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Bridging the divide between causal
illusions in the laboratory and the real
world: the effects of outcome density with
a variable continuous outcome
Julie Y. L. Chow* , Ben Colagiuri and Evan J. Livesey

Abstract

Illusory causation refers to a consistent error in human learning in which the learner develops a false belief that two
unrelated events are causally associated. Laboratory studies usually demonstrate illusory causation by presenting two
events—a cue (e.g., drug treatment) and a discrete outcome (e.g., patient has recovered from illness)—probabilistically
across many trials such that the presence of the cue does not alter the probability of the outcome. Illusory causation in
these studies is further augmented when the base rate of the outcome is high, a characteristic known as the outcome
density effect. Illusory causation and the outcome density effect provide laboratory models of false beliefs that emerge
in everyday life. However, unlike laboratory research, the real-world beliefs to which illusory causation is most
applicable (e.g., ineffective health therapies) often involve consequences that are not readily classified in a discrete or
binary manner. This study used a causal learning task framed as a medical trial to investigate whether similar outcome
density effects emerged when using continuous outcomes. Across two experiments, participants observed outcomes
that were either likely to be relatively low (low outcome density) or likely to be relatively high (high outcome density)
along a numerical scale from 0 (no health improvement) to 100 (full recovery). In Experiment 1, a bimodal distribution
of outcome magnitudes, incorporating variance around a high and low modal value, produced illusory causation and
outcome density effects equivalent to a condition with two fixed outcome values. In Experiment 2, the outcome
density effect was evident when using unimodal skewed distributions of outcomes that contained more ambiguous
values around the midpoint of the scale. Together, these findings provide empirical support for the relevance of the
outcome density bias to real-world situations in which outcomes are not binary but occur to differing degrees. This has
implications for the way in which we apply our understanding of causal illusions in the laboratory to the development
of false beliefs in everyday life.
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Significance
Many of the decisions we make in everyday life are mo-
tivated by beliefs about cause and effect. For example, in
deciding to use or recommend a medical treatment, pa-
tients and health practitioners usually hold a belief that
the target treatment will increase the probability that the
patient’s health will improve. Critically, laboratory re-
search on contingency learning suggests we are biased
to overestimate the causal relationship between a

putative cause and an outcome when they are in fact un-
related, particularly when the outcome occurs fre-
quently, a phenomenon known as the outcome density
(OD) bias. This effect can account for the prevalent use
of ineffective therapies in the treatment of illnesses that
have high rates of spontaneous remission, since frequent
experiences of symptomatic relief may mislead patients
to perceive that the treatment is effective. To date, la-
boratory experiments investigating these cognitive biases
conventionally present the outcome in a discrete fashion
(e.g., the patient is sick vs. the patient has recovered).
Real-world experiences, on the other hand, are often not* Correspondence: jcho6167@uni.sydney.edu.au
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binary in nature but have variability and ambiguity,
which make inferring causality particularly challenging.
The current study is an attempt to bridge the gap be-
tween experimental research and real-world experience
by investigating the OD bias with continuous and vari-
able outcomes, emulating the need to extract causal rela-
tionships from noisy information. This is one step to
demonstrating the validity and relevance of contingency
learning research in the laboratory to causal learning
problems in the real world.

Background
The ability to extract causal knowledge from direct ex-
perience is crucial in helping us make sense of the
world. The knowledge that an environmental cue or an
action performed by the individual causes a particular
outcome can be used to guide our behaviours to maxi-
mise desirable outcomes and avoid undesirable ones. For
example, if a patient develops a skin rash every time they
eat a particular food, the patient may choose to avoid
that food in the future to prevent an adverse allergic re-
action. Thus, the importance of extracting accurate
causal beliefs from the available information, including
correctly identifying the lack of a causal relationship be-
tween unrelated events, is important for our well-being.
However, people sometimes identify causality where
none exists, and this can affect the way we make judg-
ments and decisions. For these reasons, researchers
often take a keen interest in fallacious biases in causal
learning. Examples of important real-world phenomena
that researchers have argued could be strongly and nega-
tively influenced by learning biases include stereotype
formation (Hamilton & Gifford, 1976; Le Pelley et al.,
2010), judgment of guilt and voluntariness of confessions
in the courtroom (Lassiter, 2002), and the use of poten-
tially ineffective health therapies (Matute, Yarritu, &
Vadillo, 2011).
Although the impact of biased causal judgments is

relevant to many examples of causal learning in the
real world, recent literature has focused on the effects
of biased causal learning in medically relevant con-
texts, particularly beliefs about of the effectiveness of
health treatments (e.g., Rottman, Marcum, Thorpe, &
Gellad, 2017). This focus is partly motivated by in-
creasing public concern over—and apparent increased
use of—pseudo-medicine (Blanco, 2017). In this vein,
the rest of this paper will focus on the effects of
biased causal learning on judgments about potentially
ineffective health treatments. Health treatment
choices, like many of the decisions we make in every-
day life, are motivated by beliefs about cause and ef-
fect. People form a belief about the causal
relationship between a putative cause and the out-
come (e.g., a drug treatment is thought to improve

