
Genome Biology 2003, 4:216

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

Review
Matrix metalloproteinases: old dogs with new tricks
Robert PT Somerville, Samantha A Oblander and Suneel S Apte

Address: Department of Biomedical Engineering, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.

Correspondence: Suneel S Apte. E-mail: aptes@bme.ri.ccf.org

Abstract

The matrix metalloproteinase family in humans comprises 23 enzymes, which are involved in
many biological processes and diseases. It was previously thought that these enzymes acted only
to degrade components of the extracellular matrix, but this view has changed with the discovery
that non-extracellular-matrix molecules are also substrates.
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Four decades ago a collagenase was discovered that was

responsible for involution of the tadpole tail in amphibian

morphogenesis [1]. Today, the matrix metalloproteinase

(MMP) family, to which this collagenase belongs, has

expanded to include 23 gene products in humans (Table 1),

which encode zinc-dependent and calcium-dependent pro-

teases that cleave within a polypeptide (endopeptidases).

There are also two other large families that have major roles

in extracellular proteolysis, the ADAM family (A disintegrin

and metalloprotease domain, with about 33 members in

humans) and the ADAMTS family (A disintegrin-like and

metalloprotease domain (reprolysin type) with throm-

bospondin type I repeats, with 19 members). Traditionally,

the MMPs have always been thought to cleave components

of the extracellular matrix (ECM). As the ECM was regarded

for a long time as nothing more than a passive structure

used for cell attachment, mechanical support and force

transmission, extracellular proteases such as MMPs were

thought to simply remodel the ECM for its homeostasis or

to facilitate cell migration. This view has changed, however

[2]: the ECM is now known to contain growth factors, their

binding proteins, and other bioactive molecules, as well as

binding sites for cell-surface molecules, some of which are

revealed only after proteolysis. The proteases responsible

for turnover of the ECM therefore contribute significantly

to its dynamic interactions with cells. More recently, con-

siderable evidence has emerged showing that the role of

MMPs goes far beyond that of digesting ECM molecules

alone; they are now known to process a number of cell-

surface and soluble regulators of cell behavior (summarized

in Table 1). Mouse genetic models and human diseases have

revealed unexpected biological functions of MMPs (summa-

rized in Table 2); many of the phenotypes of these animals

are currently unexplained and suggest that there may be as

yet unknown substrates for these enzymes that are not

ECM components.

One consequence of the previously held view of MMPs as

solely ECM-excavating enzymes was the belief that they were

uniformly harmful in cancer and should therefore be tar-

geted in cancer therapy. This was not entirely without basis,

given that many MMPs are highly expressed in various

cancers, both by tumor cells and in surrounding stromal

cells such as macrophages. As recent reviews [3-6] have

pointed out, however, the unexpectedly complex role of

these enzymes in cancer is leading to their re-evaluation as

drug targets, or at the very least, a pause while some of the

evidence is analyzed in more detail. Although this is disap-

pointing from the clinical perspective, the study of these

enzymes has never been more exciting than it is today,

because the human genome project has led to identification

of all MMPs, and genetic alterations in individual MMP

genes have provided new insights into their functions. In

this article, we summarize some of the essential concepts in

the MMP field at present and the new insights that are

pouring in from biological studies. 
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Table 1

Human matrix metalloproteases and their substrates

Protein name* Alternative names Collagenous substrates Non-collagenous ECM substrates Non-structural ECM component substrates

MMP-1 Collagenase-1 Collagen types I, II, III,  Aggrecan, casein, nidogen, serpins, �1-antichymotrypsin, �1-antitrypsin/
VII, VIII, X, and gelatin versican, perlecan, proteoglycan link �1-proteinase inhibitor, IGFBP-3, IGFBP-5, 

protein, and tenascin-C IL-1�, L-selectin, ovostatin, recombinant
TNF-� peptide, and SDF-1

MMP-2 Gelatinase-A Collagen types I, IV, V, Aggrecan, elastin, fibronectin, laminin, Active MMP-9, active MMP-13, FGF R1, 
VII, X, XI, XIV, and gelatin nidogen, proteoglycan link protein, IGF-BP3, IGF-BP5, IL-1�, recombinant 

and versican TNF-� peptide, and TGF-�

MMP-3 Stromelysin-1 Collagen types II, IV, IX, Aggrecan, casein, decorin, elastin, �1-antichymotrypsin, �1-proteinase
X, and gelatin fibronectin, laminin, nidogen,  inhibitor, antithrombin III, E-cadherin, 

perlecan, proteoglycan, proteoglycan fibrinogen, IGF-BP3, L-selectin, ovostatin, 
link protein, and versican pro-HB-EGF, pro-IL-�, pro-MMP-1, pro-

