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ABSTRACT Azoarcus sp. strain DD4 can cometabolically degrade 1,4-dioxane and
1,1-dichloroethylene (1,1-DCE) when grown with propane and other substrates. The
complete genome sequence of strain DD4 reveals a diverse collection of bacterial
monooxygenase genes that may contribute to its versatility in degrading commin-
gled groundwater pollutants.

Azoarcus sp. strain DD4 is a propanotrophic bacterium isolated from an activated
sludge sample collected at a municipal wastewater treatment plant in northern

New Jersey (1). Notably, DD4 presents a synchronic degradation ability for 1,4-dioxane
and 1,1-dichloroethylene (1,1-DCE) via cometabolism with the induction of propane
and some other substrates (1). Like other Azoarcus strains, DD4 is also a diazotroph that
can assimilate atmospheric nitrogen (1–3). The growth and activity of DD4 can be
sustained under a wide variety of aquifer-relevant conditions (1), suggesting that it has
potential as an effective inoculum for in situ or ex situ bioaugmentation to treat the
commingled contamination of 1,4-dioxane and 1,1-DCE. Therefore, the whole-genome
sequence of DD4 provides insights into the genetic basis of its lifestyle and degradation
capabilities, which are valuable to optimize and assess its field applications.

DD4 cells were harvested at the exponential phase after growth in nitrate mineral
salts (NMS) medium with propane (0.1% [vol/vol] in the headspace) as the sole carbon
and energy source. Total genomic DNA of DD4 was extracted using the MagAttract
high-molecular-weight (HMW) DNA kit (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. The extracted DNA was purified with AMPure PB magnetic
beads and further used for the library preparation using the combination of the
SMRTbell damage repair kit and barcoded adapter complete prep kit (Pacific Biosci-
ences, Menlo Park, CA). The genome of DD4 was sequenced using the PacBio Sequel
system, which generated approximately 1.69 Gbp of long-read sequencing data. The
average length of raw sequences for sample DD4 is estimated as 2.1 kb, as the final
number of raw reads is 802,558. Following the Hierarchical Genome Assembly Process
(HGAP), a DD4 genome of high quality and accuracy was assembled using the RS_
HGAP_Assembly.3 protocol and polished by Quiver in SMRT Portal v2.3.0 with default
parameters (4). For genome component prediction, the GeneMarkS� program (5) was
employed to retrieve the related coding genes. Seven databases were then used for the
annotation of gene functions (E value, �1E�5; minimal alignment length percentage,
greater than 40%) (6), namely, Gene Ontology (GO) (7), Kyoto Encyclopedia of Genes
and Genomes (KEGG) (8), Clusters of Orthologous Groups (COG) (9), non-redundant
protein (NR) databases (10), Transporter Classification Database (TCDB) (11), Swiss-Prot,
and TrEMBL (12).

There exists one single circular chromosome in DD4 without circular or linear
plasmids. The genome size of DD4 is 5,400,077 bp, with a GC content of 66.7%. A total
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of 5,001 putative genes are annotated, covering approximately 90.1% of the genome.
The genome of DD4 contains 57 tRNA genes and 4 rRNA gene clusters (5S, 16S, and
23S). Five gene clusters encoding soluble di-iron monooxygenases (SDIMOs) (13, 14) are
found on the chromosome. Based on phylogenetic analysis of the amino acid se-
quences of their hydroxylase alpha subunits, these five SDIMOs are categorized as two
group 1 phenol hydroxylases, one group 2 toluene monooxygenase, one group 3
butane monooxygenase, and one group 5 propane monooxygenase. In addition, genes
encoding a copper membrane particulate monooxygenase (15) and a cytochrome P450
CYP153 alkane hydroxylase are identified. One or more of these monooxygenases in
DD4 may be responsible for initiating the oxidation of propane, 1,4-dioxane, 1,1-DCE,
and other environmental pollutants (1, 16–19).

Data availability. The whole-genome sequence of Azoarcus sp. strain DD4 has been
deposited in GenBank under the accession number CP022958. The raw reads have been
deposited in SRA under the accession number PRJNA398544.
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