health) by accumulating evidence from direct experi-
ences with the cause (taking the drug) and outcome
events (health improvement). The ability of a putative
cause to increase or decrease the probability of an
outcome, relative to a base rate in which the cause is
not present, is often referred to as contingency.
Hence, one way in which people form beliefs about
cause and effect is through contingency learning, ac-
quiring evidence about the likelihood of the outcome
after drug treatment and after no treatment (Jenkins
& Ward, 1965).
Although people are often accurate when assessing

causal relationships via contingency learning (Wasserman,
1990), research has shown that under certain conditions,
we are misled to see a causal link between a potential (but
ineffective) cause and an outcome (Alloy & Abramson,
1979). In the context of making appropriate decisions
about health care, this error in learning is a concern be-
cause it may result in the development and maintenance
of erroneous beliefs that drive maladaptive choices. For
example, despite the lack of support within the scientific
community for the efficacy of certain forms of comple-
mentary and alternative medicine (CAM), many people
still believe in their effectiveness and may even prefer such
treatments over those that are scientifically validated
(Lilienfeld, Ritschel, Lynn, Cautin, & Latzman, 2014). In-
deed, there is now a strong evidence base suggesting that
some CAM treatments are completely ineffective (e.g.,
Barrett et al., 2010). In such cases, the putative cause has
no impact on the targeted health outcome and statistical
contingency between treatment and outcome is presum-
ably zero or close to it. Nevertheless, frequent personal
use of such treatments does not appear to strongly dis-
suade consumers from purchasing these products.

Causal learning under zero contingency
Simple contingency learning experiments typically in-
volve two binary events—one potential cause and one
outcome—yielding four possible combinations of cause
and outcome, as shown in Table 1.
Manipulations of the covariation between cause and

outcome are possible by varying the relative frequency
of each trial type, with the resulting contingency con-
veniently quantified using the Δp metric (Allan, 1980):

Table 1 Contingency matrix showing the four different trial
types as a function of whether the cause and outcome are
present or absent

Outcome present Outcome absent

Cause present a b

Cause absent c d
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Δp ¼ p OjCð Þ � p O � Cjð Þ
¼ a= aþ bð Þ½ � � c= cþ dð Þ½ �: ð1Þ

According to this widely used formula, Δp is positive
if the outcome is more likely to occur when the cause is
present than when the cause is absent, suggesting that
the cause generates the outcome. Alternatively, a nega-
tive Δp suggests that the presence of the cause prevents
the outcome from occurring. For both positive and
negative Δp values, there is some causal relationship be-
tween cause and outcome, whereas if the potential cause
has no real effect on the outcome, such that p(O|C) =
p(O|~C), then Δp is zero.
Although studies of action–outcome and cue–out-

come judgments have generally found that people are
sensitive to the strength of positive and negative contin-
gencies (Allan & Jenkins, 1983; Shanks & Dickinson,
1988; Wasserman, 1990), judgments of causation con-
sistently deviate from the Δp rule when there is no con-
tingency between the potential cause and the outcome
(i.e., Δp = 0). The overestimation of causal relationships
between two non-contingent events, such that Δp ap-
pears to be either positive or negative when in fact it is
zero, is commonly referred to as the illusion of causality
(see Matute et al., 2015 for a review). Illusion of causality
is an important phenomenon because it represents a
consistent error in human learning that is thought to
contribute to the development and maintenance of
superstitious beliefs and pseudoscientific thinking
(Matute et al., 2011).

Causal illusion and event densities
Many of the studies on illusory causation have explored
the probability of the cue and outcome and their ef-
fect on generating a false association. Manipulations that
increase cause–outcome coincidences (i.e., trial type a in
Table 1) appear to be particularly effective in producing
stronger causal judgments regarding the cue–outcome
relationship, regardless of whether the two events are ac-
tually causally associated with one another (Blanco,
Matute, & Vadillo, 2013; Wasserman, 1990). In other
words, a higher coincidence of the cue and outcome re-
sults in stronger beliefs that the cue causes the outcome.
This can be particularly misleading if one of the events
has a high rate of occurrence and produces a large num-
ber of coincidences for this reason alone.
The OD bias is one example of this effect: it is the ten-

dency to overestimate the relationship between cue and
outcome when the outcome occurs frequently. In a clas-
sic example, Alloy and Abramson (1979) asked partici-
pants to determine the degree of control they possessed
over the onset of a green light by pressing a button. In
conditions where the button press had absolutely no ef-
fect on the light (i.e., zero contingency), participants