MMP8, pro-MMP-9, pro-TNF�, and SDF-1

MMP-7 Matrilysin-1, Collagen types I, II, III, V, Aggrecan, casein, elastin, enactin,  �4 integrin, decorin, defensin, E-cadherin, 
neutophil IV, and X laminin, and proteoglycan link Fas-L, plasminogen, pro-MMP-2, pro-MMP-7, 
collagenase protein pro-TNF�, transferrin, and syndecan

MMP-8 Collagenase-2 Collagen types I, II, III, V, Aggrecan, laminin, and nidogen �2-antiplasmin and pro-MMP-8
VII, VIII, X, and gelatin

MMP-9 Gelatinase-B Collagen types IV, V, VII, Fibronectin, laminin, nidogen, CXCL5, IL-1�,  IL2-R, plasminogen, 
X, and XIV proteoglycan link protein, and  pro-TNF�,  SDF-1, and TGF-�

versican

MMP-10 Stromelysin-2 Collagen types III, IV, V, Fibronectin, laminin, and nidogen Pro-MMP-1, pro-MMP-8, and pro-MMP-10
and gelatin

MMP-11 Stromelysin-3 Laminin �1-antitrypsin, �1-proteinase inhibitor, 
and IGFBP-1

MMP-12 Macrophage Elastin Plasminogen
metalloelastase

MMP-13 Collagenase-3 Collagen types I, II, III, IV, Aggrecan, fibronectin, laminin, Plasminogen activator 2, pro-MMP-9, 
V, IX, X, XI, and gelatin perlecan, and tenascin pro-MMP-13, and SDF-1

MMP-14 MT1-MMP Collagen types I, II, III, Aggrecan, dermatan sulphate �v�3 integrin, CD44, gC1qR, pro-MMP2, 
and gelatin proteoglycan, fibrin, fibronectin, pro-MMP-13, pro-TNF�, SDF-1, and tissue 

laminin, nidogen, perlecan, tenascin, transglutaminase 
and vitronectin

MMP-15 MT2-MMP Collagen types I, II, III, Aggrecan, fibronectin, laminin, nidogen,  Pro-MMP-2, pro-MMP-13, and tissue 
and gelatin perlecan, tenascin, and vitronectin transglutaminase

MMP-16 MT3-MMP Collagen types I, III, Aggrecan, casein, fibronectin, laminin, Pro-MMP-2 and pro-MMP-13
and gelatin perlecan, and vitronectin

MMP-17 MT4-MMP Gelatin Fibrin and fibronectin

MMP-19 RASI-1 Collagens types I, IV, Aggrecan, casein, fibronectin, laminin, 
and gelatin nidogen, and tenascin

MMP-20 Enamelysin Aggrecan, amelogenin, and cartilage 
oligomeric protein

MMP-21 �1-antitrypsin

MMP-23 CA-MMP Gelatin

MMP-24 MT5-MMP Gelatin Chondroitin sulfate, dermatin sulfate, Pro-MMP2 and pro-MMP-13
and fibronectin

MMP-25 Leukolysin, MT6-MMP Collagen type IV and gelatin Fibrin and fibronectin Pro-MMP-2

MMP-26 Matrilysin-2, Collagen type IV Casein, fibrinogen, and fibronectin �1-proteinase inhibitor
endometase and gelatin

MMP-28 Epilysin Casein

*Although there are 23 human MMPs, 29 numbers have been used in the literature. The symbols MMP-4, MMP-5, MMP-6 and MMP-29 are redundant in
humans and are no longer in use; MMP-18 corresponds to a Xenopus laevis collagenase, for which no human ortholog is known, and a human protein
published as MMP-18 is now called MMP-19. Two nearly identical human genes found in a segment of chromosome 1 that is duplicated were called
MMP21 and MMP22 but are now referred to as MMP23A and MMP23B. 



