
sensors

Article

FlexiS—A Flexible Sensor Node Platform for the
Internet of Things

Duc Minh Pham and Syed Mahfuzul Aziz *

����������
�������

Citation: Pham, D.M.; Aziz, S.M.

FlexiS—A Flexible Sensor Node

Platform for the Internet of Things.

Sensors 2021, 21, 5154. https://

doi.org/10.3390/s21155154

Academic Editors:

Domenico Balsamo and Rishad Shafik

Received: 30 May 2021

Accepted: 26 July 2021

Published: 29 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; duc.pham@unisa.edu.au
* Correspondence: mahfuz.aziz@unisa.edu.au; Tel.: +61-08-8302-3643

Abstract: In recent years, significant research and development efforts have been made to transform
the Internet of Things (IoT) from a futuristic vision to reality. The IoT is expected to deliver huge
economic benefits through improved infrastructure and productivity in almost all sectors. At the
core of the IoT are the distributed sensing devices or sensor nodes that collect and communicate
information about physical entities in the environment. These sensing platforms have traditionally
been developed around off-the-shelf microcontrollers. Field-Programmable Gate Arrays (FPGA) have
been used in some of the recent sensor nodes due to their inherent flexibility and high processing
capability. FPGAs can be exploited to huge advantage because the sensor nodes can be configured to
adapt their functionality and performance to changing requirements. In this paper, FlexiS, a high
performance and flexible sensor node platform based on FPGA, is presented. Test results show that
FlexiS is suitable for data and computation intensive applications in wireless sensor networks because
it offers high performance with low energy profile, easy integration of multiple types of sensors, and
flexibility. This type of sensing platforms will therefore be suitable for the distributed data analysis
and decision-making capabilities the emerging IoT applications require.

Keywords: Internet of Things (IoT); wireless sensor networks (WSN); sensor node; field-programmable
gate array (FPGA); FPGA programming; energy efficiency

1. Introduction

The Internet of Things (IoT) is based on the vision of connecting physical things
or objects to the Internet to enable access to distributed sensor data and to provide the
ability to monitor and control the physical world from a distance [1]. It was envisaged
that around 200 billion sensor devices would be interconnected via the IoT by 2020 [2],
providing a tremendous capability to monitor and control physical phenomena within the
environment [3].

The underlying technology that enables the realization of IoT is the Wireless Sensor
Network (WSN) [4]. The WSN is a class of distributed systems that provide a bridge
between the electronic/cyber and the physical worlds [5], and hence, will play a key role
in the realisation of the IoT. Today, WSNs are capable of gathering physical environmental
information, processing it, and transmitting the processed information to remote servers or
base stations [6]. Traditionally, sensor nodes have been mostly comprised of scalar sensors
capable of measuring physical phenomenon such as temperature, pressure, light intensity,
humidity, etc. These traditional applications do not send a huge amount of data over the
network and the information processing that needs to be performed on the sensor node
is low. Such processing requirement can be handled by microcontrollers with standard
processing capabilities. Examples of this type of processors are the ATmega16U2 in the
Arduino Uno board [7], the ATmega128L in the Mica2, MicaZ motes, or the MSP430 in the
Waspmote [8].

The IoT is increasingly being adopted in diverse fields, not only for monitoring, alert
generation, and remote control, but also to achieve advanced control through automatic de-
tection of patterns and prediction of future events (e.g., failure of a machine) [9], potentially

Sensors 2021, 21, 5154. https://doi.org/10.3390/s21155154 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9627-7594
https://doi.org/10.3390/s21155154
https://doi.org/10.3390/s21155154
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21155154
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21155154?type=check_update&version=2


Sensors 2021, 21, 5154 2 of 20

delivering significant convenience, efficiency gains, and cost savings. Such advanced levels
of control rely on intelligent analysis of data obtained from a large number and types of
sensors. The approaches currently used predominantly rely on centralised data analysis in
a cloud server, which requires all sensed data to be transmitted to the server. This involves
significant energy dissipation at the sensor node, large communication time, bandwidth,
and cloud storage capacity. Further, the timely preprocessing of data in central servers may
be infeasible for real-time control. To address these issues and achieve real-time forecasts,
researchers are focusing on intelligent techniques to reduce data and new distributed
data analysis methods executed directly at the sensor nodes themselves [3]. This would
necessitate a new generation of sensor nodes capable of supporting the required local
signal processing and data analysis capability. For example, in the case of Wireless Multi-
media Sensor Networks (WMSN) [10], the sensor nodes are required to possess powerful
processing capability to be able to deal with the complexity of processing large volumes of
multimedia data. The sensor nodes are still required to maintain a low power consumption
profile, which allows the nodes to run on battery for long periods of time or rely on power
harvested from the environment [11]. One way to deal with the high processing demand
in the sensor nodes with relatively low energy consumption is to use tailored processing
elements programmed on FPGAs rather than using off-the-shelf microcontrollers.

Several FPGA-based sensor platforms have been introduced [10,12–16]. Using FPGA
can add powerful processing capability to a sensor node with reduced energy consumption,
provided the amount of logic circuit used is optimized for the desired functionality and is
activated only when required. Recent results show that by taking advantage of hardware
acceleration together with power-aware designs and power management techniques, it
is possible to obtain energy efficient solutions that are suitable for high-performance IoT
applications [10,16,17]. Besides the advantage of high processing power, utilizing FPGA
in the sensor nodes can provide flexibility by enabling the nodes to adapt to varying
functional and performance needs of the applications.

The wireless sensor nodes reported in [10,17] are built on COTS FPGA boards. These
FPGA boards are designed for multipurpose applications, and hence, there are redundant
components. These components consume energy even when they are not needed. In this
work, a new FPGA-based sensor node design is presented. For the majority of the FPGA-
based sensor platforms mentioned above, the full details of the hardware architectural design,
the interfaces, memory, IO and communication designs, and FPGA programming approach
are not available. The work presented in this paper provides as many design details as are
relevant to help readers comprehend the design and implementation from a very practical
point of view. Most importantly, unlike the existing FPGA-based sensor node platforms,
the platform proposed in this paper does not require an external microcontroller or softcore
processor for any form of reconfiguration, thereby significantly reducing hardware and power
consumption. The FPGA has been programmed with processing elements optimized for scalar
sensing applications (e.g., temperature) as well as for processing and transmitting multimedia
data (images). We present a diverse range of practical results on the power consumption
of the FPGA node. The results demonstrate the efficacy of the FPGA-based sensor node
containing tailored hardware processing elements for various applications including image
communication over WMSN with acceptable power consumption.

2. Review of WSN Platforms
2.1. Microcontroller Versus FPGA Approach

Wireless Sensor Networks (WSN), the technology that underpins the IoT, have evolved
dramatically with many new applications emerging in the last few years. So far, the most
common applications were related to environmental care, agriculture, or hazardous envi-
ronment monitoring [11]. Normally, these applications share some common features such
as low data rate, unrestrictive latency, and a small number of nodes, among others. For these
reasons, the processing requirement per node is low; therefore, low-profile processors can
be used. These small processors support adequate processing capabilities for the above



Sensors 2021, 21, 5154 3 of 20

applications while offering ultra-low power consumption. The MSP430 microcontroller
from Texas Instruments used in the TelosB [8] platform or the ATmega1281 microcontroller
used by Libelium in the Waspmote [8] are examples of such low-profile processors.

However, low data rate and low power should not be a limitation of WSN and IoT ap-
plications. As technology continues to evolve, new applications that require more powerful
processing units continue to emerge. For example, multimedia applications such as video
and image processing have been investigated in the WSN field. These applications require
much more powerful processors to perform compression or encryption of multimedia data.
Consequently, higher processing speed and larger memory are needed, which also means
that the issue of consequent higher power consumption needs to be addressed. These have
been the major impediments for making multimedia applications of WSN or IoT a reality.

To achieve multimedia processing capability in WSN/IoT nodes, the use of more pow-
erful microcontrollers can be one possible solution [18]. However, because microcontrollers
are designed for generic applications, they are not optimized for processing intensive
applications such as image processing. This solution would lead to very high computing
time and high energy consumption. Smart energy management strategies can be used
to reduce energy consumption, where the sensor node is kept awake only when required
to perform a task; otherwise, it is put to power down or sleep mode [10,11,19]. However,
as the microcontrollers need a large amount of time to finish complicated tasks such as
image processing, they will need to be awake for long durations. This leads to high energy
consumption, even with a smart energy management strategy.