were more likely to overestimate the action–outcome rela-
tionship when the light frequently turned on (high OD)
than when it rarely turned on (low OD). This effect has
now been replicated across a wide variety of learning tasks
with zero-contingency events using binary outcomes (e.g.,
Matute et al., 2011). Essentially, a high OD increases the
frequency of a and c trials relative to b and d, even though
contingency remains zero, and this is found to be suffi-
cient in generating strong illusions of causality.
Similarly, when there is a high probability of the cause

occurring (inflating the frequency of a and b trials relative
to c and d), participants typically report greater causal
judgments than when the cause rarely occurs (Allan &
Jenkins, 1983; Vadillo, Musca, Blanco, & Matute, 2011).
This is known as the cue density effect (e.g., Allan &
Jenkins, 1983; Matute et al., 2011; Wasserman, Kao, Van
Hamme, Katagiri, & Young, 1996).

Causal learning about real-world outcomes
Illusory causation is clearly relevant to many of the deci-
sions we must make in day-to-day life. Beliefs about in-
effective treatments are grounded in causal illusions,
whereby two unrelated events such as consuming Echin-
acea (i.e., an action or cue) and common cold relief (i.e.,
outcome) are believed to be related in some meaningful
way. For example, there is evidence from numerous
sources against the efficacy of Echinacea when used to
treat the common cold (see Karsch-Völk et al., 2014 for
a review), and yet the illusory belief may be persistent
among regular consumers who experience first hand the
zero contingency between Echinacea and cold relief. The
decisions made based on these false beliefs are incredibly
costly: out-of-pocket expenditures on CAM in the
United States in 2012 were approximately $30.2 billion
(Nahin, Barnes, & Stussman, 2016). Thus, there is a
strong imperative to apply cognitive theories of causal
learning to real-world problems to formulate ways in
which we might mitigate illusory causal beliefs.
The OD effectidentifies a condition that is important

for the formation and maintenance of false beliefs. For
example, evidence suggests that the strongest beliefs for
CAM are for conditions with a high rate of spontaneous
remission, which is analogous to having a high OD. In
the United States, the use of homeopathic medicines in-
creased by 15% from 2007 to 2012, and in this time they
were most commonly used to treat mild respiratory
complaints including the common cold, a condition for
which intermittent and spontaneous remission is fre-
quent, and the overall probability of recovery is high
(Dossett, Davis, Kaptchuk, & Yeh, 2016). The exponen-
tial growth of the homeopathic drug market in the
United States to an industry worth approximately $3
billion dollars is in conflict with the Food and Drug
Administration’s stance that homeopathic products are
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unproven in their efficacy and potentially dangerous
(U.S. Food and Drug Administration, 2017). One poten-
tial reason for the persistent use of these unvalidated
treatments is the ability for cognitive illusions, including
illusory causation, to interfere with the acquisition of
evidence-based knowledge. A study by Yarritu, Matute,
and Luque (2015) found that participants who developed
strong false beliefs about a bogus treatment’s ability to
cure a disease in Phase 1 had difficulty learning that a
different treatment was actually effective in Phase 2.
This suggests that even when patients are given scientif-
ically validated treatment, their ability to accurately rec-
ognise improvement in their condition is impaired as a
result of previous false beliefs regarding the efficacy of
alternative treatments. As a result, they may continue to
prefer and seek out treatments that are ineffective in
treating their condition.
Although we will not be manipulating the cue density

effect in this paper, it is important to note that the cue
density effect also has implications for the continued use
of ineffective treatments: frequent use may produce
stronger causal illusions about the treatment’s effective-
ness. This is problematic since most alternative therapies
do not produce any side effects. Accordingly, CAM sub-
scribers may be more liberal in using these treatments
since the short-term cost of treatment use is low. The ef-
fect of the cost of administration was investigated in
Blanco, Barberia, and Matute’s (2014) study, in which
participants were presented with two fictitious drugs,
one with a side effect and one without. The researchers
found that participants were more likely to administer
the drug without any side effects, and the frequency of
drug administration was highly predictive of illusory
causation; participants exposed to the drug frequently
(i.e., high cue density) were more likely to judge the
treatment as being more efficacious than those who
rarely administered the drug and thus, had fewer
cue-present events (Blanco, Barberia, & Matute, 2014).
The laboratory research on contingency learning and

causal illusion thus paints a concerning picture of people’s
potential motives for making maladaptive choices. If the
principles uncovered in this research are applicable to
real-world health beliefs then they suggest that choosing
to use ineffective treatments is a self-perpetuating prob-
lem: treatments that are used more frequently are per-
ceived to be more effective, and treatments perceived to
be effective are used more frequently. This cycle is par-
ticularly prevalent for the treatment of ailments with a
high rate of spontaneous remission (Blanco et al., 2013).
At face value, experimental evidence for outcome and