Classification and evolution
There are 23 human MMP genes (Table 1). Before this

genetic diversity was known, it was customary to divide the

MMPs into collagenases, gelatinases, stromelysins, elastase

and others, on the basis of the known substrates, but as

some MMPs have overlapping substrate specificities, the

boundary between the previously used enzyme classes is

now blurred. Nevertheless, the trivial names are often

useful, particularly if they reflect a function or a distinct

structural feature or location, and they have therefore been

retained (and are indicated in Table 1). MMP genes are

structurally similar to each other, indicating that they

evolved by duplication of a common ancestral gene followed

by divergent evolution. A number of MMP genes (MMP1,

MMP3, MMP7, MMP8, MMP10, MMP12, MMP13, MMP20,

and MMP26) are found in a cluster on human chromosome

11 (11q21-23) [7,8]. The human and mouse genomes appear

not to contain an identical complement of MMPs, which may

complicate the use of transgenic mice for insights into func-

tions of the human genes. For example, human MMP1 does

not have a clear-cut ortholog in the mouse but instead is

most similar to two genes, mColA and mColB, whose func-

tions are at present unknown [9]. 

MMP genes have been identified in a number of non-verte-

brate species, and the number will undoubtedly increase as

more genome projects are completed. The nematode

Caenorhabditis elegans has a number of MMPs, including

C31, H19 and Y19 [10]; there is a Drosophila MMP [11]; sea

urchins contain an MMP essential for hatching, known as

envelysin [12]; and the hydra has an MMP that is required

for foot-process development [13]. Interestingly, there is an

MMP in green algae [14] as well as in plants such as the

soybean [15] and Arabidopsis thaliana [16]. 

Domain organization and protein structure
The close evolutionary relationship between MMPs is further

reflected in the conservation of their domain structure

(Figure 1) and of their mechanisms of catalysis and regula-

tion. Most MMPs are secreted, although some are anchored

to the cell surface by a transmembrane segment (MMP-14,

MMP-15, MMP-16 and MMP-24, referred to as membrane-

type MMPs or MT-MMPs) [17] or via a glycosylphosphoinosi-

tol (GPI) anchor (MMP-17 and MMP-25, sometimes also

included in the MT-MMPs) [18]. Most of the MT-MMPs are

type I transmembrane proteins - oriented with the amino ter-

minus outside the cell - although one, MMP-23, is unusual in

apparently having the amino terminus positioned intracellu-

larly (a type II orientation) [19]. The MT-MMPs have a single

transmembrane domain followed by a short, highly con-

served cytosolic segment of 20 amino acids. ‘Soluble’ MMPs

may also be located at the cell surface via interaction with

membrane-bound molecules or complexes such as integrin

�v�3 [20], the extracellular matrix metalloproteinase inducer

EMMPRIN/CD147 [21], the hyaluronan receptor CD44 [22],
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Table 2

Phenotypes of knockout mice lacking MMP genes

Genotype Phenotype

MMP2-/- Suppression of experimentally induced pancreatic carcinogenesis [85]; suppression of angiogenesis and tumor growth [86]; delayed 
mammary gland differentiation; mild growth retardation.

MMP3-/- Accelerated mammary gland adipogenesis [87]; delayed incisional wound healing [88]; resistance to contact dermatitis [89]; impaired ex 
vivo herniated disc resorption [90].

MMP7-/- Suppression of experimental adenoma growth [91]; defective innate intestinal immunity [70]; impaired tracheal wound re-epithelization 
[92]; defective prostate involution after castration [93]; impaired ex vivo herniated disc resorption [94]; impaired transepithelial migration 
of neutrophils [32]; reduced syndecan-1 shedding [32].

MMP9-/- Suppression of experimentally induced skin carcinogenesis [95]; suppression of experimentally induced pancreatic carcinogenesis [85]; 
decreased experimental metastasis [86]; delayed growth plate vascularization [96]; abnormal endochondral ossification [96]; defective in 
osteoclast recruitment [97]; resistance to bullous pemphigoid (skin blistering) [98]; resistance to experimentally induced aortic aneurysms 
[99]; prolonged contact dermatitis [89]; protection from ventricular enlargement after infarction [100]; protection from cardiac rupture 
after infarction [101]; diminished peripheral mononucleocyte infiltrate in glomerular nephritis [102]; impaired smooth muscle cell migration
and geometrical arterial remodeling [103,104]; impaired cellular infiltration and bronchial hyper-responsiveness during allergen-induced 
airway inflammation [105]; impaired recruitment of stem and progenitor cells from the bone marrow following irradiation [106]; 
myocardial protection from ischemia and/or reperfusion [107].

