity during devel-
opment and neuronal function throughout life, a wealth of evi-
dence indicates deficient DNA damage repair underlies many
neurological disorders, especially age-associated neurodegenera-
tive diseases. Recently, efforts to clarify the molecular link
between DNA damage and neurodegeneration have improved our
understanding of how the genomic location of DNA damage and
defunct repair proteins impact neuron health. Additionally, work
establishing a role for senescence in the aging and diseased brain
reveals DNA damage may play a central role in neuroinflammation
associated with neurodegenerative disease.
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Introduction

Post-mitotic neurons are the basic cellular unit of the nervous sys-

tem. Their function controls primary aspects of human physiology,

including movement, breathing, and heart rate, as well as higher

order processes such as memory and attentional control. However,

as a largely non-renewable resource, neurons must perform these

essential tasks while also maintaining their cellular and genomic

integrity over many decades of life. To survive the inexorable pas-

sage of time, neurons are equipped with accurate and efficient DNA

damage response (DDR) pathways. Defective DDR pathways can

result in toxic genomic rearrangements, transcriptional dysregula-

tion, and the accumulation of unrepaired lesions (Hoeijmakers,

2009; Madabhushi et al, 2014; Chow & Herrup, 2015; McKinnon,

2017; Tubbs & Nussenzweig, 2017). These insults ultimately push

cellular fate toward apoptosis, senescence, or uncontrolled cell divi-

sion, all of which are hallmarks of age-associated disease

(Hoeijmakers, 2009; Madabhushi et al, 2014; Chow & Herrup, 2015;

McKinnon, 2017; Tubbs & Nussenzweig, 2017). We can appreciate

the value of neuron viability in particular through the devastating

effects of neurodegenerative diseases, which strip individuals of

their memories, motor control, and autonomy. As of 2017, neuro-

logic diseases are the third leading cause of death in the United

States and the fifth leading cause of death world-wide (GBD, 2017

US Neurological Disorders Collaborators, 2021; GBD Compare|IHME

Viz Hub).

A well-established link exists between DNA damage and neurode-

generative diseases. In many cases, DNA damage seems to be one of

the earliest indicators of neuropathology, suggesting it may be an

initiating lesion of toxicity (Chow & Herrup, 2015; Simpson et al,

2015, 2016; Shanbhag et al, 2019). Recently, numerous findings

have helped clarify the mechanisms by which DNA damage may

mediate neuronal dysfunction. Broadly, these are lessons learned

through both DNA damage repair disorders and models of age-

associated neurodegenerative diseases. Additionally, through the

advancement of sequencing techniques to map DNA lesions, rear-

rangements, and mutations, we are just beginning to appreciate the

significance of a lesion’s genomic location in relation to its effect on

neuronal activity and, ultimately, degeneration (Lodato et al, 2015,

2018; Wei et al, 2016; McConnell et al, 2017; Reid et al, 2021; Rodin

et al, 2021; Wu et al, 2021). Finally, while both neuroinflammation

and DNA damage are considered hallmarks and mediators of neuro-

degeneration, the mechanistic relationship between the two has yet

to be fully realized. To this end, concepts from senescence cell biol-

ogy are helping us inform how one might feed into the other

(Bussian et al, 2018; Musi et al, 2018; Chow et al, 2019; Zhang et al,

2019; Gillispie et al, 2021). Here, we will cover the recent advances

made in each of these subgenres of disease research and how they

enhance our understanding of neuronal function and degeneration.

The DNA damage response (DDR)

Our genome continually incurs damage via exogenous agents and

endogenous metabolic byproducts. In response to the constant

onslaught of genomic lesions, mammalian cells have developed a

myriad of DNA damage response (DDR) pathways, each specializing

in the detection and correction of a different type of lesion. Although

each pathway recruits different proteins and repair enzymes, the
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basic DDR format remains the same. Lesions are first detected, then

they are processed and/or excised by a nuclease. Lastly, a polymer-

ase synthesizes new DNA to replace the missing nucleotides, and a

ligase seals the resulting nick together. The following section briefly

summarizes DNA lesions and their corresponding DDR pathway.

Single-Strand Breaks (SSBs)
While many different types of genomic injuries can occur, the

majority ultimately manifest in the form of single-strand breaks

(SSBs). This is largely by virtue of reactive oxygen species (ROS),

which attack DNA to form oxidized bases and abasic sites (Lindahl

& Barnes, 2000; Madabhushi et al, 2014; Tubbs & Nussenzweig,

2017). ROS-mediated DNA damage is greatest in the nervous system

(Nakamura & Swenberg, 1999), likely because neurons exhibit sub-

stantial mitochondrial respiration, consuming approximately 20%

of the body’s available oxygen(Attwell & Laughlin, 2001). ROS can

generate SSBs directly through attacking the DNA backbone or indi-

rectly through the generation of other DNA modifications whose

repair requires transient break formation. One of the most abundant

ROS-mediated DNA modifications is 8-oxo-7,8-dihydroguanine

(8oxoG), a non-bulky lesion whose presence can dysregulate gene

transcription and whose erroneous repair results in mutagenesis, a

major contributor to aging and disease.

Non-bulky base modifications such as 8oxoG are resolved

through base excision repair (BER), wherein a base-specific glycosy-

lase detects and removes the damaged base, and the backbone is

removed by apurinic/apyrimidinic endonuclease 1 (APE1) to gener-

ate an intermediate SSB. From here, the SSB can be resolved either

through short-patch SSB repair (sp-SSBR) or long-patch SSBR (lp-

SSBR). In short patch SSBR, polymerase b (POLb) fills in the missing

nucleotide and ligase III (LIG3) seals the nick. The alternative lp-

SSBR replaces larger stretches of DNA (2-13 nucleotides), utilizing

flap endonuclease 1 (FEN1), proliferating cell nuclear antigen

(PCNA), and polymerase d/e (POL d/e) to open and replace the bro-

ken DNA strand. Ligase I (LIGI) then seals the nick.

In contrast to smaller base lesions, helix-distorting bulky lesions

(which are most commonly caused by UV exposure) are detected by

their steric distortion rather than their specific chemical structure.

For example, bulky lesions are detected during transcription when

their presence stalls RNA polymerase II, which with the help of pro-

teins CSA and CSB (also known as ERCC6 and ERCC8, respectively)

initiates transcription-coupled nucleotide excision repair (TC-NER).

In non-transcribed or inactive regions of the genome, bulky lesions

are detected by the XPC-RAD23B-CEN2 complex, which initiates

global genomic NER (GG-NER). Beyond the mechanism of their ini-

tial detection, TC-NER and GG-NER share the same pathway. The

transcription factor complex TFIIH is recruited to the lesion and

opens up the DNA, further recruiting other NER repair factors to

form a pre-incision complex. The damaged nucleotide is removed

by ERCC1-XPF and XPG, generating an SSB. New DNA is synthe-

sized by POLb/d/e and then sealed by LIG1 or LIG3.