The best way to reduce the awake time for complex processing applications is using
dedicated hardware such as FPGAs or ASICs. FPGAs and ASICs share the capability of
doing tasks in parallel. This can greatly decrease the computing time, so the node can
be in the awake mode for very short period of time and stay in the sleep mode for longer
periods of time. However, the use of ASICs in WSN/IoT nodes is not always feasible due
to the lack of flexibility and the huge design time and cost. On the contrary, FPGAs are
presented as an attractive solution for high-performance WSN/IoT applications. One major
concern with using FPGAs for WSN/IoT nodes is that most off-the-shelf FPGA platforms
are not specifically built for such applications [20]. This leads to redundant components on
the available off-the-shelf FPGA development platforms, which will consume additional
energy. For FPGA platforms to be suitable for IoT applications, their energy consumption,
cost, and size need to be comparable with the microcontroller-based platforms, if not less.

In the next subsection, we summarize the review of notable sensor node platforms.
Some of the parameters stated in the review will be used to compare the design of the
FPGA-based sensing platform introduced in this paper.

2.2. Summary of Sensor Node Platforms

We classify wireless sensing platforms into three main categories, namely, (i) simple
and low-power microcontroller-based platforms, (ii) powerful microcontroller-based plat-
forms, and (iii) FPGA-based platforms. The sensor nodes in the first category are limited
by their capabilities in terms of processing power, memory, and communication. However,
they are typically characterized by low power consumption profiles. Platforms in this
category includes the Mica family, IRIS, TelosB, etc., as shown in Table 1.



Sensors 2021, 21, 5154 4 of 20

Table 1. Microcontroller-based low-power platforms.

Platform Processor Memory Transceiver Active Power
(mW)

Active Power +
RF

(mW)
Price

MicaZ
[21] ATMega128L

128 KB
program

memory, 4 KB
SRAM

CC1000 43.2 71 $92

IRIS
[22] ATmega1281

128 KB
program

memory, 8 KB
SRAM

Atmel
AT86RF230 28.8 61.2 $29

TelosB
[23] MSP430

60 KB program
memory, 2 KB

SRAM
CC2420 6.5 83 $79

The second category includes powerful microcontroller-based platforms. The sensor
nodes in this category use high-end processors and, therefore, have more processing
capability than the nodes introduced in Table 1. However, these platforms consume a lot
more power than those in Category 1 and usually tend to be more expensive. Platforms
in this category include the Stargate, Arduino Yun, Beagle Bone family, Intel Galileo, and
Raspberry Pi family, as shown in Table 2.

Table 2. Complex microcontroller-based platforms.

Platform Processor Memory Active Power Price

Stargate Intel PXA255
Processor

64 MB SDRAM, 32 MB
Flash 600 mW Unknown

Arduino Yun MIPS32 24K and
ATmega32U4

64 MB SDRAM, 16 MB
Flash 1.4 W $75

Beagle Bone Black ARM Cortex-A8 512 MB SDRAM, 2 GB
Flash 2.2 W $55

Intel Galileo Intel X1000 256 MB SDRAM, 8 MB
Flash 3.5 W $80

Raspberry Pi ARM1176 256 MB SDRAM
(Model B) 2 W $35

The third category includes FPGA-based platforms. Several FPGA-based sensor
node platforms have been proposed in [15,20,24–29]. Valverde, Otero, Lopez, Portilla, De
La Torre, and Riesgo [15] presented a high-performance sensor node architecture based
on partial reconfiguration of an FPGA. It uses a Virtual Architecture to define the size
and position of the reconfigurable components and the static components of the FPGA.
The sensor node in [15] used a MicroBlaze softcore processor as the system controller
and a Processor Local Bus (PLB) based on a System-on-Chip (SoC) approach to allow
communication among various modules. A compression algorithm is used to reduce the
size of the configuration bitstream and, hence, the programming time as well as power
consumption. In another work by the same authors [30], a detailed explanation of the
partial reconfiguration process is presented. A few other architectures based around partial
reconfiguration also make use of softcore processors to control the reconfiguration process,
for example [31], to implement secure remote reconfiguration. Most of the FPGA-based
sensor platforms reported utilize commercial-off-the-shelf (COTS) FPGA development
boards; hence, they have hardware redundancies. Further, thorough analysis of the power
consumption of these platforms for WSN applications is not available. A list of FPGA-based
sensor platforms is shown in Table 3. All of these platforms except [15] have reported high
active power consumptions ranging from 1 W to 5 W. With a reported power consumption



Sensors 2021, 21, 5154 5 of 20

of 462 mW, the platform in [15] seems to be suitable for operating as a battery powered
wireless sensor node. However, the 462-mW power consumption reported in [15] does
not include the standby power consumed by the transceiver or the power consumed for
wireless data communication.

Table 3. FPGA-based platforms.

Platform FPGA Memory Active Power Price

[15] Spartan 6
XC6SLX150-2 256 Mbits 462 mW Unknown

[32]
Artix-7 FPGA:

XC7A35T-
1CPG236C

1800 Kbits 5 W $149

[31] Virtex 5
XC5VFX70T Unknown Unknown Unknown

[33] Spartan-3E
XC3S1600E Unknown 2.85 W Unknown

[34] Spartan-3
XC3S2000 Unknown 1000 mW Unknown

3. Design Considerations

The FPGA-based sensor node introduced in this paper was conceived as one that
would support a wide range of sensing and processing tasks. It was to be designed
and developed as a single-board wireless sensor node with the capacity to easily plug in
suitable sensing modules. So, the sensor node needed to have flexible IO, enabling the use
of different sensors, transceivers, and other peripherals. Furthermore, it was necessary
to have some scalability so that efficient operation for a wide range of sensing tasks could
be achieved. This included the ability to sense scalar quantities such as temperature and
humidity as well as sensing large data items such as images. The latter warranted the
development of a high-performance sensor node capable of processing images captured by
an on-board camera. At the same time, it was imperative that power consumption be kept
as low as possible so that the batteries did not deplete energy quickly and the node could
have a reasonably long lifetime in order to support distributed and autonomous operation
in a wireless sensor network.

To cater for different sensing and associated processing tasks, Field-Programmable
Gate Array (FPGA) was chosen as the central processing element so that the hardware
functions required for various sensing tasks could be reprogrammed into the node as
required. A longer-term goal was for the node to have the capability to store multiple
FPGA configuration bitstreams so that the device could be reconfigured in-system to support
changing sensing and processing requirements. Hence, there was the need to carefully
consider the size of the FPGA configuration file; the number of configuration files to be
stored; and consequently, the on-board flash memory size required. Another important
design consideration was the interfaces to be used to supply power and to program the
sensor node. The aim was to use a single USB interface for both purposes.

4. The Proposed Sensor Node

Figure 1 shows a block diagram of the proposed sensor node. As stated above, an
FPGA was selected over a microcontroller for the central processing unit to provide the
required computational power while maintaining comparatively low power requirements
and provide flexibility to easily reconfigure the hardware functions. The Spartan 6 family
of FPGAs from Xilinx was identified as a potential contender due to their low power
design and features [35]. In-house printed circuit board (PCB) mounting capabilities did
not support packages that came with the Ball Grid Array (BGA). For this reason and
considering availability and cost, the XC6SLX9 FPGA device in the TQG144 quad-flat-
package was selected. This provided 102 user I/O and 1430 slices (each slice contains four



Sensors 2021, 21, 5154 6 of 20

6-input LUTs and eight flip-flops) [36]. A 100-MHz oscillator was used to provide the
system clock.

Sensors 2021, 21, 5154 6 of 20 
 

 

 
Figure 1. Block diagram of the Wireless Sensor Node. 

A photograph of the base sensor node (all peripheral modules removed) is shown in 
Figure 2. 

 
Figure 2. FPGA-based Wireless Sensor Node—dimensions 70 mm × 85 mm. 

  

Figure 1. Block diagram of the Wireless Sensor Node.

A photograph of the base sensor node (all peripheral modules removed) is shown in
Figure 2.

Sensors 2021, 21, 5154 6 of 20 
 

 

 
Figure 1. Block diagram of the Wireless Sensor Node. 

A photograph of the base sensor node (all peripheral modules removed) is shown in 
Figure 2. 