MMP11-/- Suppression of experimentally induced mammary carcinogenesis [108]; decreased tumor cell survival and growth [109]; accelerated 
neointima formation after vessel injury [110].

MMP12-/- Resistance to cigarette-smoke-induced emphysema [111].

MMP14-/- Severe abnormalities in bone and connective tissue [76,77]; reduced collagen turnover [76]; impaired endochondral ossification [76,77]; 
defective angiogenesis [76,77].

Data in the table are modified from [5,77,83,112].



domain - most commonly a domain similar to sequences in

the heme-binding protein hemopexin and the soluble

fibronectin-related protein vitronectin [24,25] (see Figure 1).

The protease domain contains a signal peptide, the pro-

domain, and the catalytic module, in that order. MMP-2 and

MMP-9, which are the main gelatinases, differ from other

MMPs in that they have three tandem fibronectin type II

cell-surface heparan-sulfate proteoglycans such as syndecans

[23], or transmembrane MMPs [17]. 

All MMPs except MMP-7 (matrilysin-1) and MMP-26

(endometase or matrilysin-2) consist of two domains con-

nected by a flexible proline-rich hinge peptide. The domains

comprise a protease domain and an ancillary (helper)

Figure 1
The domain composition and important structural features of the various subtypes of MMPs.
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repeats within the amino terminus of the catalytic module

that mediate gelatin binding (Figure 1c) [26-28]. MMP-9 has

an additional insert within its hinge region similar to colla-

gen V; its function is unknown. MMP-7 and MMP-26 [29]

lack the hemopexin/vitronectin-like domain (Figure 1a),

whereas MMP-23 has a unique cysteine- and proline-rich

sequence and a domain similar to the immunoglobulin-like

domains of the interleukin-1 receptor instead of the hemo-

pexin/vitronectin-like domain (Figure 1g) [30]. 

X-ray crystal structures are now available for a number of

MMPs, including full-length activated enzymes and zymogen

forms that include the pro-domain [31]. Crystallography has

revealed how a cleft in the active site contributes to enzyme

specificity [32]. The catalytic domain of all MMPs has a

unique signature of amino-acid residues (His-Glu-X-Gly-

His-X-X-Gly-X-X-His-Ser, where X is any amino acid)

within the active site [25] that coordinates the catalytic zinc

atom. The hemopexin/vitronectin-like domain consists of

four parts arranged symmetrically around a central axis,

forming a four-bladed propeller-like structure that helps to

confer substrate-binding specificity on the enzyme.

Regulation of MMPs
In keeping with their potential for tissue destruction, MMPs

are stringently regulated at multiple levels, including tran-

scription, activation of the zymogen forms, extracellular

inhibitors, location inside or outside the cell and internaliza-

tion by endocytosis. The pro-domain keeps the enzyme

latent using the thiol group of a highly conserved, unpaired

cysteine at its carboxyl terminus. This conserved cysteine

acts as a fourth inactivating ligand for the catalytic zinc atom

in the active site, resulting in the exclusion of water and ren-

dering the enzyme inactive (Figure 2). For the enzyme to be

activated, this cysteine-zinc pairing needs to be disrupted by

a conformational change or by proteolysis (such as by the

protease plasmin or by other MMPs). Once the thiol group is

replaced by water, the enzyme is able to hydrolyze the

propeptide to complete the activation process and can then

cleave the peptide bonds of its substrates. This system of

regulation is referred to as the ‘cysteine-switch’ mechanism

[33]. Most MMPs are not activated until they are outside the

cell, but the MT-MMPs and MMP-11, MMP-23 and MMP-28

are activated by a proprotein convertase (such as furin)

within the secretory pathway [34-37]. 

Once activated, there are multiple mechanisms that can

inactivate the MMPs [38]. Four classes of metalloproteinase

inhibitors are found in extracellular spaces and body fluids

that have broad inhibitory activity against many MMPs. One

class is the tissue inhibitors of metalloproteinases (TIMPs),

which are disulfide-bonded proteins of 20-30 kDa that

directly interact with the MMP active site through a small

number of their amino acids. An unrelated small inhibitor

derived by proteolysis of the procollagen C-proteinase

enhancer has structural similarity to TIMPs and may inhibit

MMPs through a similar mechanism [39]. Recently, a mem-

brane-anchored molecule, reversion-inducing cysteine-rich

protein with Kazal motifs (RECK), has been discovered that

appears to regulate MMP-2, MMP-9 and MMP-14 post-tran-

scriptionally by affecting secretion and activation as well as

by inhibition of the active site [40]. In the circulation, the

protease inhibitor �2-macroglobulin inactivates active

MMPs by a ‘bait and trap’ mechanism [38,41]: when pro-

tease-sensitive sites within the inhibitor are cleaved, it

springs closed around the proteinase and isolates it from

potential substrates. 