Apart from ROS, direct SSBs can also be generated by aborted

topoisomerase I (TOP1) activity, which occurs when TOP1-initated

breaks meant to relax supercoiled DNA are not resolved. These

persisting breaks are termed TOP1 DNA cleavage complexes

(Top1cc) (El-Khamisy et al, 2005). Top1cc accumulation poses a

significant threat to the nervous system. First, oxidative DNA dam-

age has been shown to impede Top1cc resolution (Daroui et al,

2004), making neurons particularly sensitized to aborted TOP1

activity. Second, individuals with defunct Tyrosyl-DNA Phosphodi-

esterase 1 (TDP1), the SSB repair enzyme responsible for resolving

Top1ccs, develop spinocerebellar ataxia with axonal neuropathy

(SCAN1). This genetic disease is primarily defined by nervous sys-

tem deficits such as ataxia, neuropathy, and cerebellar atrophy

(Takashima et al, 2002; El-Khamisy et al, 2005).

Double-Strand Breaks (DSBs)
While SSBs are the more common form of DNA damage, double-

strand breaks (DSBs) have the higher potential for toxicity. Indeed,

it is popularly cited that just one DSB can induce cell cycle arrest

and subsequent apoptosis (Huang et al, 1996). However, despite

their toxicity, DSBs have also been shown to play important roles in

cell physiology. For example, DSBs are required for T-cell receptor

and antibody diversity, chromosomal recombination during meiosis,

and in the case of neurons, assist in the expression of immediate

early genes (Fig 1) (Suberbielle et al, 2013; Madabhushi et al, 2015;

Alt & Schwer, 2018).

While replication is likely the primary cause of DSBs in cycling

cells, postmitotic neurons presumably incur the majority of their

DSBs through transcriptional activity. SSBs may form DSBs through

their collision with the transcriptional machinery and replication

forks, or through their close proximity to another SSB. DSBs are also

directly generated by transcription (Cannan & Pederson, 2016),

whereby topoisomerase II (TOP2) induces transient DSBs to relieve

torsional stress and facilitate gene expression. These Top2 cleavage

complexes (Top2ccs) are usually resolved immediately by Tyrosyl-

DNA Phosphodiesterase 2 (TDP2). Similar to TDP1, mutations in

TDP2 result in a rare neurological disease termed spinocerebellar

ataxia autosomal recessive 23 (SCAR23), further underscoring the

potential toxicity of topoisomerase-induced DNA damage in the ner-

vous system (Zagnoli-Vieira et al, 2018; G�omez-Herreros et al,

2014: 2; Errichiello et al, 2020).

There are two methods of DSB repair: non-homologous end join-

ing (NHEJ) and homologous recombination (HR). HR is considered

an error-free method of DSB repair by which resected DNA strands

utilize their sister chromatid as a template for DNA synthesis. First,

the MRN (MRE11, RAD50, NBS1) complex binds to either side of

the DSB to facilitate end resection by nucleases and helicases,

including C-terminal binding protein-interacting protein (CtIP), Exo-

nuclease 1 (EXO1), DNA replication helicase/nuclease 2 (DNA2),

Werner syndrome helicase (WRN), and Bloom syndrome helicase

(BLM). The resulting ssDNAs are coated by replication protein A

(RPA) and RAD51, forming nucleoprotein filaments that invade the

sister chromatid to look for sequence homologies. New DNA is then

synthesized by a polymerase and ligated with LIG1 or LIG3.

Because HR requires sister chromatids, this pathway can only

occur in cycling cells during or following S phase. In contrast, NHEJ

operates in all phases of the cell cycle and thus is the only DSB

repair pathway available to post-mitotic cells. In canonical NHEJ,

DSBs are first bound on either end by KU70/80 and DNA-dependent

protein kinase (DNA-PK), then directly ligated back together with

Ligase IV (LIG4), X-Ray Repair Cross Complementing 4 (XRCC4),

and XRCC4-like factor (XLF). In an alternate form of NHEJ (alt-

NHEJ), the broken strands are resected with the same nucleases and

helicases used for HR (CtIP, EXO1, DNA2, BLM, WRN), resulting in

single-strand overhangs at either side of the break site. These
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overhangs then anneal at microhomologies, which are small

stretches of complementary DNA, usually 5–20 bp long. Polymerase

h (POLh) synthesizes new DNA which is then ligated by LIG3. Yet

another alternative DSB repair pathway, termed single-strand

annealing (SSA), searches for even larger homologies (> 25 bp).

RAD52 mediates the annealing of resected DNA at these larger

homologous sequences, and the resulting DNA flaps are excised by

ERCC1-XPF. Both alt-NHEJ and SSA are inherently error-prone, as

deletions of DNA and translocations must occur to facilitate strand

annealing.

SSB and DSB sensing
Following break induction, chromatin is rapidly modified by DNA

damage sensors to facilitate the recruitment of DNA repair proteins.

Source of DNA damage

Created with BioRender.com
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Figure 1. Sources of DNA damage in the brain.

Transcriptional activities can result in topoisomerase cleavage complexes, which lead to the induction of SSBs or DSBs depending upon the topoisomerase in question.
Additionally, metabolic activity by mitochondria generate ROS, which can scar DNA bases with oxidative modifications. Although less common in the adult brain, cell
division is also a source of DNA damage. Proliferation increases the chance of replication fork and transcription complex collision, thereby inducing DSBs. In the
developing brain, this is a particular risk for NPCs, which harbor increased translocations in long genes (where these collisions are most likely to occur) important for
neuronal function. Cognitively demanding tasks recruit specific neuronal ensembles whose plasticity is highly dependent upon immediate early gene transcription.
Therefore, neurons generate topoisomerase II-mediated DSBs in response to learning and memory. Finally, the proteins responsible for various neurodegenerative
diseases have also been found to play roles in DNA damage detection and repair. (Created with BioRender.com).
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Poly(ADP-ribose) polymerase 1 (PARP1) and Ataxia telangectasia

mutated (ATM) are two major sensors of SSBs and DSBs. PARP1

senses both SSBs and DSBs, rapidly generating poly(ADP-ribose)

(PAR) chain scaffolds (PARylation) on itself and other target pro-

teins to recruit DNA repair proteins and relax chromatin at break

sites. PARylation by PARP1 recruits X-Ray Repair Cross Comple-

menting 1 (XRCC1) which is a crucial stabilizer for end-processing

enzymes POLb and LIG3. PARylation also facilitates MRN recruit-

ment at DSBs. Similarly, following its activation by the MRN com-

plex at DSB sites, the protein kinase ATM phosphorylates numerous

downstream substrates such as histone variant H2A.X, checkpoint

kinase 2 (CHK2), and p53 to initiate DSB repair, cell cycle arrest,

and apoptosis, respectively. In particular, phosphorylation of H2A.X

(cH2AX) by ATM is a critical post-translational modification,

flanking DSB sites more than 500 kb upstream and downstream to

form cH2AX foci, which function as docking sites for chromatin

remodelers and DNA repair proteins.