cue density effects suggest that they provide good la-
boratory models for how beliefs in ineffective treatments
develop. However, one potentially critical difference be-
tween the experimental work and their applications is

that the former almost exclusively involves situations in
which the outcome is binary and invariant (e.g., a green
light either does or does not turn on), whereas many
real-life outcomes are continuous and noisy. Medical
treatments are given in the context of the fluctuating
health experiences and biometric data of the patient,
which vary in degrees. What might be interpreted as the
absence of an outcome (e.g., the patient still presents
with the same symptoms and shows no sign of improve-
ment) is not experienced by the individual as the ab-
sence of any events. Traditional laboratory-based
learning experiments that use health scenarios typically
present highly simplified outcomes in a binary and
discrete fashion (the patient gets better vs. the patient
does not get better). While this aids the task of studying
illusory causation, it is not known whether key phenom-
ena (e.g., the OD bias) rely heavily on this simplified way
in which events are presented. Continuous and variable
outcomes do not fit neatly into the outcome-present vs.
outcome-absent dichotomy on which many theories of
causal learning are based, and it is unclear whether people
readily parse their experiences of continuous noisy events
into the presence vs. absence of a target outcome, as in
Table 1. This issue was highlighted by Marsh and Ahn
(2009) who note that the task of parsing events into the
four discrete categories shown in Table 1 is often not a
trivial problem, yet is ignored by simple covariation-based
models. Indeed, it is less clear whether people are able to
(or indeed need to) parse their experience of the cue with
the outcome into four categorical trial types when the out-
comes presented are continuous. Therefore, event infor-
mation may not come readily classified as evidence for or
against the putative cue–outcome relationship.
To our knowledge, no study has previously examined

the effects of using more ecologically valid representa-
tions of the outcome in examining the OD effect in en-
hancing the illusion of causality. As such, it is important
to test whether continuous, variable, and potentially am-
biguous outcomes produce lawful variations in illusory
causal judgments in the same way as a simple binary
outcome. Thus, we were interested in measuring illusory
causation and OD effects using continuous and variable
outcomes that are always present to some extent but
vary in degree and may be difficult to dichotomise.

Overview of the current study
The aim of the current study was to test whether illusory
causation and OD effects specifically could be generated
using an outcome that always occurred but to a varying
degree. Our study used a contingency learning task
framed as a clinical trial in which participants were pre-
sented with a causal scenario and instructed to make judg-
ments about the relationship between a drug cue and a
health outcome, in this case, patient recovery. Rather than
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using binary or discrete outcome events, an outcome was
presented on every trial, but its magnitude varied along a
continuous scale. To illustrate, instead of the conventional
binary outcome where a fictitious patient is either sick or
has recovered as a function of treatment or no treatment,
patient recovery (i.e., the outcome) was represented on a
linear numerical scale from no improvement to full recov-
ery, where the assessment of patient recovery could poten-
tially take on any value within the range.
Participants were presented instructions suggesting

a potential causal relationship between the drug cue
and health outcome, namely that the drug Cloveritol
may increase the recovery rate of patients suffering
from a serious illness. Participants then observed a
series of trials in which patients were administered
Cloveritol or no treatment, with the drug actually
having no impact whatsoever on recovery. During
training, participants witnessed outcomes presented
along a scale from 0 (no improvement) to 100 (full

recovery), which they were told represented the pa-
tient’s improvement in health. Observed outcomes
were sourced from different types of distributions in
Experiments 1 and 2. In Experiment 1, we introduced
variability in the variable outcome condition by using
a bimodal distribution centred at two mean values, a
high (80) and low (20) value, and tested whether the
presence of variability around these values affected il-
lusory causation and OD effects. The inclusion of
variability in the way we represented the outcome
was directly contrasted with a fixed-value outcome
condition, where low health recovery was represented
with a constant value of 20 and high health recovery
with a constant value of 80.
In Experiment 2, all participants were presented with

continuous and variable outcomes sourced from a uni-
modal skewed distribution, with either a high or low
modal value (see Fig. 1). In both experiments, partici-
pants were separated into low OD and high OD

Fig. 1 a Bimodal outcome distribution presented to participants in variable outcome and low OD condition, where 80% of outcomes were low
in magnitude. b Bimodal outcome distribution presented to participants in the variable outcome and high OD condition, where 80% of
outcomes were high in magnitude. c Continuous outcome distribution presented to participants in the low OD condition, where 80% of
outcomes were below an outcome value of 50. d Continuous outcome distribution presented to participants in the high OD condition, where
80% of outcomes were above an outcome value of 50
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conditions, whereby low OD participants observed out-
comes that were predominantly low in magnitude with
some high magnitude outcomes, whereas high OD par-
ticipants observed predominantly high magnitude out-
comes with some low magnitude outcomes. Although
we use the term “outcome density” for consistency with
the broader literature, it should be noted that the term
entails a slightly different meaning when the outcome is
not binary. In our set of experiments, because the out-
come occurs on every trial but to a varying degree, a
high OD condition is one where a high magnitude out-
come is more likely to occur than a low magnitude out-
come, whereas a low OD condition is when a low
magnitude outcome is more likely to occur.
As in most OD effect studies, the critical measure was

participants’ causal judgments about the cue, in this case
measured using ratings of how effective the drug was in
treating the disease.