MMP zymogens can also be activated by MMPs themselves;

for example, MMP-2 is activated by MT-MMPs such as

MMP-14 [17]. Paradoxically, the inhibitor TIMP-2 is

absolutely required for this process, which requires it to bind

to the active site of MMP-14 and also, through its carboxy-

terminal domain, to the hemopexin/vitronectin-like domain

of MMP-2. The essential role of TIMP-2 is emphasized by

the lack of pro-MMP-2 activation in Timp2-null mice [42] as

well as by the exquisite co-regulation of the Mmp14 and

Timp2 genes (but not other TIMP genes) during mouse

development [43]. (MMP-14 also activates MMP-13 at the

cell surface, but this does not seem to require TIMP-2 [44].)
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Figure 2
The ‘cysteine-switch’ mechanism regulating the MMP zymogen. The thiol
group of a conserved cysteine (C) at the carboxyl terminus of the pro-
domain acts as a fourth inactivating ligand for the catalytic zinc atom in
the active site; this results in the exclusion of water and keeps the
enzyme latent. Displacement of the pro-domain by conformational change
or proteolysis disrupts this cysteine-zinc pairing and the thiol group is
replaced by water. The enzyme can then cleave the peptide bonds of its
substrates. 

H
H

H

Zn

Catalytic
domain

Pro-domain

Inactive 
enzyme

Water molecules

Active 
enzyme

Chemical or proteolytic
displacement of the 
pro-domain

C

H
H

H

Zn



The further activation of MMP-2 bound to TIMP2 probably

involves complex but highly regulated repositioning of mem-

brane-bound MMPs through their cytoplasmic tails or trans-

membrane domains or through interaction with cellular

receptors. Lehti et al. [45,46] have suggested that oligomer-

ization may occur between the cytoplasmic domains of the

two MMP-14 molecules, an observation that ties in with a

report that a conserved cysteine in the MMP-14 cytoplasmic

tail is essential for dimerization [47].

In addition to a possible role in oligomerization, the cytoplas-

mic domain of MT-MMPs is essential for regulating the activ-

ity of these enzymes; it acts by altering their spatial

distribution in the cell in response to intracellular signaling

events. The cytoplasmic sequence targets the MT-MMPs to

specific domains within the cell membrane, including

invadopodia (surface protrusions of invasive cells) [48] and

caveolae (specialized membrane invaginations) [49].

Recently, a role for the cytoplasmic domain has been identi-

fied in the cycling of MT-MMPs between an intracellular pool

and the cell surface via clathrin-coated pits and vesicles

[50,51]; this may be one of several cellular mechanisms by

which the amount of enzyme at the cell surface is regulated.

Studies of thrombospondin-2 null mice have indicated that

thrombospondin-2 has a role in targeting active MMP-2 to

the scavenger-receptor pathway [52], and it has been shown

that MMP-13 binds to a specific cell-surface receptor before it

is internalized via the low-density lipoprotein receptor [53].

Functions of MMPs
The substrates of MMPs are given in Table 1, and the func-

tions of MT-MMPs in particular are illustrated in Figure 3. 

Enzyme-substrate co-localization and interactions
The collagenases MMP-1, MMP-8, MMP-13, and MMP-14 are

the only MMPs that can efficiently degrade the fibrillar colla-

gens (types I, II and III) in their triple-helical domains [54].

Cleavage by these enzymes renders the collagen molecules

thermally unstable, so that they unwind to form gelatin,

after which they can be degraded by other members of the

MMP family such as the major gelatinases MMP-2 and

MMP-9. The collagenase active site is unable to accommo-

date the entire cross-section of the collagen triple helix, an

observation that has generated much interest in how this

substrate is actually cleaved. 