Neurotoxicity associated with DNA damage

The nervous system is particularly sensitive to loss-of-function

mutations in DNA repair proteins. The explanation for this sensitiv-

ity may lie in the hallmarks of neuronal identity. That is, neurons

perform transcriptionally and energetically demanding cellular func-

tions and are post-mitotic and long-lived. The consequence of these

features is elevated ROS byproducts, exclusion of error-free HR

repair, age-associated decline in DNA repair enzyme efficiency, and

an overall increased chance of somatic mutation. This is not to say

that other cell types in the nervous system (i.e., astrocytes, oligo-

dendrocytes, and microglia) are not susceptible to DNA damage.

Indeed, DNA damage in glia plays demonstrable roles in neurode-

generation, as we will discuss later. However, compared to neurons,

glial cells are replaceable, have lower energy requirements, and, in

some cases, are able to re-enter the cell cycle, thus facilitating DNA

repair. Combined, these features reduce the burden of DNA damage

toxicity in glia. Therefore, in the following sections, we take a

neuro-centric approach to interpreting the effects of DNA damage

on the nervous system.

Functional roles for DNA damage in neuronal activity and
development could lead to dysfunction later in life
Another reason why neurons are so susceptible to genomic toxicity

stems from the fact that DNA breaks seem to serve a functional role

in neuronal activity. Stimulating primary neurons with bicuculline

or subjecting mice to fear learning results in the induction of DSBs

at the promoters of immediate-early genes (Fig 1) (Madabhushi

et al, 2015; Stott et al, 2021). Even simply introducing a mouse to a

new environment is quickly followed by the induction of DSBs in

neurons (Suberbielle et al, 2013, 2015). These activity-induced DSBs

are hypothesized to facilitate the expression of immediate early

genes through the rapid resolution of topological constraints at

their transcription start sites. Previously, to identify the induction of

DSBs at immediate-early gene promoters, researchers have

utilized cH2AX chromatin immunoprecipitation (ChIP) sequencing

(Madabhushi et al, 2015; Stott et al, 2021), which generates broad

peaks associated with DSB detection. More recently developed tech-

nologies may help improve the resolution of activity-associated

break induction in neurons (Rybin et al, 2021). For example, a DSB-

mapping technique known as END-seq was recently used to identify

strand breaks in human induced pluripotent stem cell (iPSC)-

derived neurons, resulting in the finding that enhancers are hotspots

for SSBs (Canela et al, 2016; Wu et al, 2021). Newer break-mapping

techniques include single nucleotide precision, Break Labeling In

Situ and Sequencing (BLISS) for DSBs (Yan et al 2017) and single-

strand break mapping at nucleotide genome level (SSiNGLe) for

both SSBs and DSBs (Cao et al, 2019). However, the utility of these

techniques has yet to be evaluated, as currently neither has been

used to analyze the location of DNA breaks in neurons in physiolog-

ical or pathological conditions.

Crucially, while DNA breaks may serve a physiological function

in learning and memory, their recurrence in neuron regulatory

sequences makes these regions extremely vulnerable to mutation

and translocation. One can imagine that over time, erroneous DSB

repair could lead to mutations that result in transcriptomic dysfunc-

tion, which could further manifest at the cellular level as impaired

synaptic signaling. In line with this hypothesis, DNA repair mapping

reveals that postmitotic neurons do indeed accumulate breaks in

regulatory elements associated with neuronal function (Fig 2) (Reid

et al, 2021; Wu et al, 2021).

In addition to postmitotic activity, it is clear that somatic muta-

tions induced by erroneous DNA damage repair or transposable ele-

ments are a common feature of neural development, giving rise to

neuron diversity through genomic mosaicism (McConnell et al,

2013; Alt & Schwer, 2018; Lodato & Walsh, 2019). While most muta-

tions are likely to be neutral, work has shown that some may

underly neurodevelopmental and neurodegenerative disease. For

example, work mapping translocations in iPSC-derived neural pre-

cursor cells (NPCs) under replicative stress reveal that DSB hotspots

reside in long genes that are important for neuronal function and

are risk factors for autism spectrum disorder and schizophrenia

(Wei et al, 2016, 2018; Wang et al, 2020). This mapping was

accomplished through a technique known as linear amplification-

mediated high-throughput, genome-wide, translocation sequencing

(LAM-HTGTS). Using this technique, endogenous DSBs are identi-

fied based on their translocation to a “bait” DSB located at a specific

region in the genome. Furthermore, a study performing whole

exome sequencing of hippocampal tissue from individuals with

Alzheimer’s disease (AD) revealed that somatic single nucleotide

variations (SNVs) increase with age and are enriched in genes that

regulate tau phosphorylation (Park et al, 2019). Accumulation of

SNVs at neurodegeneration risk genes could potentially increase risk

of disease development.

DNA repair syndromes as proxies for aging and
neurodegenerative disease
Some of the most long-standing evidence for the role of DNA dam-

age in aging and neurodegeneration stems from inheritable DNA

damage disorders, which frequently present with neurologic abnor-

malities. With the exception of AOA5, which seems to have mani-

fested exclusively in adults so far (Hoch et al, 2017: 1; O’Connor

et al, 2018: 1), the majority of DNA damage disorders typically pre-

sent in early childhood. Why then would these disorders support

the hypothesis that DNA damage plays critical roles in aging and

neurodegeneration? First, as discussed in the previous section, we

must acknowledge the pivotal role of DNA damage repair in
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neurodevelopment, a period in which the rapid proliferation of

NPCs results in profound transcriptional and replication-associated

DNA damage. Deficient DNA damage repair in these vulnerable

NPCs results in developmental abnormalities such as microcephaly,

which is a feature of many DNA damage disorders. However, many

DNA damage disorders are also defined by age-associated patholo-

gies such as progressive brain atrophy and peripheral neuropathy.

In these cases, it is likely that post-mitotic neurons are bearing the

brunt of the DNA repair deficit. Thus, whether the resulting patholo-

gies of a DNA repair deficit are developmental or age-associated

likely depends on both the brain cell type composition at the time

and the selective vulnerabilities of different neuronal subtypes to

different repair deficits. Finally, the pathogenic load of a loss-

of-function mutation accelerates the development of age-associated

pathology, which may account for a DNA damage disorder

presenting in childhood rather than later in life. In contrast, an indi-

vidual devoid of DNA repair mutations must experience the progres-

sive stress of aging (i.e. damage accumulation, oxidative stress,

declining DNA repair enzyme efficiency) in order to recapitulate the

pathogenic load of a DNA damage disorder. In the following
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Figure 2. DNA lesions and mutations identified in neural genes and the techniques used to map them.