 
Figure 2. FPGA-based Wireless Sensor Node—dimensions 70 mm × 85 mm. 

  

Figure 2. FPGA-based Wireless Sensor Node—dimensions 70 mm × 85 mm.



Sensors 2021, 21, 5154 7 of 20

4.1. Memory and IO

To store the bitstreams required to configure the FPGA, a 64 Mbit Flash memory
module is connected to the FPGA via serial peripheral interface (SPI). A 64-Mbit SDRAM
is also provided to enable more complex applications such as image processing. The Flash
memory and the SDRAM are mounted on the bottom of the 6-layer PCB (Figure 2) in order
to conserve space.

The various IO headers supported by the sensor node are labelled in Figure 2. The Reset
button at the bottom-left corner of Figure 2a allows manual reconfiguration of the FPGA
using the bitstream stored in the Flash memory. The four DIP switches on the left-hand side
are used for user input. Headers are included for connecting cameras (far left of Figure 2a)
and PMOD devices (bottom of Figure 2a). PMOD is an interface standard defined by Digi-
lent [27]. This interface was selected because over 60 I/O and sensor boards are available from
Digilent, ranging from GPS receivers and Wi-Fi modules to motor drivers and temperature
sensors [37]. Two other headers shown in Figure 2, namely, the RF Transceiver and XBee Pro,
are described later.

4.2. Programming Interface and Power Supply

A dual-channel USB-to-serial converter IC, the FTDI FT2232D [38], was used to achieve
USB connectivity. The first channel is used for programming the FPGA via JTAG. The sec-
ond channel can be utilized in user designs as a UART interface connected to the FPGA,
thereby enabling easy communication between the FPGA and external devices. Com-
pared to other more advanced devices [39], the FT2232D achieved the required function of
providing a JTAG channel for programming the FPGA with less complex circuitry.

Power is supplied through the USB connection from either a USB power source or
a battery pack containing 4 standard AA batteries. A switch-mode buck regulator was
used to regulate the input voltage to the levels required by the devices on the node. All
components on the sensor node are supplied with 3.3 V including the headers. The FPGA
is additionally supplied with 1.2 V for the internal circuitry. The USB input, the FTDI USB
converter and the voltage regulator can be seen on the top part of Figure 2a.

4.3. Wireless Communication

The sensor node has been designed with headers to allow the connection of two
different wireless communication transceivers. The header at the bottom-right corner of
Figure 2a is for housing an XBee Pro S2B module to implement a ZigBee network [40].
This provides off-the-shelf RF transmission in the ISM 2.4 GHz band for data rates of up
to 35 kbps. The module implements a high-level application layer and can be operated in
API mode, where the user interacts with the raw packets, or in AT mode, where the module
acts as a transparent serial UART connection. A wireless network of XBee modules can
be automatically configured with the ability to support both star and mesh topologies.
The XBee modules in the network can receive broadcast messages. Each module can also
be addressed individually. The XBee modules feature a sleep mode whereby they enter a
low-power state to conserve energy.

A second header is available to support a standard RF module (bottom-left of Figure 2a).
This is to allow easy interfacing of an 802.15.4 transceiver and to facilitate the development
of further energy efficient, lightweight application layer protocols based on 802.15.4. In the
work presented in this paper, standard RF transceivers were not utilized. Only XBee Pro S2B
modules were used to set up a wireless network. These were used in the AT mode, which
enabled a straightforward network configuration.

5. FPGA Programming

Once a user design has been successfully synthesized on a PC and a configuration bit-
stream is generated, it can be used to program the FPGA via the USB connection. The FTDI
USB converter produces the JTAG signals required to interact with the FPGA. However,
the configuration memory of the Spartan 6 FPGA is volatile. This means that once power



Sensors 2021, 21, 5154 8 of 20

to the FPGA is lost, the memory is erased. Consequently, it is standard practice to install
external, nonvolatile memory alongside the FPGA. Upon receiving power, the FPGA will
then automatically load a configuration bitstream stored on the nonvolatile memory. Among
the five configuration modes supported by the Spartan 6 FPGA family [41], the Master
Serial/SPI mode is used in the proposed sensor node to load a bitstream from the Flash
memory to the FPGA.

5.1. Manual Reconfiguration

In order to generate a valid configuration file for the sensor node, Xilinx ISE was used
to synthesize a bitstream for the FPGA from VHDL code. Once the bitstream is available,
this can be used to directly configure the FPGA using the Xilinx iMPACT tool by utilizing
the Xilinx Virtual Cable (XVC) function in conjunction with the Playtag Python tool [42] to
ensure that the JTAG chain is discovered by iMPACT. This has the limitation of writing the
configuration directly to the FPGA’s volatile memory, meaning the configuration is lost
when power is removed.

The iMPACT software was apparently unable to access the Flash memory on the sensor
node. However, another FPGA programming software was identified that could achieve
this. It is an open source command line tool called XC3SPROG [43]. It is able to program
a range of FPGAs and is available for Windows, Linux, and Mac OS X platforms. As the
Flash memory is not connected to the FTDI USB converter, the FPGA is first configured
with a special bitstream that allows the FPGA to act as a JTAG to SPI converter. XC3SPROG
is then able to store the bitstream in any specified location on the flash memory.

When the FPGA is first powered, it automatically loads a configuration from address
0x00000000 of the Flash memory. This may be a valid configuration or a short header that
redirects the FPGA to a different memory address to load the configuration from.

5.2. Reconfiguration Using Multiboot

The Spartan 6 family of FPGAs can also be programmed using a feature called
Multiboot. It allows the FPGA to selectively reload and reprogram its bitstream from the
external Flash memory [41]. Multiboot operations can be controlled by interacting with
the configuration logic of the FPGA using the internal configuration access port (ICAP).
The ICAP can be accessed from a user’s configuration by including the ICAP_SPARTAN6
primitive into the configuration design. There are four registers within the configuration
logic. These registers are used to store the memory address of the bitstreams that are to be
loaded to configure the FPGA. These registers can be set through the ICAP or through a
short header bitstream located at address 0x00000000 of the external memory. The GEN-
ERAL1 and GENERAL2 registers are used to store the address of the Multiboot bitstream
that the user wishes to load. The GENERAL3 and GENERAL4 registers are used to store a
fallback address where a “Golden” bitstream is stored, as shown in Figure 3. This Golden
bitstream is known to be safe and is usually located in a protected area of the flash memory.
Once the bitstream addresses have been set in the registers, the ICAP is used to issue an
IPROG command [41]. This has an effect similar to manually resetting the FPGA except the
Multiboot logic is not affected, allowing the contents of the registers to be used to set the ad-
dress from which to load the bitstream. Further details of the Spartan 6 FPGA configuration
process can be found in [41].



Sensors 2021, 21, 5154 9 of 20Sensors 2021, 21, 5154 9 of 20 
 

 

 
Figure 3. Multiboot configuration process [41]. 

In order to trigger the FPGA to reload its configuration from a specific memory loca-
tion on the SPI flash, a finite state machine was implemented to interact with the ICAP. 
Initially, when a “LOAD” command is received over the network, the FSM will receive 
three additional bytes specifying the address to load the configuration from. Once this 
address has been received, the FSM writes the address into the GENERAL1 and GEN-
ERAL2 registers using the ICAP. Finally, an IPROG command is issued causing the FPGA 
to reconfigure from the specified Flash memory address. One important aspect to note 
here is that with the “LOAD” command received over the network, it is possible to re-
motely reconfigure the sensor node from bitstreams prestored in specific Flash memory 
locations. This makes the proposed sensor node very attractive compared with existing 
FPGA-based sensor platforms because, unlike the existing platforms, it does not require a 
separate microcontroller or softcore processor to manage the reconfiguration process. 

Having a copy of the reconfiguration architecture as the Golden bitstream in a pro-
tected area of the flash allows for easy recovery of the sensor node if a configuration error 
is encountered. If an incorrect address is provided or the bitstream at the specified address 
is corrupted, the FPGA will automatically load the Golden bitstream, which is expected to 
be a safe version of the reconfiguration architecture. A new address can then be provided 
or a new bitstream, which is uploaded and written to the Flash memory. 

6. Wireless Networking Set Up and Applications 
A network was set up with 9 of the developed FPGA-based sensor nodes. Addition-

ally, 9 sensor nodes based around a traditional microcontroller-based platform (Arduino) 
[7] were added to provide diversity and allow experimentation in a heterogeneous net-
work consisting of at least two types of nodes. The same XBee transceivers were used on 
both types of nodes to enable seamless communication in a mesh network containing a 
total of 18 endpoints. 