The two major gelatinases, MMP-2 and MMP-9, have

several distinctive features. They can be distinguished by the

fact that MMP-2 binds preferentially to TIMP-2, which is

required for its activation, whereas MMP-9 is preferentially

inhibited by TIMP-1 [38]. MMP-2 becomes located at the

cell surface by binding of its carboxyl terminus to the inte-

grin �v�3 [29] or the MMP-14-TIMP-2 complex; when

bound, the catalytic site of MMP-2 is exposed and can be

cleaved and activated. The �2 chains of collagen IV bind

MMP-9 with a high affinity even when MMP-9 is inactive

[55]; this juxtaposition of enzyme and substrate means that

a pool of the enzyme is rapidly available upon activation for

any remodeling events. 

Non-matrix substrates and consequences of MMP
activity
The extracellular matrix contains sites that can bind growth

factors, either directly and via growth-factor-binding pro-

teins. When bound, growth factors - such as transforming

growth factor � (TGF-�), fibroblast growth factor 1 (FGF-1)

and insulin-like growth factor 1 (IGF-1), tumor necrosis

factor �, and heparin-binding epidermal growth factor-like

growth factor (HB-EGF) [56] - are unable to bind their recep-

tors and signal to the nucleus [57-61]. Several MMPs are able

to release growth factors by cleaving either the growth-factor-

binding protein or the matrix molecule to which these pro-

teins attach. In addition, MMP-3 and MMP-7 can cleave the

adherens-junction protein E-cadherin, thus promoting cell

invasion by disrupting cell aggregation [62,63]. MMP-3 can

release a soluble form of the adhesion molecule L-selectin

[64] from leukocytes. It also sheds membrane-bound

HB-EGF, so that it can exert signaling functions [56]. MMP-7

releases soluble Fas ligand; this occurs during involution of
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Figure 3
The locations of MT-MMPs. (a) The location of MT-MMPs lends them
critical biological roles at the cell surface: they cleave components of the
ECM, other MMPs and receptors for growth factors (which leads to
shedding of the receptors from the cells). (b) Mobilization of MT-MMPs
to the leading edge of cancer cells, where they remodel the ECM,
facilitates cell migration and tumor invasion.

ECM
proteolysis

Cell-surface
shedding

Pro-MMP
activation

MT-MMP

(a)

(b)
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the prostate after castration and induces apoptosis [65]. In

contrast to the activation of growth factors by proteolytic

release, many growth factors are proteolytically inactivated

by MMPs, including the chemokine connective tissue activat-

ing peptide III (CTAP-III), monocyte chemoattractant

protein and stromal cell-derived factor 1 (SDF-1) [66,67]. A

second mechanism by which growth factors and cytokines are

negatively regulated is when MPPs cause the shedding of

their receptors from the cell membranes, as in the case of

surface FGF receptor 1 [68].

The immune system is also influenced by MMPs. Firstly, the

defensins are a family of polar antimicrobial peptides that

make up part of the innate immune system of some animals.

Defensins are synthesized in an inactive form and activated by

the proteolytic removal of the pro-domain by MMP-7, which

allows them to insert into the bacterial membrane and disrupt

its integrity [69,70]. Secondly, MMP-3 (stromelysin-1) and

MMP-7 (matrilysin-1) can cleave all immunoglobulin G pro-

teins; this cleavage is important as it prevents the initiation of

the complement cascade and is potentially beneficial in the

removal of the immunoglobulin G from damaged or inflamed

tissue [71]. And finally, the receptor of the complement com-

ponent C1q, gC1qR, exists in both a membrane-bound form

and a soluble form that may inhibit the hemolytic activity of

C1q. By releasing gC1qR, MT1-MMP may help tumor cells to

avoid targeted destruction by the complement system and

may thus facilitate tumor-cell survival [72-74]. 

Genetic alterations in human and mouse MMPs
An extensive body of literature indicates an association of