While all cell types incur DNA damage and mutations, neurons in particular are susceptible due to activity-induced transcription. Immediate-early genes and other
neuronal genes that enable synaptic function are highly transcribed. Accordingly, they accumulate DNA lesions and mutations in their gene body (Wei et al, 2016) and
regulatory regions (Lodato et al, 2015; Reid et al, 2021; Wu et al, 2021). The induction of DSBs in the promoters of immediate-early genes facilitates gene expression
(Madabhushi et al, 2015). Over time, these insults may impair neural function (Lu et al, 2004; Lodato et al, 2018; Pao et al, 2020). (Created with BioRender.com).
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subsections, we highlight two recently developed models of DNA

damage disorders (one driven by mutant XRCC1, and the other by

mutant ATM, and APTX) that have clarified mechanisms of DNA

damage-mediated neuronal dysfunction.

Neurological diseases caused by SSBR mutations
To date, loss-of-function mutations in SSBR proteins have mani-

fested exclusively as neurodegenerative syndromes. Ataxia with

Oculomotor Apraxia types 1 and 4 (AOA1, AOA4) are caused by

mutations in DNA end-processing enzymes Aprataxin (APTX) and

Polynucleotide Kinase 30-Phosphatase (PNKP) respectively. As their

names denote, both are progressive neurodegenerative diseases typ-

ified by cerebellar atrophy, ataxia, and oculomotor apraxia. SCAN1,

caused by defective TDP1, is a similar neurodegenerative syndrome

additionally characterized by peripheral neuropathy (Takashima

et al, 2002; El-Khamisy et al, 2005). More recently, mutations have

been identified in XRCC1 (Hoch et al, 2017; O’Connor et al, 2018:

1), the protein that complexes with and stabilizes all of these end-

processing enzymes. Defective XRCC1 manifests in individuals as

Ataxia with Oculomotor apraxia Type 5 (AOA5), another slow-

progressing neurodegenerative disease.

If SSBs are left unrepaired in cycling cells, they can form DSBs

upon collision with DNA replication complexes (Ryan et al, 1991).

Cycling cells with defective SSBR can access error-free HR during

cell division to repair the resulting DSBs. However, post-mitotic

neurons are not equipped with this alternate method of repair. This

may explain why diseases of SSBR are exclusive to the nervous sys-

tem; neurons are not able to mitigate SSB accumulation without the

presence of a functioning SSBR. To this point, recent investigations

into how mutant XRCC1 confers neuropathy have helped clarify the

mechanisms by which defective SSBR could be neurotoxic. First, the

study of patient fibroblasts from an individual with AOA5 revealed

that in the absence of XRCC1, PARP1 becomes hyperactive, produc-

ing excessive amounts of poly(ADP-ribose) (Hoch et al, 2017).

Unchecked PARP1 activity can induce cell death by progressive

NAD+/ATP depletion and Parthanatos, a cell death signaling path-

way triggered by excessive poly(ADP-ribose) (David et al, 2009).

PARP1 hyperactivity was further demonstrated through conditional

deletion of XRCC1 in the mouse brain, which resulted in progressive

cerebellar degeneration, ataxia, seizure-like activity, and dysregu-

lated presynaptic calcium signaling in the hippocampus (Hoch et al,

2017; Komulainen et al, 2021).

The mechanisms by which PARP1 hyperactivity could mediate

neurotoxicity and dysregulated presynaptic calcium signaling have

been explored in an additional pair of recent publications. First, in

the absence of XRCC1, PARP1 was found “trapped” at break inter-

mediates produced during BER, thus impeding access of repair fac-

tors POLb and LIG3 (Demin et al, 2021). This indicates XRCC1 is a

crucial regulator of PARP1 activity. Second, PARP1 hyperactivity in

XRCC1-deficient cells was shown to suppress transcription through

the recruitment of ubiquitin protease USP3, leading to excessive

deubiquitination of histone substrates (Adamowicz et al, 2021).

Suppressed transcription may account for the dysregulated calcium

signaling observed in neurons from XRCC1Nes-Cre mice, specifically

through the suppression of genes that regulate calcium homeostasis.

To this point, a separate publication revealed that iPSC-derived neu-

rons accumulate SSBs at enhancers regulating neuronal activity

(Wu et al, 2021). These SSB hotspots were identified through

genome-wide mapping of DNA damage repair, dubbed SAR-seq

(Synthesis After Repair), whereby EdU incorporation into break

sites serves as a molecular landmark for break repair, and END-seq

(Wu et al, 2021). SSB accumulation at enhancers regulating neuro-

nal activity provides a tempting mechanistic explanation for the

neurodegenerative hallmarks of SSBR syndromes.

In contrast to mutations in the SSBR pathways, mutations that

dysregulate the NER pathway are additionally characterized by

symptoms occurring outside of the nervous system. For example,

the hallmark feature of Xeroderma Pigmentosum, caused by XP

gene mutations, is skin peeling and crusting due to the skin cells’

inability to repair bulky DNA modifications caused by UV exposure.

Only about 20–30% of XP individuals develop progressive neurode-

generation (Nouspikel, 2008). Furthermore, individuals with Cock-

ayne Syndrome (CS), who are diagnosed based on delayed

development, light sensitivity, and progeria, or Trichothiodystrophy

(TTD), whose hallmark feature is brittle hair, can present with

neurodevelopmental defects such as microcephaly, dysmyelination,

and intellectual disability (Diderich et al, 2011). Notably, while

postmitotic neurons are able to repair bulky DNA modifications in

both the template and non-template strand of transcribed genes,

global NER is naturally attenuated in non-transcribed regions of the

genome (Nouspikel & Hanawalt, 2000; Nouspikel, 2008). Combined

with the added stressor of NER mutations, this may account for the

neurodegenerative phenotypes observed in XP, CS, and TTD.

Neurological diseases caused by DSBR mutations
One of the most well-known DDR syndromes is Ataxia telangectasia

(AT), which is caused by mutations in ATM kinase. Individuals with

AT exhibit profound immune deficiency and increased cancer sus-

ceptibility as well as progressive cerebellar atrophy, which results in

ataxia by early childhood (McKinnon, 2012). Mutations in the MRN

complex also produce syndromes with similar clinical phenotypes.

Specifically, defective MRE11 causes AT-like disorder, which results

in cerebellar atrophy, and defective NBS1 causes Nijmegen Break-

age Syndrome, which results in microcephaly (Madabhushi et al,

2014; McKinnon, 2017).

While murine knockout of ATM recapitulates the immune defi-

cits observed in AT patients, these mutant mice seem to exhibit only

mild ataxia and cerebellar atrophy (Barlow et al, 1996; Kuljis et al,

1997). This has been a major limiting factor toward teasing out the

molecular mechanisms of AT-related neurodegeneration. Neverthe-

less, studies utilizing ATM knockout mice have still revealed impor-

tant roles for ATM in neuron health. First, abnormalities in

lysosomal storage have been observed in Purkinje cells of ATM

knockout mice, suggesting a pre-degenerative increase in cellular

stress (Barlow et al, 2000). Additionally, enriched Top1ccs are also

observed in the cerebellum, similar to what is observed in TDP1

knockout mice, suggesting ATM also plays a role in topoisomerase-I

mediated break sensing and repair (Katyal et al, 2007, 2014).