Figure 3. Multiboot configuration process [41].

In order to trigger the FPGA to reload its configuration from a specific memory
location on the SPI flash, a finite state machine was implemented to interact with the
ICAP. Initially, when a “LOAD” command is received over the network, the FSM will
receive three additional bytes specifying the address to load the configuration from. Once
this address has been received, the FSM writes the address into the GENERAL1 and
GENERAL2 registers using the ICAP. Finally, an IPROG command is issued causing the
FPGA to reconfigure from the specified Flash memory address. One important aspect to
note here is that with the “LOAD” command received over the network, it is possible to
remotely reconfigure the sensor node from bitstreams prestored in specific Flash memory
locations. This makes the proposed sensor node very attractive compared with existing
FPGA-based sensor platforms because, unlike the existing platforms, it does not require a
separate microcontroller or softcore processor to manage the reconfiguration process.

Having a copy of the reconfiguration architecture as the Golden bitstream in a protected
area of the flash allows for easy recovery of the sensor node if a configuration error is
encountered. If an incorrect address is provided or the bitstream at the specified address is
corrupted, the FPGA will automatically load the Golden bitstream, which is expected to be a
safe version of the reconfiguration architecture. A new address can then be provided or a
new bitstream, which is uploaded and written to the Flash memory.

6. Wireless Networking Set up and Applications

A network was set up with 9 of the developed FPGA-based sensor nodes. Additionally,
9 sensor nodes based around a traditional microcontroller-based platform (Arduino) [7]
were added to provide diversity and allow experimentation in a heterogeneous network
consisting of at least two types of nodes. The same XBee transceivers were used on both
types of nodes to enable seamless communication in a mesh network containing a total of
18 endpoints.

Figure 4 shows a schematic view of the network, where a central coordinating station
called gateway provides access to the Internet. The blue node in the middle (marked ‘C’)



Sensors 2021, 21, 5154 10 of 20

indicates the coordinator XBee device connected to the gateway. The dark arrows indicate
the direct connections to the coordinator and the light arrows show the mesh connections
between the remaining nodes.

Sensors 2021, 21, 5154 10 of 20 
 

 

Figure 4 shows a schematic view of the network, where a central coordinating station 
called gateway provides access to the Internet. The blue node in the middle (marked ‘C’) 
indicates the coordinator XBee device connected to the gateway. The dark arrows indicate 
the direct connections to the coordinator and the light arrows show the mesh connections 
between the remaining nodes. 

 
Figure 4. Schematic view of the ZigBee mesh network with 18 endpoints. 

A commercial off-the-shelf (COTS) platform called ZedBoard [44] was used as the 
gateway, with much higher computational power than the ordinary sensor nodes. A mod-
ified version of the Linaro operating system [45] was installed on the gateway. The gateway 
was connected to the Internet via a Wi-Fi network. Software programs were developed in 
C++ and Python to run on the gateway, which would capture the data received by the co-
ordinator module and upload it to the Cloud to allow remote access. The Dropbox API 
[46] was used as the Cloud service. 

The sensor nodes in the network (Figure 4) were programmed with digital logic to 
support various sensing and actuation applications, thereby forming a network of heter-
ogeneous sensing nodes. These include sensing of low-volume scalar parameters such as 
temperature, humidity, and motion as well as large-volume data such as images. The ac-
tuation system implemented on the sensor node included simple logic to operate every-
day appliances (light, fan, etc.) via power switches controlled using optical isolators inter-
faced with the sensor node. 

6.1. Temperature Sensing 
Many COTS sensors are equipped with UART, I2C, or SPI interfaces. Using FPGA as 

a sensor node provides the flexibility of programming the necessary logic within the 
FPGA to deal with various sensing parameters and multiple types of sensor interfaces. 
The FlexiS was evaluated with both I2C and SPI temperature sensors and the required 
resources as well as power consumption were analysed for both cases. A PmodTMP3 sen-
sor module with I2C interface and a PmodGYRO module with SPI interface were used for 
temperature sensing. Both of these modules are available from Digilent [37]. 

Figure 4. Schematic view of the ZigBee mesh network with 18 endpoints.

A commercial off-the-shelf (COTS) platform called ZedBoard [44] was used as the gate-
way, with much higher computational power than the ordinary sensor nodes. A modified
version of the Linaro operating system [45] was installed on the gateway. The gateway
was connected to the Internet via a Wi-Fi network. Software programs were developed
in C++ and Python to run on the gateway, which would capture the data received by the
coordinator module and upload it to the Cloud to allow remote access. The Dropbox
API [46] was used as the Cloud service.

The sensor nodes in the network (Figure 4) were programmed with digital logic
to support various sensing and actuation applications, thereby forming a network of
heterogeneous sensing nodes. These include sensing of low-volume scalar parameters
such as temperature, humidity, and motion as well as large-volume data such as images.
The actuation system implemented on the sensor node included simple logic to operate
everyday appliances (light, fan, etc.) via power switches controlled using optical isolators
interfaced with the sensor node.

6.1. Temperature Sensing

Many COTS sensors are equipped with UART, I2C, or SPI interfaces. Using FPGA as
a sensor node provides the flexibility of programming the necessary logic within the FPGA
to deal with various sensing parameters and multiple types of sensor interfaces. The FlexiS
was evaluated with both I2C and SPI temperature sensors and the required resources as
well as power consumption were analysed for both cases. A PmodTMP3 sensor module
with I2C interface and a PmodGYRO module with SPI interface were used for temperature
sensing. Both of these modules are available from Digilent [37].

Figure 5 shows the block diagram of the digital logic system developed for temperature
sensing with I2C interface. In Figure 5, a PmodTMP3 module from Digilent [37] was
attached to the PMOD port of the sensor node. A temperature sensor that has a SPI



Sensors 2021, 21, 5154 11 of 20

interface instead, such as the PmodGYRO module from Digilent [37], can also be connected
to the PMOD port in Figure 5. Of course, this will require the relevant SPI logic to be
programmed into the FPGA. The PmodGYRO module can provide 3-axis gyroscope data
as well as temperature.

Sensors 2021, 21, 5154 11 of 20 
 

 

Figure 5 shows the block diagram of the digital logic system developed for tempera-
ture sensing with I2C interface. In Figure 5, a PmodTMP3 module from Digilent [37] was 
attached to the PMOD port of the sensor node. A temperature sensor that has a SPI inter-
face instead, such as the PmodGYRO module from Digilent [37], can also be connected to 
the PMOD port in Figure 5. Of course, this will require the relevant SPI logic to be pro-
grammed into the FPGA. The PmodGYRO module can provide 3-axis gyroscope data as 
well as temperature. 

 
Figure 5. Block diagram of temperature-sensing logic. 

The Control Module shown in Figure 5 is a state machine designed to accomplish the 
following tasks: (1) send necessary commands and initialize the temperature sensor; (2) 
receive sensed data from the sensor via the relevant interface (I2C or SPI); (3) make all 
sensed data available at its outputs so that the data can be transmitted over the network. 
The state machine developed to implement the I2C temperature sensing system is shown 
in Figure 6. It comprises of 6 states: IDLE, READ_CMD_R, READ_CMD_RD, I2C_INIT, 
READ_DATA, and TX_DATA. 

 
Figure 6. State diagram of I2C temperature-sensing logic. 

Figure 5. Block diagram of temperature-sensing logic.

The Control Module shown in Figure 5 is a state machine designed to accomplish
the following tasks: (1) send necessary commands and initialize the temperature sensor;
(2) receive sensed data from the sensor via the relevant interface (I2C or SPI); (3) make all
sensed data available at its outputs so that the data can be transmitted over the network.
The state machine developed to implement the I2C temperature sensing system is shown
in Figure 6. It comprises of 6 states: IDLE, READ_CMD_R, READ_CMD_RD, I2C_INIT,
READ_DATA, and TX_DATA.

Sensors 2021, 21, 5154 11 of 20 
 

 

Figure 5 shows the block diagram of the digital logic system developed for tempera-
ture sensing with I2C interface. In Figure 5, a PmodTMP3 module from Digilent [37] was 
attached to the PMOD port of the sensor node. A temperature sensor that has a SPI inter-
face instead, such as the PmodGYRO module from Digilent [37], can also be connected to 
the PMOD port in Figure 5. Of course, this will require the relevant SPI logic to be pro-
grammed into the FPGA. The PmodGYRO module can provide 3-axis gyroscope data as 
well as temperature. 