MMPs with cancer, arthritis, numerous other inflammatory or

autoimmune disorders, cardiovascular and cerebrovascular

diseases, and fibrotic diseases. Despite this, there are rela-

tively few instances in which MMPs have proved to be the

primary cause of disease. One of these is a rare inherited dis-

order of bone (nodulosis arthropathy osteolysis syndrome),

one of a set of ‘vanishing bone syndromes’, in which there is

severe resorption and destruction of bones, primarily those of

the hands and feet [75]. The affected individuals also have

chronic arthritis and subcutaneous nodules in the hands and

feet. The disease is inherited in an autosomally recessive

manner, and loss-of-heterozygosity analysis mapped the

responsible gene to 16q12-q22, an interval containing the

MMP2 gene. Analysis of the serum and fibroblasts of affected

individuals showed a complete absence of MMP2. The family

was found to have two homoallelic MMP2 mutations, result-

ing in the ablation of MMP2 activity. The presence of collage-

nous nodules fits with the role of MMPs in removing excess

ECM; the paradox in these patients, however, is that excessive

destruction of bones and arthritis are caused by an absence of

a destructive enzyme, not an excess as might have been

expected. There are a number of mechanisms by which this

may occur: there may be compensatory overproduction of

another MMP or protease, MMP-2 may be essential for

processing of an inductive factor required for the activity of

bone-forming cells (osteoblasts), or it may be required to reg-

ulate the activity of bone-degrading cells (osteoclasts) in

tissues. Interestingly, the Mmp2 knockout mouse is not

known to recapitulate the human disease, which resembles

more closely the phenotype of Mmp14 knockout mice [76,77].

Given that MMP-14 and TIMP-2 are required for MMP-2 acti-

vation, it is possible that mutations in the genes encoding

these enzymes may result in a similar human disease.

The chromosome 1p36.3 region that contains the two closely

related MMP23 genes (see Table 1) is altered or frequently

deleted in neuroblastomas in which the oncogene MYCN has

been amplified, in a subset of malignant melanomas and in a

1p35 deletion disorder [78], but the role of the two MMP

genes in these disorders has not been investigated.

A polymorphism in the MMP1 promoter can result in one

allele having a sequence of either one or two guanines in a

particular position. The presence of two guanines results in

the de novo appearance of a binding site for the ETS-1 tran-

scription factor that cooperates with an adjacent site for the

AP-1 transcription factor to enhance the expression of MMP1

[79-81]. It is interesting to note that cancer patients, on

average, have a higher incidence of the two-guanine allele

than have people in the unaffected population. A regulatory

polymorphism is also present in the MMP3 promoter,

leading to the presence of either five or six adenosines [82].

The allele with six (6A) has a reduced transcriptional activity

compared to the allele with five. A study on patients with

coronary artery atherosclerosis revealed that patients

homozygous for the 6A allele showed a more rapid progres-

sion of both global and focal atherosclerotic lesions. 

The creation of transgenic mice that are null for specific

genes has been useful in attributing functions to a number of

MMP family members (Table 2). In general, most MMP gene

knockouts are viable, with subtle phenotypic differences from

their wild-type counterparts [83]. This could reflect either a

lack of function in vital developmental processes or a signifi-

cant amount of redundancy amongst these enzymes for sub-

strates, with the consequence that other family members can

be upregulated to compensate for the loss of an individual

enzyme. Although the lack of a dramatic phenotype in many

of the knockout mice may initially have seemed a disappoint-

ing outcome, it has in fact been very valuable for dissecting

the role of MMPs in cancer and inflammation. The exception

to the rule is the Mmp14-knockout mouse [76,77], which has

severe postnatal growth-retardation and skeletal anomalies

and dies before the onset of sexual maturity (Figure 4). The

severity of the Mmp14 knockout, in contrast to the other

MMP knockout animals, may reflect the position of this

enzyme as an initiator of a number of proteolytic cascades, as

well as its obligate location at the cell surface. (Note that none

of the other MT-MMPs has yet been inactivated in mice.) The

defects seen in these animals are probably attributable to

both deficiencies in the turnover of direct MMP-14 substrates



and abnormalities in the indirect substrates that are medi-

ated by the activation of intermediary enzymes such as

MMP-2 and MMP-13. 

The importance of MMPs in physiological processes and

human disease is now undisputed. What is not known,

however, is the full extent to which they are involved in every

process in mammals. The failure of broad-spectrum and

even relatively specific MMP inhibitors in cancer therapy is

not surprising, because the complete effects for a given

inhibitor depend on the functions of its targets, and these

are mostly unidentified and unknown. The fact that there are

two other large families of related proteases with important

physiological functions, the ADAM and ADAMTS families,

suggests that additional caution should be taken when using

MMP inhibitors to treat disease states. More subtle

approaches are going to be required to modulate the func-

tions of these enzymes in a more selective fashion [84]. By

understanding the precise mechanisms by which MMPs are

regulated and their interactions with various binding part-

ners, it may be possible to block the deleterious functions of

these enzymes without the concomitant loss of beneficial

functions. This underscores the need for a greater investment

than ever before in MMP biology and biochemistry. The next

five years are expected to bring many exciting insights into

the role of MMPs in development and human disease and

may lead to even broader interest in what was once thought

to be a highly specialized and restricted field.
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