Finally, glial ATM seems to play crucial roles in neuronal health as

well. Specifically, cerebellar cultures grown from ATM knockout

mice exhibit disrupted network synchrony, which is rescued by cul-

ture with wild-type astrocytes (Kanner et al, 2018).

Notably, the development of a new mouse model of AT harbor-

ing both ATM nonsense mutation and APTX knockout was found to

better recapitulate the neurologic deficits observed in AT (Perez

et al, 2021). While progressive cerebellar atrophy and ataxia were
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not observed in mice with individual mutations in either ATM or

APTX, the combination of both mutations lowered the threshold for

neuronal genomic instability, resulting in neurological deficits

(Perez et al, 2021). This indicates that at least for murine models of

AT, the ATM knockout alone is fairly well tolerated, and additional

genomic stress is needed to bring about toxicity in neurons (Tal

et al, 2018). A follow-up study utilizing this new mouse model

explores an intriguing explanation for why certain neuronal popula-

tions seem selectively vulnerable to neurodegeneration observed in

AT (and other DNA damage syndromes for that matter) (Kwak et al,

2021). While both cerebellar neuron subtypes (Purkinje and granule

cells) experience DNA break repair deficiencies in the ATM/APTX

double mutant mouse, ATAC-seq (assay for transposase-accessible

chromatin using sequencing) revealed that Purkinje cells harbor

uniquely open regions of chromatin that were perturbed by aberrant

RNA splicing and subsequent R-loop formation (a three-stranded

structure formed by an RNA:DNA template hybrid and the non-

template DNA strand) (Kwak et al, 2021). The consequent disrup-

tion in Purkinje cell gene expression ultimately results in cerebellar

atrophy and ataxia.

DNA damage in neurodegenerative disease
In addition to observations made from genetic disorders, work char-

acterizing the molecular pathophysiology of age-associated neurode-

generative diseases further implicates DNA damage in brain aging

and disease. In the following subsections, we highlight recent publi-

cations that explore the effects of DNA damage in the context of

age-associated neurodegenerative disease, as well as recently devel-

oped DNA lesion mapping methodologies that may help us better

define regions of the neuronal genome that are vulnerable to lesion

accumulation and repair (Rybin et al, 2021).

Oxidative DNA damage
Increased oxidative DNA damage is observed in brain tissue from

aged individuals (Mecocci et al, 1993) and patients with AD (Nuno-

mura et al, 2001; Lovell & Markesbery, 2007; Weissman et al,

2007), Parkinson’s disease (PD) (Alam et al, 1997), Huntington’s

disease (HD) (Browne et al, 1997), and amyotrophic lateral sclerosis

(ALS) (Ferrante et al, 1997; Bogdanov et al, 2000). This is also

accompanied by an age-associated decline in BER efficiency

(Weissman et al, 2007; Xu et al, 2008; Sykora et al, 2015). Recently,

a mechanism for the age and disease-associated increase in 8oxoG

has been proposed. Specifically, the histone deacetylase HDAC1 has

been shown to be critical for the repair of age-associated 8oxoG

accumulation by increasing the activity of the DNA glycosylase

OGG1 (Pao et al, 2020). In fact, the pharmacological activation of

HDAC1 was shown to mitigate oxidative lesion accumulation in both

aged mice and 5XFAD mice (mice expressing human APP and

PSEN1 with five familial AD mutations), and improve cognition in

5XFAD mice (Pao et al, 2020). Importantly, the location of such oxi-

dized bases has proven to be an important mediator of their neuro-

toxicity. Specifically, the aging brain contains increased 8oxoG at the

guanine-rich promoters of genes regulating synaptic function,

resulting in their transcriptional suppression (Fig 2) (Lu et al, 2004).

8oxoG is capable of repressing gene transcription through many

mechanisms, including blocking transcription factor binding (Ghosh

& Mitchell, 1999; Moore et al, 2016), recruiting chromatin remode-

lers that result in the methylation of gene promoters(Wang et al,

2018b; Xia et al, 2017, 4), and erroneous repair through BER, which

could result in single nucleotide variations (SNVs). Accordingly,

single-cell whole genome sequencing has revealed that somatic

SNVs located near neuronal genes increase with age in human neu-

rons, presumably due to errors in BER, NER, and transcription-

associated repair (Fig 2) (Lodato et al, 2015, 2018). It is possible that

at the population level, this accumulated genomic diversity in post-

mitotic neurons could result in neuronal dysfunction.

Aberrant DNA repair may also directly mediate the severity of

neurodegenerative disorders like HD, whose toxicity is derived from

the CAG trinucleotide expansion of the Huntingtin gene. Specifi-

cally, age-dependent CAG expansion occurs in the brains of individ-

uals with HD, gradually increasing the toxicity of the Huntington

protein in the striatum. Notably, CAG expansion has been found to

be dependent upon DNA repair proteins such as OGG1, MLH1, and

MSH2, whose detection of oxidized or mismatched bases in these

repetitive elements could potentially elicit erroneous repair, leading

to CAG expansion (Kovtun et al, 2007; Bettencourt et al, 2016; Pinto

et al, 2013; Manley et al, 1999; Lee et al, 2017, 1). Gene-wide asso-

ciation studies have further identified SNPs in DNA maintenance

genes that influence the age of onset in this disease (Lee et al, 2015;

Moss et al, 2017). Therefore, erroneous DNA repair mechanisms

also directly influence HD severity.

To further understand how DNA lesions accumulate in the brain,

multiple sequencing techniques are now available that map these

DNA lesions genome-wide. Previously, studies have approximated

the location of 8oxoG lesions through OGG1 ChIP-seq (Hao et al,

2018), which is a somewhat indirect method as it captures lesion

detection rather than the lesion itself. Newer antibody or biotin-

conjugate methods have also been developed to directly target

8oxoG (Ding et al, 2017; Amente et al, 2019); however, these

techniques only permit a window of resolution of around 150 nucle-

otides. To this end, single-nucleotide resolution DNA lesion

sequencing techniques are now being developed that could better

define oxidative hotspots in the neuron genome. One such sequenc-

ing technique, Click-Code-seq, utilizes BER excision enzymes and

click chemistry to specifically tag 8oxoG (Wu et al, 2018). Another

sequencing technique, Nick-seq, is capable of detecting a variety

of DNA modifications based on the enzyme or chemistry used to

first convert the DNA modification to a strand break (Cao et al,

2020). It will be interesting to see if these new technologies can be

applied to models of neurodegeneration as well as the postmortem

human brain.