 
Figure 5. Block diagram of temperature-sensing logic. 

The Control Module shown in Figure 5 is a state machine designed to accomplish the 
following tasks: (1) send necessary commands and initialize the temperature sensor; (2) 
receive sensed data from the sensor via the relevant interface (I2C or SPI); (3) make all 
sensed data available at its outputs so that the data can be transmitted over the network. 
The state machine developed to implement the I2C temperature sensing system is shown 
in Figure 6. It comprises of 6 states: IDLE, READ_CMD_R, READ_CMD_RD, I2C_INIT, 
READ_DATA, and TX_DATA. 

 
Figure 6. State diagram of I2C temperature-sensing logic. Figure 6. State diagram of I2C temperature-sensing logic.

In the IDLE state, the control block waits for the initial command from the network,
which is the ASCII character “R”. When “R” is received (via the UART interface module),
the state moves to READ_CMD_R and waits for the second character of the command,



Sensors 2021, 21, 5154 12 of 20

which is “D”. When ‘D’ is received, the state moves to READ_CMD_RD. Then, it waits
for a second ‘D’. After the correct sequence (‘RDD’) is finally received, it moves to the
I2C_INIT state and starts initializing the I2C bus.

When the I2C initialization is complete, the state moves to READ_DATA, where
the temperature data is read from the PmodTMP3 module. When the reading process
is complete, the state moves to TX_DATA, where the sensed data is sent via the UART
interface to the XBEE module and then to the base station. After data transmission is
complete, the state returns to IDLE and waits for the next command.

The power consumption and logic resources required for the I2C temperature-sensing
system described above (Figure 6) are given in Table 4. Note that Table 4 shows the above infor-
mation for each of the individual logic blocks designed as part of the overall state machine.

Table 4. Power consumption and FPGA resources used by I2C temperature sensing.

Block Power (mW) Logic Power
(mW)

Signal Power
(mW) # FFs # LUTs

Control block 0.19 0.08 0.11 14 22
uart_tx_module 0.15 0.10 0.05 18 22
uart_rx_module 0.13 0.08 0.06 18 22
uart_rate_control 0.10 0.06 0.04 7 9

i2c_master 0.77 0.42 0.34 39 68
Total 1.35 0.74 0.61 96 143

6.2. Simple Actuation and PWM Fan Control

Figure 7 shows the block diagram of the scheme developed for the PWM fan control
application. In general, the state machine for PWM fan control is similar to that for
temperature sensing presented in the previous section. It comprises of 4 states: IDLE,
CMD_P, CMD_PW, and SET_PWM. In IDLE state, the control block waits for the command
from the network, which is the ASCII sequence of “PW0” to “PW4”, where “PW0” is to turn
off the PWM fan and “PW4” is to turn the PWM fan full on. “PW1”, “PW2”, and “PW3”
commands are used to control the PWM fan speed at 25%, 50%, and 75%, respectively.
The state machine developed for the PWM fan control is shown in Figure 8.

Sensors 2021, 21, 5154 12 of 20 
 

 

In the IDLE state, the control block waits for the initial command from the network, 
which is the ASCII character “R”. When “R” is received (via the UART interface module), 
the state moves to READ_CMD_R and waits for the second character of the command, 
which is “D”. When ‘D’ is received, the state moves to READ_CMD_RD. Then, it waits 
for a second ‘D’. After the correct sequence (‘RDD’) is finally received, it moves to the 
I2C_INIT state and starts initializing the I2C bus. 

When the I2C initialization is complete, the state moves to READ_DATA, where the 
temperature data is read from the PmodTMP3 module. When the reading process is com-
plete, the state moves to TX_DATA, where the sensed data is sent via the UART interface 
to the XBEE module and then to the base station. After data transmission is complete, the 
state returns to IDLE and waits for the next command. 

The power consumption and logic resources required for the I2C temperature-sens-
ing system described above (Figure 6) are given in Table 4. Note that Table 4 shows the 
above information for each of the individual logic blocks designed as part of the overall 
state machine. 

Table 4. Power consumption and FPGA resources used by I2C temperature sensing. 

Block Power (mW) Logic Power 
(mW) 

Signal Power 
(mW) # FFs # LUTs 

Control block 0.19 0.08 0.11 14 22 
uart_tx_module 0.15 0.10 0.05 18 22 
uart_rx_module 0.13 0.08 0.06 18 22 

uart_rate_control 0.10 0.06 0.04 7 9 
i2c_master 0.77 0.42 0.34 39 68 

Total 1.35 0.74 0.61 96 143 

6.2. Simple Actuation and PWM Fan Control 
Figure 7 shows the block diagram of the scheme developed for the PWM fan control 

application. In general, the state machine for PWM fan control is similar to that for tem-
perature sensing presented in the previous section. It comprises of 4 states: IDLE, CMD_P, 
CMD_PW, and SET_PWM. In IDLE state, the control block waits for the command from 
the network, which is the ASCII sequence of “PW0” to “PW4”, where “PW0” is to turn off 
the PWM fan and “PW4” is to turn the PWM fan full on. “PW1”, “PW2”, and “PW3” com-
mands are used to control the PWM fan speed at 25%, 50%, and 75%, respectively. The 
state machine developed for the PWM fan control is shown in Figure 8. 

 
Figure 7. Block diagram of PWM fan control logic. Figure 7. Block diagram of PWM fan control logic.



Sensors 2021, 21, 5154 13 of 20
Sensors 2021, 21, 5154 13 of 20 
 

 

 
Figure 8. State diagram of PWM control logic. 

Note that the state machine given in Figure 8 needs only slight adjustments to imple-
ment AC switch control functions. For example, “PW1” and “PW2” can be used to turn 
ON or OFF one AC switch, whereas “PW3” and “PW4” can be used to turn ON or OFF a 
second AC switch. Comparison of power consumption and logic resources required for 
the PWM fan control application and I2C temperature sensing application are shown in 
Table 5. The maximum frequency of operation (Fmax) achievable by the two controllers are 
also shown in Table 5. 

Table 5. Power consumption and logic resources for PWM fan control vs. temperature sensing. 

Application Programming Time 
Total Power 

(mW) Fmax 
Resources 

# FFs # LUTs 
Temperature monitor-

ing 
iMPACT: 10 s 

XC3Sprog: 2331 ms 1.35 292.483 MHz 96 143 

PWM Control 
iMPACT: 10 s 

XC3Sprog: 2330 ms 5.28 144.547 MHz 296 568 

7. Experiments and Results 
Both scalar quantities and large data items (images) were transacted over the wireless 

network that was set up (Figure 4) and described in Section 6. Since energy is a concern 
for battery powered nodes, in this section, we present a diverse range of practical results 
on power consumption for the scalar applications presented in Section 6 as well as for 
image processing applications [10,17]. 

  

Figure 8. State diagram of PWM control logic.

Note that the state machine given in Figure 8 needs only slight adjustments to imple-
ment AC switch control functions. For example, “PW1” and “PW2” can be used to turn
ON or OFF one AC switch, whereas “PW3” and “PW4” can be used to turn ON or OFF a
second AC switch. Comparison of power consumption and logic resources required for
the PWM fan control application and I2C temperature sensing application are shown in
Table 5. The maximum frequency of operation (Fmax) achievable by the two controllers are
also shown in Table 5.

Table 5. Power consumption and logic resources for PWM fan control vs. temperature sensing.

Application Programming
Time

Total Power (mW) Fmax
Resources

# FFs # LUTs

Temperature
monitoring

iMPACT: 10 s
XC3Sprog: 2331 ms 1.35 292.483 MHz 96 143

PWM Control iMPACT: 10 s
XC3Sprog: 2330 ms 5.28 144.547 MHz 296 568

7. Experiments and Results

Both scalar quantities and large data items (images) were transacted over the wireless
network that was set up (Figure 4) and described in Section 6. Since energy is a concern for
battery powered nodes, in this section, we present a diverse range of practical results on
power consumption for the scalar applications presented in Section 6 as well as for image
processing applications [10,17].