Experiment 1
Experiment 1 was conducted to test whether an OD bias
produced using a continuous and variable outcome was
comparable to that of a fixed-value outcome, most
closely resembling the binary outcomes presented in
previous research. The OD bias in causal judgments (i.e.,
ratings of the efficacy of the cause in producing the out-
come) is a well-replicated effect but previous studies
have used simple and discrete binary outcomes (Alloy &
Abramson, 1979; Blanco & Matute, 2015; Langer, 1975).
We used a generative causal scenario in which partici-
pants were given information suggesting that the drug
cue, Cloveritol, may produce faster recovery from illness
(i.e., improved health). In Experiment 1, we manipulated
OD (low vs. high) and outcome variability (fixed vs. vari-
able) independently as between-subject variables. We
used a cue-outcome (i.e., non-instrumental) contingency
learning task to keep the probability of the cause (i.e.,
the cue density) constant across conditions. If differ-
ences in outcome variability can sustain similar causal
learning biases to those observed with binary outcomes,
then the high OD condition should generate greater
treatment efficacy ratings than the low OD condition,
and this effect should be evident for both the fixed and
variable outcome conditions.

Method
Participants
Altogether, 112 participants (78 female, Mage = 22.2
years, and standard deviation [SD] = 5.35 years) com-
pleted the study for class participation or monetary re-
imbursement. Participants were randomly allocated to
one of four experimental conditions according to time of
arrival (n = 28 in each).

Design
The study used a 2 (OD: high vs. low) × 2 (outcome
variability: fixed vs. variable) between-subject design.
Participants in the fixed outcome condition were pre-
sented with an exact-value outcome of 80 or 20 on
each trial, presented on a linear scale from 0 to 100.
The proportion of each of these two outcomes
depended on OD group (80 on 80% of trials in the
high OD condition, vs. 80 on 20% of trials in the low
OD condition). This condition is analogous to con-
ventional contingency learning paradigms that repre-
sent the outcome in a discrete fashion without any
variability (i.e., the patient is either sick or has recov-
ered). Participants in the variable outcome condition
on the other hand, observed outcomes sampled from a bi-
modal distribution with outcomes sampled from a low
distribution (M = 20, SD = 5, and range = 13–27) and a
high distribution (M = 80, SD = 5, and range = 73–87).
The proportion of trials sourced from each distribu-
tion depended on OD condition (80% from the high
distribution in the high OD condition, vs. 20% from
the high distribution for low OD condition). The crit-
ical difference between the fixed and variable condi-
tions is, therefore, the presence of variability in
outcome values that could be classified as low and
high, with the fixed condition experiencing no vari-
ability in outcome values (always 20 or 80), and the
variable condition experiencing some variability
around a low (20) or high (80) outcome value.
All participants completed 100 training trials, 50 with

and 50 without the treatment cue. Trials were pre-
sented to participants in blocks of 10 such that each
block was representative of the total frequency of high
and low outcomes in the experiment (Table 2). Drawing
on previous research in OD effects, we retain the focus
on test judgments of the efficacy of the treatment cue
as the primary measure of relevance for the OD effect.
However, we also included trial-by-trial predictions of
the outcome during training, and an average outcome
measure in the test phase. To anticipate the results of
both experiments, we found consistent differences
across test measures suggesting that causal judgments
are particularly conducive to producing OD effects.
Discussion of these differences will be saved for the
general discussion in Section 5.

Table 2 Proportion of total trials (per block and overall) in low
and high outcome density conditions. There were 10 blocks of
10 trials matching these proportions, yielding 100 trials in total

Low density High density

Cloveritol No treatment Cloveritol No treatment

High outcome 0.1 0.1 0.4 0.4

Low outcome 0.4 0.4 0.1 0.1
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Stimuli and apparatus
On cue-present trials, administration of the treatment was
indicated by presentation of a pill bottle, with the drug
name ‘Cloveritol’ written below it (as shown in Fig. 2). On
cue-absent trials, ‘no treatment’ appeared without an ac-
companying image. Predictions in training were made
along a visual analogue scale ranging from 0% (no im-
provement) to 100% (full recovery). The experiment was
programmed using MATLAB and the Psychophysics
Toolbox extensions (Brainard, 1997; Pelli, 1997).