SSBs and DSBs
A plethora of studies document increased levels of both SSBs and

DSBs in AD, HD, PD, and ALS (Mullaart et al, 1990; Adamec et al,

1999; McKinnon, 2013, 2017; Madabhushi et al, 2014; Alt & Schwer,

2018; Shanbhag et al, 2019; Thadathil et al, 2021), and their accu-

mulation seem to correlate with important milestones in disease

progression. Specifically, increased DDR foci are observed in neu-

rons from individuals with mild cognitive impairment (MCI) and

AD compared to aged counterparts (Shanbhag et al, 2019). Simi-

larly, DSB marker proteins correlate with cognitive impairment in

individuals with low levels of amyloid and tau pathology (Simpson

et al, 2015). More recently, increased ROS and DSBs have also been

documented in neurons derived directly from sporadic AD patient

fibroblasts, indicating that age-dependent features of genomic
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instability are recapitulated in human in vitro models of disease

(Mertens et al, 2021). These findings have led to the hypothesis that

DNA strand breaks may be a contributing factor to disease progres-

sion (Chow et al, 2019).

As previously discussed, one mechanism of DNA break-

mediated neurodegeneration may stem from PARP1 hyperactivity.

Increased PARP1 activation and elevated poly(ADP-ribose) has

been observed in numerous neurodegenerative disorders and their

associated animal models (Thapa et al, 2021; Mao & Zhang

2022). For example, oxidative damage-induced poly(ADP-ribose)

mediates a-synuclein aggregation and consequent neurodegenera-

tion in PD (Kam et al, 2018), facilitates the formation of cytoplas-

mic TDP-43 foci in ALS (McGurk et al, 2018a, 2018b), and can

mediate neuroinflammatory activity in AD (Kauppinen et al,

2011). In combination with studies utilizing XRCC1-deficient neu-

rons, these findings have motivated the development of PARP

inhibitors as a potential therapeutic for a variety of nervous sys-

tem disorders (Thapa et al, 2021).

In addition to PARP1 activity, many genes that encode the build-

ing blocks of neurodegenerative proteinopathies have been found to

play a role in DDR as well. For example, the genes whose mutations

can cause ALS or frontotemporal dementia (fused in sarcoma (FUS)

and transactive response DNA binding protein 43 (TDP-43)) are

involved in SSB and DSB detection and repair. FUS is an RNA/DNA

binding protein that has been found to facilitate DSB repair through

its colocalization with HDAC1 (Wy et al, 2013, 1). Furthermore,

phosphorylation of FUS occurs in response to DSB detection by pro-

teins ATM and DNA-PK (Gardiner et al, 2008; Deng et al, 2014),

and FUS activates and recruits the XRCC1-LIG3 complex to sites of

oxidative DNA damage in a PARP1-dependent manner (Naumann

et al, 2018; Wang et al, 2018a). Recently, TDP-43 was also found to

be directly involved in NHEJ through its recruitment and stabiliza-

tion of the XRCC4-LIG4 complex at DSBs (Guerrero et al, 2019;

Mitra et al, 2019). The Huntington protein may also play a role in

DNA damage detection, potentially serving as a scaffold for ATM at

sites of oxidized DNA (Maiuri et al, 2017), and ATXN3 and PNKP at

sites of transcription-coupled DNA break repair (Gao et al, 2019).

Finally, a-synuclein, whose cytoplasmic aggregation is a hallmark of

PD, is able to bind double-strand DNA and facilitate NHEJ in

homeostasis (Schaser et al, 2019). However, toxic aggregation of a-
synuclein in the nucleus or cytosol elicits the accumulation of DSBs

(Vasquez et al, 2017; Milanese et al, 2018). Tau may also play a

role in DSB repair as well, as its deletion in the mouse brain leads to

the accumulation of DSB foci in neurons (Violet et al, 2014; Mansur-

oglu et al, 2016).

While these findings have firmly established DNA breaks as a

mechanism of neurodegenerative disease, the mechanisms by which

break location may contribute to disease progression are not well

described. To this end, genome-wide profiling of DNA breaks in

post-mitotic neurons have revealed that their locations are likely

major mediators of their toxicity. As described earlier, the use of

nucleoside analog incorporation to map DNA repair has led to the

observation that postmitotic neurons harbor SSBs and other forms

of breaks in the regulatory regions of genes that modulate synaptic

plasticity and neuronal function (Reid et al, 2021; Wu et al, 2021).

It follows that while these breaks may be functionally relevant, over

time, their erroneous repair could lead to disruptive translocations,

mutations, and genomic instability.

Neuroinflammation associated with DNA damage

In addition to DNA damage, neuroinflammation has emerged as a

core feature and mechanism of neurodegenerative disease. Indeed,

many of the risk genes associated with AD mediate their effects

through microglia, the brain-resident macrophages (Glass et al,

2010; Heneka et al, 2015; Nott et al, 2019). More recently,

researchers have identified senescent-like brain cells in murine

models of AD and tauopathy, and their removal via senolytic drugs

seems to mitigate pathology and improve cognition (Bussian et al,

2018; Musi et al, 2018; Zhang et al, 2019; Ogrodnik et al, 2021).

Thus, senescence is now considered as a potential driver of neuroin-

flammation and neurodegeneration. Importantly, while not well-

studied in the context of the degenerating brain, the mechanistic

link between DNA damage and senescence has already been defined

in great detail (d’Adda di Fagagna, 2008; Miyamoto, 2011; Li &

Chen, 2018). Below, we discuss recent mechanistic insights between

DNA damage and neuroinflammation, and how DNA damage may

influence neurodegeneration through the activation of senescent-

like signaling from different brain cell types.

DNA damage induces senescence
DNA damage is a potent activator of inflammatory signaling and

senescence (Copp�e et al, 2008; Rodier et al, 2009; Brzostek-Racine

et al, 2011; H€artlova et al, 2015). Initially defined by the permanent

cessation of cell division and evasion of apoptosis, senescence is an

age-associated cellular state that is thought to contribute to organis-

mal aging, cancer, and more recently, neurodegeneration (Di Micco

et al, 2021). Importantly, removal of senescent cells promotes

healthy aging in mice, making senescence-associated inflammatory

signaling an attractive target of therapeutic intervention for aging

and age-related disease (Tilstra et al, 2012; Childs et al, 2015; Baker

et al, 2016; Ogrodnik et al, 2021). Senescent cells can be identified

by a variety of factors, one being the secretion of pro-inflammatory

cytokines (termed senescence-associated secretory phenotype

(SASP)) to modulate their microenvironment. Initially, induction of

persistent DDR signaling in cell cultures including fibroblasts

(Copp�e et al, 2008; Rodier et al, 2009), bone marrow-derived mac-

rophages (BMDMs) (H€artlova et al, 2015), and primary monocytes

(Brzostek-Racine et al, 2011) was found to elicit the SASP (Copp�e

et al, 2008). This secretory profile was found to be at least partially

ATM-dependent, implying the importance of DSB repair specifically

in immune activation (Rodier et al, 2009; Brzostek-Racine et al,

2011). Previous work with AT fibroblasts had shown that the canon-

ical immune transcription factor NF-kB is activated in an ATM-

dependent manner following treatment with a radiomimetic, ioniz-

ing radiation, or topoisomerase inhibitor (Lee et al, 1998; Piret et al,

1999; Li et al, 2001). This suggested NF-kB was critical for the

expression of pro-inflammatory signaling molecules following DNA

damage. Subsequent studies confirmed that following DSB induc-

tion, activated ATM couples with a number of protein intermediates

leading to its cytoplasmic transport and downstream activation of

NF-kB (Hinz et al, 2010; Wu et al, 2010; Miyamoto, 2011). In addi-

tion to inducing the expression of inflammatory signaling proteins,

NF-kB also exerts anti-apoptotic activity through the expression of

caspase inhibitors such as FLIP, XIAP, and c-XIAP. This directly

counteracts pro-apoptotic activity mediated by DNA damage-

induced p53 signaling. Thus, the interplay between NF-kB and p53
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strongly influence cellular fate following DNA damage accumulation

(Karin & Lin, 2002).