7.1. Test Applications

The proposed sensor node has been used for a variety of applications, namely, sensing
of temperature and humidity, simple actuation (ON/OFF control), and PWM fan control.



Sensors 2021, 21, 5154 14 of 20

In addition, the node was interfaced with image sensors (CMOS cameras) and the cap-
tured images were communicated over the wireless sensor network. To reduce energy
consumption, efficient object extraction techniques [17] were implemented on the FPGA to
only send updated objects in the image frame rather than the full image. To reduce energy
consumption when full images need to be transmitted, an efficient image compression
architecture [26] was also implemented on the proposed sensor node.

7.2. Real-Time State Transitions

The real-time state transitions of the FSMs implemented on the FPGA were monitored
using the Xilinx ChipScope tool. The captured waveforms for the temperature-sensing
application are shown in Figure 9. It shows all the states of the FSM (cur_state) during tem-
perature sensing and during transmission of the sensed data. The transmitted temperature
data are also shown (tx_data).

Sensors 2021, 21, 5154 14 of 20 
 

 

7.1. Test Applications 
The proposed sensor node has been used for a variety of applications, namely, sens-

ing of temperature and humidity, simple actuation (ON/OFF control), and PWM fan con-
trol. In addition, the node was interfaced with image sensors (CMOS cameras) and the 
captured images were communicated over the wireless sensor network. To reduce energy 
consumption, efficient object extraction techniques [17] were implemented on the FPGA 
to only send updated objects in the image frame rather than the full image. To reduce 
energy consumption when full images need to be transmitted, an efficient image compres-
sion architecture [26] was also implemented on the proposed sensor node. 

7.2. Real-Time State Transitions 
The real-time state transitions of the FSMs implemented on the FPGA were moni-

tored using the Xilinx ChipScope tool. The captured waveforms for the temperature-sens-
ing application are shown in Figure 9. It shows all the states of the FSM (cur_state) during 
temperature sensing and during transmission of the sensed data. The transmitted temper-
ature data are also shown (tx_data). 

 
Figure 9. Real-time plot of state transitions during temperature sensing using ChipScope tool. 

7.3. Graphical User Interface 
Figure 10 shows the GUI developed for various sensing and control applications as 

well as image-processing applications. Compressed images received from two different 
camera nodes over the network are depicted within Figure 10. The two images depicted 
have two different resolutions that are selected from within the GUI. The control switches 
and sensed temperatures can be seen at the bottom part of Figure 10. 

Figure 9. Real-time plot of state transitions during temperature sensing using ChipScope tool.

7.3. Graphical User Interface

Figure 10 shows the GUI developed for various sensing and control applications as
well as image-processing applications. Compressed images received from two different
camera nodes over the network are depicted within Figure 10. The two images depicted
have two different resolutions that are selected from within the GUI. The control switches
and sensed temperatures can be seen at the bottom part of Figure 10.

Sensors 2021, 21, 5154 15 of 20 
 

 

 
Figure 10. Graphical User Interface (GUI) at the base-station. 

7.4. Power Consumption 
For all experiments, power consumed by the sensor node was determined by meas-

uring the current flowing through the power supply rail. In order to assist with collecting 
accurate power measurements, one of the pins in the PMOD header of the sensor node 
was used as a trigger for the digital storage oscilloscope (DSO). As soon as the sensor node 
leaves the IDLE state, this pin is set to high, causing the DSO to trigger and record power 
data during the receive and send states. Additionally, in order to measure the power con-
sumed by the XBee module in sleep mode, a configuration was developed to assert the 
XBee sleep pin. This required virtually no logic, resulting in a “minimal configuration”. 

The power consumed by the sensor node was measured with an object extraction 
architecture programmed into the FPGA. Figure 11 shows the experimental results on the 
power consumed by the sensor node at various supply voltages. At 5 V supply, the power 
consumed by the object extraction architecture is 620 mW. When the FPGA is put to sleep 
mode, the power consumption reduces significantly, consuming only 250 mW at 5 V. 

Figure 10. Graphical User Interface (GUI) at the base-station.



Sensors 2021, 21, 5154 15 of 20

7.4. Power Consumption

For all experiments, power consumed by the sensor node was determined by measur-
ing the current flowing through the power supply rail. In order to assist with collecting
accurate power measurements, one of the pins in the PMOD header of the sensor node
was used as a trigger for the digital storage oscilloscope (DSO). As soon as the sensor
node leaves the IDLE state, this pin is set to high, causing the DSO to trigger and record
power data during the receive and send states. Additionally, in order to measure the power
consumed by the XBee module in sleep mode, a configuration was developed to assert the
XBee sleep pin. This required virtually no logic, resulting in a “minimal configuration”.

The power consumed by the sensor node was measured with an object extraction
architecture programmed into the FPGA. Figure 11 shows the experimental results on the
power consumed by the sensor node at various supply voltages. At 5 V supply, the power
consumed by the object extraction architecture is 620 mW. When the FPGA is put to sleep
mode, the power consumption reduces significantly, consuming only 250 mW at 5 V.

Sensors 2021, 21, 5154 16 of 20 
 

 

 
Figure 11. Power consumption profile of the sensor node for object extraction in data processing mode 
and sleep mode. 

We also programmed both the object extraction and the image compression architec-
tures into the FPGA. For simplicity, we refer to these combined operations as image pro-
cessing. Figure 12 shows a partial snapshot of the real-time power consumption of the 
sensor node during the combined object extraction and compression operations (~0.75 W), 
and during data transmission (~1.2 W). A zoomed-in view of one transmission transaction 
is shown in Figure 13. These measurements were obtained when the node supply voltage 
was set to 6 V DC. 

 
Figure 12. Power consumption of the sensor node during image capture, processing, and transmission operations. 

Figure 11. Power consumption profile of the sensor node for object extraction in data processing mode
and sleep mode.

We also programmed both the object extraction and the image compression archi-
tectures into the FPGA. For simplicity, we refer to these combined operations as image
processing. Figure 12 shows a partial snapshot of the real-time power consumption of the
sensor node during the combined object extraction and compression operations (~0.75 W),
and during data transmission (~1.2 W). A zoomed-in view of one transmission transaction
is shown in Figure 13. These measurements were obtained when the node supply voltage
was set to 6 V DC.



Sensors 2021, 21, 5154 16 of 20

Sensors 2021, 21, 5154 16 of 20 
 

 

 
Figure 11. Power consumption profile of the sensor node for object extraction in data processing mode 
and sleep mode. 

We also programmed both the object extraction and the image compression architec-
tures into the FPGA. For simplicity, we refer to these combined operations as image pro-
cessing. Figure 12 shows a partial snapshot of the real-time power consumption of the 
sensor node during the combined object extraction and compression operations (~0.75 W), 
and during data transmission (~1.2 W). A zoomed-in view of one transmission transaction 
is shown in Figure 13. These measurements were obtained when the node supply voltage 
was set to 6 V DC. 

 
Figure 12. Power consumption of the sensor node during image capture, processing, and transmission operations. Figure 12. Power consumption of the sensor node during image capture, processing, and transmission operations.

Sensors 2021, 21, 5154 17 of 20 
 

 

 
Figure 13. Zoomed-in view of the power consumption from Figure 12. 

For a more comprehensive view of the performance during the combined image-pro-
cessing operation, in Figure 14, we have captured the power consumption for an entire 
image processing and transmission cycle. In this example, the time taken for the entire 
processing and transmission operation is approximately 7 s. This is likely to vary depend-
ing on the nature and size of the extracted object (image) as well as the network configu-
ration and prevailing network conditions (noise levels, number of hops, etc.). 

 
Figure 14. Power consumption for the image processing and transmission cycle. 

As stated previously, a few simple applications such as temperature monitoring and 
switch/fan control as well as more complex applications such as image compression and 
object extraction have been implemented on the FPGA. Power consumption for each ap-
plication has been measured and is shown in Table 6. 

  

Figure 13. Zoomed-in view of the power consumption from Figure 12.

For a more comprehensive view of the performance during the combined image-
processing operation, in Figure 14, we have captured the power consumption for an entire
image processing and transmission cycle. In this example, the time taken for the entire
processing and transmission operation is approximately 7 s. This is likely to vary depending
on the nature and size of the extracted object (image) as well as the network configuration
and prevailing network conditions (noise levels, number of hops, etc.).



Sensors 2021, 21, 5154 17 of 20

Sensors 2021, 21, 5154 17 of 20 
 

 

 
Figure 13. Zoomed-in view of the power consumption from Figure 12. 