Procedure
Participants were first asked to imagine they were a
medical researcher investigating a new illness. Partici-
pants were told that a new experimental drug Cloveritol
has been created to treat the disease. The objective of
the study was for them to test the drug’s efficacy in
treating the disease. All participants were told that pa-
tients usually take a long time to recover, and a large im-
provement in health is indicative of a rapid recovery
from illness.

During training, participants were presented with trials
where they were asked to predict the level of improvement
in the patient’s health. Each trial represented a new patient
and participants were shown whether the drug or no treat-
ment was administered. Below this cue, a prediction scale
was presented and participants were required to predict the
patient’s health in that trial by clicking on a point on the
scale from 0 (no improvement) to 100 (full recovery). A
click on the prediction scale would result in the appearance
of a horizontal bar extending from point 0 (extreme left of
the scale) to the final click location. The prediction bar was
always red, regardless of the magnitude of the prediction.
Once a prediction was made and the participant had
pressed the space bar to continue, a near-identical scale
would appear below with the actual observed health im-
provement for that trial, animated as a horizontal bar grow-
ing from left to right across the scale until it reached the
outcome magnitude for that trial. The outcome bar was al-
ways green, regardless of the magnitude of the outcome.
We used different colours for the two bars to allow partici-
pants to differentiate easily between their predictions (red)
and the actual observed outcome (green) on that trial.

Fig. 2 Task schematics for a the sequence presented on a single training trial and b three test phase questions in Experiments 1 and 2. Causal
ratings were made on a scale from 0 to 10 in Experiment 1, and −100 to +100 in Experiment 2
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During the test, participants were instructed to make
judgments about the treatment based on their observa-
tions during training. Participants were first presented
with two average prediction ratings in a randomised order,
one each for Cloveritol and no treatment, and were
instructed to predict the level of improvement they would
expect on average if the patient was given Cloveritol or no
treatment. Having made average prediction judgments for
each cue separately, participants were then presented with
the critical causal rating, where both Cloveritol and no
treatment cues appeared on the same screen followed by
instructions to rate how effective they thought the treat-
ment was relative to no treatment. Ratings were made on
a scale from 0 (completely ineffective) to 10 (completely
effective). The task procedure is depicted in Fig. 2.

Results
To recap, previous literature suggests that any effect of
OD should be most evident in causal ratings, with
greater efficacy ratings reported by participants in the
high OD relative to the low OD condition. Importantly
for this experiment, if the introduction of variability to
the outcome does not produce systematic changes to the
OD effect, we would expect the effect of OD to be com-
parable between the fixed and variable outcome condi-
tions. Given participants were told that the drug should
generate greater health improvements, the presence of
illusory causation is indexed by greater overall prediction
ratings for Cloveritol than no treatment during training
and in the test phase. However, previous contingency
learning research has often failed to find OD effects in
prediction ratings, despite showing the effect in causal
judgments (Matute, Vegas, & De Marez, 2002; Shou &
Smithson, 2015; Vadillo, Miller, & Matute, 2005).

Efficacy ratings at test
Treatment efficacy rating, the critical dependent vari-
able, is shown in Fig. 3(a) as a function of OD and out-
come variability. We ran a 2 (OD: high vs. low) × 2
(Outcome variability: fixed vs. variable) between-subject
ANOVA and found a main effect of OD (F(1,108) = 11.3,
p = .001, and ηp

2 = .094), such that participants in the
high OD condition (M = 4.73 and SD = 2.69) reported
significantly greater efficacy ratings than participants in
the low OD condition (M = 3.11 and SD = 2.34).
Critically, we found no significant interaction effect

between OD and outcome variability (F(1,108) = .004,
p = .953, and ηp

2 < .001), suggesting that fixed and
variable outcomes produce equivalent OD effects. Indeed,
significant OD effects were found when participants
were presented with variable outcomes (F(1,108) =
5.43, p = .022, and ηp

2 = .048), as well as when they
were presented with fixed outcomes (F(1,108) = 5.83,
p = .017, and ηp

2 = .051).

Average prediction at test
Figure 3(b) illustrates the average prediction of Cloveri-
tol and no treatment across the low and high OD condi-
tions for participants in the fixed and variable outcome
variability conditions. A mixed-model ANOVA with OD
(high vs. low) and outcome variability (fixed vs. variable)
as between-subject factors and cue type (Cloveritol vs.
no treatment) as a within-subject factor revealed a main
effect of cue type, where mean predictions for Cloveritol
(M = 52.1 and SD = 22.7) were higher than for no treat-
ment (M = 48.1 and SD = 22.1; F(1,108) = 6.374, p = .013,
and ηp

2 = .056), suggesting illusory causation was
present. However this effect of cue type did not interact
with OD (F(1,108) = 2.00, p = .160, and ηp

2 = .018); that
is the difference between Cloveritol and no treatment
test trials was not larger for the high OD relative to the
low OD condition (such an interaction would indicate
an OD effect on this measure). There was also no inter-
action between cue type and outcome variability (F < 1),
nor was there a three-way interaction between cue type,
outcome variability and OD (F < 1).