Interestingly, a subsequent study revealed that DNA damage can

also evoke type-I interferon signaling in AT cells due to the accumu-

lation of cytosolic DNA fragments, suggesting activation of inflam-

matory signaling via DNA damage can occur independent of the

DSB DDR (H€artlova et al, 2015). Rather, this pathway is initiated

through the detection of self-DNA in the cytosol, the source of

which can be DNA damage (Dou et al, 2017; Erdal et al, 2017;

Gl€uck et al, 2017; Yang et al, 2017), micronuclei rupture (Harding

et al, 2017; Mackenzie et al, 2017), deficient nuclease activity (Ahn

et al, 2012; Gao et al, 2015), or de-repression of retrotransposable

elements (De Cecco et al, 2019). In addition to genomic DNA, mito-

chondrial DNA (mtDNA) is also a major source of innate immune

activation (Luna-S�anchez et al, 2021; Lin et al, 2022). Cytosolic self-

DNA are sensed by the nucleic acid sensor cyclic GMP-AMP

(cGAMP) synthase (cGAS) which produces the second messenger

cGAMP upon binding to free-floating DNA. The production of

cGAMP in turn activates Stimulator of IFN Genes (STING). The acti-

vation of STING mediates a number of downstream signaling cas-

cades, including the activation of both IRF3 and NF-kB, thus

resulting in the expression of interferons and pro-inflammatory cyto-

kines (Abe & Barber, 2014; Dunphy et al, 2018; Li & Chen, 2018).

Therefore, DNA damage has direct molecular links to senescence-

associated inflammatory signaling, both through DDR pathway acti-

vation and the mis-localization of DNA itself (Fig 3).

Additional mechanisms exist to elicit inflammatory gene transcrip-

tion following the detection of cytosolic nucleic acids (Miller et al,

2021). This includes TLR9 (Toll-like receptor 9), which binds to

double-stranded DNA engulfed in endosomes, particularly bacterial

DNA or mtDNA. This recruits adaptor protein MYD88 (myeloid differ-

entiation primary response 88) to activate NFjB and stimulate the
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Figure 3. DNA damage initiates inflammatory signaling through DDR and cGAS-STING. ATM-NF-kB pathway.

The activation of ATM by DSBs leads to its coupling with NEMO in the nucleus. NEMO is phosphorylated by ATM and SUMOylated by PIASy in a PARP1-dependent man-
ner, which is not shown here. These modifications lead to NEMO monoubiquitination, and the ATM-NEMO complex is transported to the cytoplasm. Here, NEMO part-
ners with IKKb and IKKa to form the active Inhibitor of KappaB Kinase (IKK) complex. The IKK phosphorylates IkB, allowing NF-kB to be transported to the nucleus. The
most common form of NF-kB is the heterodimer p50-p65, shown here. The phosphorylation of IkB leads to its polyubiquitination and subsequent degradation. cGAS-
STING pathway: DSBs result in the leakage of self-DNA into the cytosol, which is sensed by cGAS. cGAS generates second messenger cyclic GAMP. cGAMP binds to STING,
which activates TANK-binding kinase 1 (TBK1), which in turn activates IFN Regulatory Factor 3 (IRF3). Homodimerized IRF3 transports to the nucleus and activates the
expression of inflammatory genes. STING also facilitates the formation of the IKK complex, which phosphorylates IkB to activate NF-kB. TLR9 pathway: Endosomal
double-strand DNA is bound by TLR9, activating MyD88, which interacts with and activates IRAK1,2,and 4. IRAK1 and 4 dissociate from MyD88 and activate TRAF6. TRAF6
ubiquitinates NEMO, a member of the IKK complex that results in NF-kB translocation into the nucleus. Inflammasome pathway: NLRP3 detects cytosolic DNA, leading
to the assembly of the NLRP3, ASC, pro-Caspase I inflammasome. pro-Caspase I autoproteolytically matures to functional Caspase I, which cleaves pro-IL1b and pro-IL18
to generate functional IL1b and IL18.
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expression of inflammatory cytokines. An additional mechanism of

cytosolic DNA-mediated inflammation is through the NLRP3 inflam-

masome, which senses cell stressors (such as cytosolic DNA) to acti-

vate the cleavage of pro-1L1b and pro-IL18 via Caspase I to elicit their

secretion. In particular, microglial NLRP3 has been shown to be a

major driver of amyloid beta and tau toxicity in AD, suggesting its acti-

vation has important implications for disease progression (Halle et al,

2008; Venegas et al, 2017; Ising et al, 2019).

Interestingly, work characterizing the neurodevelopmental

defects observed in the neuroinflammatory disorder Aicardi-

Gouti�eres Syndrome (AGS), a type I interferonopathy, indicates that

DNA damage can mediate cellular toxicity through multiple different

mechanisms in the same disease. AGS is caused by mutations in

genes that regulate nucleic acid metabolism. For example, deficits in

RNASEH2, an enzyme responsible for removing ribonucleotides

from DNA and resolving R-loops, comprise more than half of AGS

diagnoses (Crow & Manel, 2015). Accordingly, RNASEH2 murine

models of AGS reveal that CGAS-STING sensing of micronuclei is

the cause for type I IFN signaling in this disease (Mackenzie et al,

2016, 2017; Pokatayev et al, 2016). However, recent work investi-

gating the cause of AGS neurotoxicity revealed that it is the DDR-

mediated activation of p53, not CGAS-STING, that causes neuron

cell death, although increased micronuclei and R-loops were

observed in astrocytes (Aditi et al, 2021). This indicates that differ-

ent phenotypes of DNA damage response deficits are mediated by

different pathways, which may have preferential function in differ-

ent cell types.