For a more comprehensive view of the performance during the combined image-pro-
cessing operation, in Figure 14, we have captured the power consumption for an entire 
image processing and transmission cycle. In this example, the time taken for the entire 
processing and transmission operation is approximately 7 s. This is likely to vary depend-
ing on the nature and size of the extracted object (image) as well as the network configu-
ration and prevailing network conditions (noise levels, number of hops, etc.). 

 
Figure 14. Power consumption for the image processing and transmission cycle. 

As stated previously, a few simple applications such as temperature monitoring and 
switch/fan control as well as more complex applications such as image compression and 
object extraction have been implemented on the FPGA. Power consumption for each ap-
plication has been measured and is shown in Table 6. 

  

Figure 14. Power consumption for the image processing and transmission cycle.

As stated previously, a few simple applications such as temperature monitoring and
switch/fan control as well as more complex applications such as image compression and
object extraction have been implemented on the FPGA. Power consumption for each
application has been measured and is shown in Table 6.

Table 6. Power consumption profile of the sensor node for different applications.

Setup
Processing Power at 5 V Supply

(mW)

Maximum

Temperature monitoring using SPI 473.55
Temperature monitoring using I2C 402.1

AC Switch control 432.8
PWM fan control 441.7

Image compression 675.2
Combined image compression and object

extraction 713.6

Table 6 shows that even with the most complicated data-processing (image-processing)
application, the proposed sensor platform consumes only 713.6 mW of power, which is
the same as the power consumption of the Stargate node reported in Table 2. This power
consumption is less than half of all the other off-the-shelf platforms presented in Table 2.
In addition, this power consumption is less than all the FPGA-based sensor nodes listed in
Table 3, except the one reported in [15]. However, the authors of [15] did not report the
standby power consumption of the wireless transceiver or the power consumed for wireless
data communication. For low data rate (scalar) processing applications such as those
reported in Table 6, FlexiS consumes almost the same or less power. This demonstrates that
the proposed platform is competitive for a variety of applications that require complicated
data processing but have limited energy resources. In fact, it is more attractive than the
majority of the platforms presented in Tables 2 and 3.

One additional benefit of using such a platform as FlexiS is the processing time.
As reported in [17], for a complex data processing task, the FPGA processing node may
consume less power by finishing the task quickly and then going back to sleep mode.



Sensors 2021, 21, 5154 18 of 20

8. Conclusions

This paper has presented FlexiS, a high-performance, flexible, embedded sensor node
platform based on FPGA. Unlike exiting literature on FPGA-based sensor nodes, this
paper has provided the hardware architecture and other design details as well as the
implementation of finite state machines. It has been successfully applied in a range of
applications dealing with both scalar and high-volume data. Test results demonstrate that
FlexiS is highly suitable for data and computation-intensive applications in wireless sensor
networks because it offers high performance with a competitive energy profile, flexibility,
and the ability to easily connect multiple types of sensors. Clearly, this type of sensing
platform can be used to deliver the distributed processing and data analysis capability
required by emerging IoT applications. Being able to reprogram the hardware functions
within the FPGA means that the proposed sensor node can be easily adapted to various IoT
applications. It can also be easily adapted in-system when the sensing environment changes,
for example, if the sampling rate needs to be adjusted. The proposed sensor node platform
can help implement a range of seamlessly connected and adaptable sensing devices, which
in turn, is likely to harness new capabilities in future IoT.

Author Contributions: Conceptualization, S.M.A.; methodology, D.M.P. and S.M.A.; software,
D.M.P.; validation, D.M.P.; writing—original draft preparation, D.M.P. and S.M.A.; writing—review
and editing, D.M.P. and S.M.A.; supervision, S.M.A.; project administration, S.M.A. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors acknowledge the assistance of Reza Mirza Sadeghi in confirming
some of the results. They thank Mathew Potaczek for assistance with the PCB design, Dylan Hoskin
and Daniel Morales for assistance with fine tuning and documenting the revised PCB design.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kopetz, H. Internet of things. In Real-Time Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 307–323.
2. IntelCorporation. A Guide to the Internet of Things. Available online: https://www.intel.com/content/www/us/en/internet-

of-things/infographics/guide-to-iot.html (accessed on 21 December 2019).
3. Stolpe, M. The Internet of Things: Opportunities and Challenges for Distributed Data Analysis. SIGKDD Explor. Newsl. 2016, 18,

15–34. [CrossRef]
4. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies,

Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. [CrossRef]
5. Raghavendra, C.; Sivalingam, K.; Znati, T. Wireless Sensor Networks; Springer: Berlin/Heidelberg, Germany, 2004.
6. Akyildiz, I.; Melodia, T.; Chowdhury, K. A survey on wireless multimedia sensor networks. Comput. Netw. 2007, 51, 921–960.

[CrossRef]
7. Arduino. Arduino. Available online: https://www.arduino.cc (accessed on 25 October 2020).
8. Pham, C. Communication performances of IEEE 802.15.4 wireless sensor motes for data-intensive applications: A comparison of

WaspMote, Arduino MEGA, TelosB, MicaZ and iMote2 for image surveillance. J. Netw. Comput. Appl. 2014, 46, 48–59. [CrossRef]
9. Verizon. State of the Market: The Internet of Things 2015. Available online: http://www.verizonenterprise.com/ (accessed on 12

March 2019).
10. Aziz, S.M.; Pham, D.M. Energy efficient image transmission in wireless multimedia sensor networks. Commun. Lett. IEEE 2013,

17, 1084–1087. [CrossRef]
11. Roselli, L.; Mariotti, C.; Mezzanotte, P.; Alimenti, F.; Orecchini, G.; Virili, M.; Carvalho, N.B. Review of the present technologies

concurrently contributing to the implementation of the Internet of Things (IoT) paradigm: RFID, Green Electronics, WPT and
Energy Harvesting. In Proceedings of the 2015 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), San
Diego, CA, USA, 25–28 January 2015; pp. 1–3.

12. Garcia, R.; Gordon-Ross, A.; George, A.D. Exploiting Partially Reconfigurable FPGAs for Situation-Based Reconfiguration in
Wireless Sensor Networks. In Proceedings of the 2009 17th IEEE Symposium on Field Programmable Custom Computing
Machines, Napa, CA, USA, 5–7 April 2009; pp. 243–246.

https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
https://www.intel.com/content/www/us/en/internet-of-things/infographics/guide-to-iot.html
http://doi.org/10.1145/2980765.2980768
http://doi.org/10.1109/JIOT.2017.2683200
http://doi.org/10.1016/j.comnet.2006.10.002
https://www.arduino.cc
http://doi.org/10.1016/j.jnca.2014.08.002
http://www.verizonenterprise.com/
http://doi.org/10.1109/LCOMM.2013.050313.121933


Sensors 2021, 21, 5154 19 of 20

13. Liu, F.; Jia, Z.; Li, Y. A Novel Partial Dynamic Reconfiguration Image Sensor Node for Wireless Multimedia Sensor Networks. In
Proceedings of the 2012 IEEE 14th International Conference on High Performance Computing and Communication & 2012 IEEE
9th International Conference on Embedded Software and Systems, Liverpool, UK, 25–27 June 2012; pp. 1368–1374.

14. Portilla, J.; Riesgo, T.; de Castro, A. A Reconfigurable Fpga-Based Architecture for Modular Nodes in Wireless Sensor Networks.
In Proceedings of the 2007 3rd Southern Conference on Programmable Logic, Mar del Plata, Argentina, 28–26 February 2007; pp.
203–206.

15. Valverde, J.; Otero, A.; Lopez, M.; Portilla, J.; De La Torre, E.; Riesgo, T. Using SRAM based FPGAs for power-aware high
performance wireless sensor networks. Sensors 2012, 12, 2667–2692. [CrossRef]

16. Gomes, T.; Salgado, F.; Pinto, S.; Cabral, J.; Tavares, A. A 6LoWPAN Accelerator for Internet of Things Endpoint Devices. IEEE
Internet Things J. 2017, 5, 371–377. [CrossRef]

17. Pham, D.M.; Aziz, S.M. Object extraction scheme and protocol for energy efficient image communication over wireless sensor
networks. Comput. Netw. 2013, 57, 2949–2960. [CrossRef]

18. Hayat, M.N.; Khan, H.; Iqbal, Z.; Rahman, Z.U.; Tahir, M. Multimedia sensor networks: Recent trends, research challenges and
future directions. In Proceedings of the 2017 International Conference on Communication, Computing and Digital Systems
(C-CODE), Islamabad, Pakistan, 8–9 March 2017; pp. 157–162.