Predictions across training
Figure 4 shows mean predictions for the 50 treatment
cue trials and 50 no treatment trials during training. The
analysis for training predictions was conducted with a
mixed-model ANOVA with OD (low vs. high) and out-
come variability (fixed vs. variable) as between-subject
factors, and cue type (Cloveritol vs. no treatment) and
trials (50) as within-subject factors. Like the average pre-
dictions at test, there was a consistent difference in
mean prediction for the two cue types, with significantly
higher predictions for Cloveritol trials (M = 54.6 and SD
= 27.1) compared to no treatment trials (M = 46.6 and
SD = 27.2; F(1,108) = 58.5, p < .001, and ηp

2 = .351).
Again, this effect of cue type did not interact with OD
(F < 1) or outcome variability (F(1,108) = 1.96, p = .165,
and ηp

2 = .018), nor was there a three-way interaction
between these variables (F < 1).

Discussion
Most importantly for our aims, Experiment 1 found a clear
OD effect using a variable outcome distribution. The high
OD condition produced greater efficacy ratings than the
low OD condition and this difference was present in the
variable outcome condition, as it was with the fixed out-
come condition. Consistent with other studies that have
used both prediction judgments and causal judgments (e.g.,
Allan, Siegel, & Tangen, 2005), we found no evidence of
the OD effect in prediction judgments during training and
at test; however, we did find a highly reliable OD effect in
the causal ratings. We discuss the lack of OD effects on
prediction measures in detail in Section 5, but note that
both measures still showed evidence of biased predictions
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for the treatment cue relative to no treatment (i.e., illusory
causation). Outcome predictions were on average higher
for treatment cue trials than for no treatment trials, but this
bias was no larger for high OD than for low OD conditions.
Ratings of the effectiveness of the cue in causing the out-
come constitute the most widely used measure of OD in
the literature, and we found strong evidence of OD effects
on our version of this measure. We, therefore, consider this
result to be highly consistent with those of previous studies
that have used discrete binary outcomes.

Experiment 1 showed that the use of variable out-
comes during training did not significantly alter the re-
sults relative to a contingency learning task with
fixed-magnitude outcomes, akin to binary outcomes typ-
ically presented in these tasks. However, although our
bimodal outcome distribution included some variability
around a low and high central value, it still lacked am-
biguous outcomes (e.g., a value around 50 on a scale of
0–100) and thus, may still be easy to categorise in a bin-
ary fashion. For instance, all experienced outcomes

a

b

Fig. 3 a Drug efficacy ratings at test (± standard error) as a function of OD and outcome variability. b Average health improvement predictions
at test (± standard error) as a function of cue type, OD, and outcome variability. OD outcome density
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could be readily categorised into a low (e.g., a value
around 20) and a high magnitude (e.g., a value around
80). The ease with which these outcomes could be dichot-
omised arguably limits the ecological validity of the ex-
periment. In many real-life situations, the representation
of the outcome is considerably more complex and in-
cludes both variability and ambiguity and is, thus, more
difficult to classify neatly into discrete categories. Experi-
ment 2, therefore, tested for the same OD effects in illu-
sory causation but using a unimodal outcome distribution,
in which participants experience a full range of outcome
values on a linear scale of 1–99, including intermediate
outcomes that are neither low nor high (e.g., they are
around the midpoint of the scale).

Experiment 2
Experiment 2 was mostly identical in procedure to Ex-
periment 1, with changes to the way in which the out-
comes presented to participants were distributed.
Instead of a bimodal distribution with values centred
around 20 and 80, participants experienced outcome
values sourced from a single skewed distribution, with
values ranging from 1 to 99, but with a modal value that
was either high or low. Like Experiment 1, participants
in the low OD condition experienced a majority of low
magnitude outcomes with some high magnitude out-
comes, and this was reversed for participants in the high
OD condition. All outcomes presented were independ-
ent of the cue. A central difference between the

a

b

Fig. 4 a Average predictions during training as a function of OD (low vs. high) and cue type (treatment vs. no treatment) for participants in the
variable outcome condition. b Average predictions during training as a function of OD and cue type for participants in the fixed outcome
condition. OD outcome density
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distribution used in Experiment 2 compared to the vari-
able outcome condition of Experiment 1 is the addition
of ambiguous outcome values around the mid-range of
the scale that are less readily classifiable as low magni-
tude or high magnitude outcomes. The procedure, thus,
arguably has greater ecological validity. We were inter-
ested in determining whether we could still obtain OD
biases in a contingency learning task with continuous
and variable outcomes sampled from a complete range
of values, some of which are more decipherable to the
participants than others (i.e., intermediate values are
more ambiguous given the instructions).