Senescence-associated inflammation in brain aging and
neurodegeneration
It has since been shown that removal of senescent cells in the

brain mitigates neurofibrillary tangle (NFT) burden, amyloid bur-

den, neuronal loss, and cognitive decline in mouse models of tauo-

pathy (Bussian et al, 2018; Musi et al, 2018), AD (Zhang et al,

2019), PD (Chinta et al, 2018), and normal aging (Ogrodnik et al,

2021). Notably, each of these studies attribute different cell types

as the primary sources of senescence. For example both microglia

(Bussian et al, 2018), astrocytes (Bussian et al, 2018), and neurons

(Musi et al, 2018) have been found to display senescent-like phe-

notypes in Tau P301S mice, and have been proposed as drivers of

cognitive decline and neurodegeneration. Additionally, senescent

astrocytes have been identified as modulators of PD pathology

(Chinta et al, 2018). Senescent-like phenotypes have also been

identified in oligodendrocyte precursor cells (OPCs) in APP/PS1

mice, and their removal has been shown to mitigate amyloid load

and cognitive decline (Zhang et al, 2019). Finally, removal of

senescent microglia from aged mice has been found to improve

cognition (Ogrodnik et al, 2021). In total, these findings place

senescence as an encouraging target for therapeutic intervention in

neurodegenerative disease, but bring into question how senescence

presents in different brain cell types, and how this might affect the

progression of various diseases.

Studies have also made more direct links between DNA damage,

neuroinflammation, and neurotoxicity. For example, ATM-deficient

microglia have been shown to accumulate cytosolic DNA, thus acti-

vating the cGAS-STING pathway to elicit pro-inflammatory and neu-

rotoxic signals (Quek et al, 2017; Song et al, 2019). Interestingly,

sequencing the cytosolic DNA fragments from these microglia

revealed that most were derived from the nuclear DNA as intergenic

repetitive elements, suggesting that the source of cytosolic DNA

may not be random (Song et al, 2021). Recent single-nucleus RNA

sequencing of AT cerebella reveals that microglial activation likely

precedes neuronal degeneration, further emphasizing the role of

microglia in ATM-mediated neuropathology (Lai et al, 2021).

The role of neuronal DNA damage in neuroinflammation
Notably, the concept of a senescent-like phenotypes in neurons

has been particularly controversial, presumably because senes-

cence was initially defined in the context of cycling cells (Gillispie

et al, 2021; Sah et al, 2021). Nevertheless, observations of

senescent-like phenotypes in neurons have been reported for quite

some time. As early as 2012, the term “senescence” was used to

describe pathological features of neurons in the aged mouse brain,

including increased DSBs, lipid peroxidation, and senescent-

associated b-galactosidase staining (Jurk et al, 2012). Here, DSBs

were considered the major driver of these senescence-associated

phenotypes because knock-out of p21, a protein activated by p53

to initiate DSB-induced cell cycle arrest, was able to mitigate their

enrichment. Interestingly, re-inspection of older transcriptional data

also revealed similar enrichment in AD neurons. In a 2006 study,

neurons with high levels of tau pathology or no tau pathology

were isolated from AD brain tissue and transcriptionally character-

ized (Dunckley et al, 2006). This dataset was later re-analyzed to

show that neurons with high levels of tau were enriched for signa-

tures of DNA damage and senescence (Dunckley et al, 2006; Musi

et al, 2018). Senescent-like phenotypes in neurons have also been

noted in other models of aging and neurodegeneration (Chow et al,

2019; Moreno-Blas et al, 2019).

Because DNA damage accumulates in neurons early on in AD,

and because it is also a primary driver of senescence, it is worth

hypothesizing that DNA lesions mediate neurodegeneration at least

in part through neuronal senescence, although senescence in other

cell types clearly also plays important roles in neurodegeneration.

Nevertheless, future research will have to dissect how different cell

types react to senescent neurons, and how this may facilitate the

development of neurodegenerative disease. Importantly, as DNA

damage is a well-established source of inflammatory signaling, this

uncovers a previously unstudied aspect of neuronal response to

DNA damage. Compared to microglia and astrocytes, the capacity

for inflammatory signaling in neurons has received little attention.

Indeed, the protein machinery required to detect cytosolic DNA such

as STING is reported to be low in neurons compared to glial cells

(Mathur et al, 2017; Song et al, 2019). However, work examining

the immune response to neurotropic viral infections reveals neuron-

derived inflammatory signaling is a critical feature of the antiviral

response (Klein et al, 2005; Chakraborty et al, 2010; Di Liberto

et al, 2018). The detection of viral nucleic acids utilizes the same

cGAS-STING pathway as that described for detection of self-DNA

within the cytosol of senescent cells, suggesting that the mechanism

of innate immune signaling in DSB-bearing neurons may be of some

significance. Indeed, observations of neuron-derived immune signal-

ing at early stages of neurodegenerative disease indicate that this

may play a role in disease progression (Dutta et al, 2020; Weliko-

vitch et al, 2020). Notably, neuronal cGAS-STING has been shown

to be activated in models of HD and ALS, suggesting that toxic pro-

tein aggregates may stimulate DNA release (mitochondrial or

10 of 16 EMBO reports 23: e54217 | 2022 ª 2022 The Authors

EMBO reports Gwyneth Welch & Li-Huei Tsai



genomic) to initiate NFjB activation in neurons (Sharma et al,

2020; Yu et al, 2020).

Intriguingly, the inflammatory transcription factor NF-kB also

plays neuron-specific roles in learning and memory. Inhibition of

NF-kB signaling specifically in neurons impairs synaptic plasticity

and synaptogenesis (O’Mahony et al, 2006; Boersma et al, 2011).

Furthermore, suppression of neuronal NF-kB in vivo renders neu-

rons more susceptible to kainic acid-induced neurotoxicity (Fridma-

cher et al, 2003). These data suggest that on top of its function as a

pro-survival and pro-inflammatory transcription factor, NF-kB is

also critical for homeostatic neuronal function (Kaltschmidt &

Kaltschmidt, 2009). Thus, dysregulated NF-kB signaling in neurons

could be a key mechanism linking DNA damage accumulation,

altered synaptic function, and disease progression.

Conclusions

DNA damage has long been associated with the aging brain and

neurodegeneration; however, the exact mechanisms by which DNA

lesions drive these processes are unclear. The utilization of murine

models of DNA damage and DNA break mapping techniques have

allowed us to identify how DNA damage may regulate the expres-

sion of genes essential for neuronal function, and how this might

lead to dysfunction later in life. While these are mechanisms specific

to neurons, emerging evidence also suggests that many cell types in

the brain, including astrocytes, microglia, oligodendrocytes, and

neurons, may mediate the cytotoxicity of DNA damage through

senescence-associated signaling. However, it remains to be seen

whether DNA damage itself is the main inducer of senescence in

each of these cell types. Regardless, it is clear that DNA damage can

elicit neuron dysfunction broadly through two distinct mechanisms.

First, the location of the lesion has a significant impact on transcrip-

tional mechanisms required for normal cell function. Second, the

downstream signaling pathways of lesion detection, whether they

be through DDR or cytosolic nucleic acid sensing, can elicit apopto-

tic or inflammatory signaling that lead to neurotoxicity.
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