19. Sales, F.O.; Marante, Y.; Vieira, A.B.; Silva, E.F. Energy Consumption Evaluation of a Routing Protocol for Low-Power and Lossy
Networks in Mesh Scenarios for Precision Agriculture. Sensors 2020, 20, 3814. [CrossRef]

20. García, G.J.; Jara, C.A.; Pomares, J.; Alabdo, A.; Poggi, L.M.; Torres, F. A Survey on FPGA-Based Sensor Systems: Towards
Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing. Sensors 2014, 14,
6247–6278. [CrossRef]

21. MEMSIC. MICAZ MPR2400CA Datasheet. Available online: http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_
datasheet-t.pdf (accessed on 25 October 2020).

22. MEMSIC. IRIS XM2110CA Datasheet. Available online: http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_
Datasheet.pdf (accessed on 25 October 2020).

23. MEMSIC. TELOSB TPR2420CA Datasheet. Available online: https://www.willow.co.uk/TelosB_Datasheet.pdf (accessed on 25
October 2020).

24. Goh, K.; Ong, S.H.; Joe, Y.Y.; Kusolpalin, P.; Moh, W.; Ling, K.V. FPGA based wireless sensor node for distributed process
monitoring. In Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 18–20
July 2012; pp. 1934–1939.

25. Pham, D.M.; Aziz, S.M. FPGA architecture for object extraction in Wireless Multimedia Sensor Network. In Proceedings of
the 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Adelaide, SA,
Australia, 6–9 December 2011; pp. 294–299.

26. Pham, D.M.; Aziz, S.M. An energy efficient image compression scheme for Wireless Sensor Networks. In Proceedings of the 2013
IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, VIC,
Australia, 2–5 April 2013; pp. 260–264.

27. Digilent. Digilent Pmod Interface Specification. Available online: https://www.digilentinc.com/Pmods/Digilent-Pmod_%2
0Interface_Specification.pdf (accessed on 25 October 2020).

28. Yang, F. Passive ultra-low energy building design based on FPGA and Internet of Things. Microprocess. Microsyst. 2020, 103412.
[CrossRef]

29. Vera-Salas, L.A.; Moreno-Tapia, S.V.; Garcia-Perez, A.; Romero-Troncoso, R.d.J.; Osornio-Rios, R.A.; Serroukh, I.; Cabal-Yepez, E.
FPGA-Based Smart Sensor for Online Displacement Measurements Using a Heterodyne Interferometer. Sensors 2011, 11, 7710–
7723. [CrossRef] [PubMed]

30. Otero, A.; Llinas, M.; Lombardo, M.L.; Portilla, J.; de la Torre, E.; Riesgo, T. Cost and energy efficient reconfigurable embedded
platform using Spartan-6 FPGAs. In Proceedings of the SPIE 8067, VLSI Circuits and Systems V, Prague, Czech Republic, 3 May
2011. [CrossRef]

31. Braeken, A.; Genoe, J.; Kubera, S.; Mentens, N.; Touhafi, A.; Verbauwhede, I.; Verbelen, Y.; Vliegen, J.; Wouters, K. Secure remote
reconfiguration of an FPGA-based embedded system. In Proceedings of the 6th International Workshop on Reconfigurable
Communication-Centric Systems-on-Chip (ReCoSoC), Montpellier, France, 20–22 June 2011; pp. 1–6.

32. Bengherbia, B.; Ould Zmirli, M.; Toubal, A.; Guessoum, A. FPGA-based wireless sensor nodes for vibration monitoring system
and fault diagnosis. Measurement 2017, 101, 81–92. [CrossRef]

33. Hongzhi, L.; Bergmann, N.W. An FPGA softcore based implementation of a bird call recognition system for sensor networks. In
Proceedings of the 2010 Conference on Design and Architectures for Signal and Image Processing (DASIP), Edinburgh, UK, 26–28
October 2010; pp. 1–6.

34. Hinkelmann, H.; Reinhardt, A.; Varyani, S.; Glesner, M. A Reconfigurable Prototyping Platform for Smart Sensor Networks. In
Proceedings of the 2008 4th Southern Conference on Programmable Logic, Bariloche, Argentina, 26–28 March 2008; pp. 125–130.

35. Xilinx. Spartan 6 Product Brief. Available online: http://www.xilinx.com/publications/prod_mktg/Spartan6_Product_Brief.pdf
(accessed on 25 October 2020).

36. Xilinx. Spartan-6 Family Overview. Available online: http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
(accessed on 25 October 2020).

http://doi.org/10.3390/s120302667
http://doi.org/10.1109/JIOT.2017.2785659
http://doi.org/10.1016/j.comnet.2013.07.001
http://doi.org/10.3390/s20143814
http://doi.org/10.3390/s140406247
http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.pdf
https://www.willow.co.uk/TelosB_Datasheet.pdf
https://www.digilentinc.com/Pmods/Digilent-Pmod_%20Interface_Specification.pdf
https://www.digilentinc.com/Pmods/Digilent-Pmod_%20Interface_Specification.pdf
http://doi.org/10.1016/j.micpro.2020.103412
http://doi.org/10.3390/s110807710
http://www.ncbi.nlm.nih.gov/pubmed/22164040
http://doi.org/10.1117/12.887498
http://doi.org/10.1016/j.measurement.2017.01.022
http://www.xilinx.com/publications/prod_mktg/Spartan6_Product_Brief.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf


Sensors 2021, 21, 5154 20 of 20

37. Digilent. Sensors/Interfaces/Peripheral Modules (Pmods). Available online: http://store.digilentinc.com/pmod-modules/
(accessed on 20 November 2019).

38. Future Technology Devices International Limited. FT2232D DUAL USB TO SERIAL UART/FIFO IC Datasheet. Available online:
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232D.pdf (accessed on 25 October 2020).

39. Future Technology Devices International Limited. FT232H Single Channel Hi- Speed USB to Multipurpose UART/FIFO IC.
Available online: http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232H.pdf (accessed on 15 December
2015).

40. Digi International. XBee/XBee-PRO ZigBee RF Modules User Guide. Available online: http://ftp1.digi.com/support/
documentation/90000976_W.pdf (accessed on 25 October 2020).

41. Xilinx. Spartan-6 FPGA Configuration User Guide. Available online: http://www.xilinx.com/support/documentation/user_
guides/ug380.pdf (accessed on 25 October 2020).

42. Maupin, P. Playtag. Available online: https://code.google.com/p/playtag/ (accessed on 20 December 2020).
43. Bonnes, U. xc3sprog (rev. 778). Available online: http://xc3sprog.sourceforge.net (accessed on 25 October 2020).
44. AVNET. ZedBoard. Available online: http://zedboard.org/product/zedboard (accessed on 20 December 2019).
45. Linaro. Linaro: Leading colaboration in the ARM ecosystem. Available online: http://www.linaro.org (accessed on 20

December 2015).
46. Dropbox. Core API. Available online: https://www.dropbox.com/developers-v1/core (accessed on 20 December 2020).

http://store.digilentinc.com/pmod-modules/
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232D.pdf
http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232H.pdf
http://ftp1.digi.com/support/documentation/90000976_W.pdf
http://ftp1.digi.com/support/documentation/90000976_W.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
https://code.google.com/p/playtag/
http://xc3sprog.sourceforge.net
http://zedboard.org/product/zedboard
http://www.linaro.org
https://www.dropbox.com/developers-v1/core

	Introduction 
	Review of WSN Platforms 
	Microcontroller Versus FPGA Approach 
	Summary of Sensor Node Platforms 

	Design Considerations 
	The Proposed Sensor Node 
	Memory and IO 
	Programming Interface and Power Supply 
	Wireless Communication 

	FPGA Programming 
	Manual Reconfiguration 
	Reconfiguration Using Multiboot 

	Wireless Networking Set up and Applications 
	Temperature Sensing 
	Simple Actuation and PWM Fan Control 

	Experiments and Results 
	Test Applications 
	Real-Time State Transitions 
	Graphical User Interface 
	Power Consumption 

	Conclusions 
	References