Method
Participants
Altogether, 56 participants (35 female, Mage = 22.9 years,
and SD = 4.44 year) completed the study for a partial
course credit or monetary reimbursement. All partici-
pants were allocated to one of two experimental condi-
tions according to time of arrival (n = 28 in each).

Design
The study used a between-subject design with OD (low
vs. high OD) as the only manipulation. For the low OD
condition, the sample of observed outcomes O was posi-
tively skewed, created using a truncated ex-Gaussian dis-
tribution with a higher proportion of low magnitude
outcomes (distribution parameters: μ = 10, σ = 5, τ = 25,
and range = 1–99, yielding sample mean = 32 and SD =
20). For the high OD condition, we took the comple-
ment of this same distribution (i.e., 100 – O) to produce
a negatively skewed distribution with a higher

proportion of high magnitude outcomes (sample mean
= 68 and SD = 20). A sample of values from this distribu-
tion was randomly generated but with the further con-
straint on the proportion of trials with an outcome value
below 50: participants in the low OD condition experi-
enced 80% of trials with outcomes below 50, whereas
participants in the high OD condition only experienced
20% of trials with outcomes below a value of 50. Ratings
of treatment efficacy presented in the test were modified
to capture a greater variance in responses, with values
ranging from −100 (effectively worsens recovery) to
+100 (effectively improves recovery) with a midpoint of
0 (completely ineffective). This modification in Experi-
ment 2 allowed meaningful comparisons to be made be-
tween the group means and 0, the midpoint of the scale,
whereas 0 represented an extreme end of the scale in
Experiment 1. It is also possible that some participants
judge that the drug actually makes health improvement
less likely (a negative efficacy rating) since the base rate
of recovery without the drug was quite high.
All participants received identical causal instructions

and the procedure of the study was identical to that of
Experiment 1.

Results and discussion
Efficacy ratings at test
Treatment efficacy rating was the critical dependent vari-
able for observing OD effects; these are shown in Fig. 5
(right). A one-way ANOVA comparing low vs. high OD
revealed a main effect of OD (F(1,54) = 4.54, p = .038, and
ηp

2 = .078), such that participants in the high OD condi-
tion (M = 33.6 and SD = 31.7) reported significantly

Fig. 5 Average prediction for Cloveritol and no treatment at test (± standard error of the mean) (left) and efficacy ratings for treatment relative to
no treatment (right) as a function of outcome density. Average predictions were made on a scale from 0 (no improvement) to 100 (full recovery),
whereas efficacy ratings were made from a scale of −100 (effectively worsens recovery) to +100 (effectively improves recovery) with a midpoint
of 0 (completely ineffective). Negative efficacy ratings indicate that the drug makes patients feel worse, whereas positive values suggest the drug
improves patient recovery. OD outcome density
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greater efficacy ratings than participants in the low OD
condition (M = 16.5 and SD = 28.3).

Average prediction at test
Figure 5 (left) illustrates the average prediction of
Cloveritol and no treatment for participants in low and
high OD conditions. Mixed-model ANOVA with OD
(low vs. high) as a between-subject factor and cue type
(Cloveritol vs. no treatment) as a within-subject factor
revealed a similar pattern of results to that in Experi-
ment 1. Mean predictions for Cloveritol (M = 56.9 and
SD = 17.8) were higher than for no treatment (M = 44.8
and SD = 18.0; F(1,54) = 24.4, p < .001, and ηp

2 = .311),
indicative of an illusory causation effect. Although the
interaction between cue type and OD did not reach sig-
nificance (F(1,54) = 3.06, p = .086, and ηp

2 = .054), the
marginal p value suggests that the difference in predic-
tion ratings for Cloveritol and no treatment was slightly
larger in magnitude in the high OD relative to the low
OD group, consistent with OD predictions.

Predictions across training
Figure 6 shows mean predictions for the 50 treatment cue
trials and 50 no treatment trials during training. A
mixed-model ANOVA with OD (low vs. high) as a
between-subject factor and cue type (Cloveritol vs. no
treatment) and trials (50) as a within-subject factor found
a consistent difference in mean prediction for the two cue
types, with significantly higher predictions in Cloveritol
trials (M = 53.8 and SD = 24.9) compared to no treatment
trials (M = 48.9 and SD = 24.5; F(1,54) = 24.1, p < .001, and
ηp

2 = .309). This effect of cue type, which is indicative of
an illusory causation effect, was not different for the high
OD relative to the low OD condition. Hence, we did not

find an OD effect on this measure (F(1,54) = .151, p = .699,
and ηp

2 = .003).
These results are, thus, highly consistent with those

of Experiment 1. In this case, we used a skewed uni-
modal distribution of outcomes in which many trials
ended with intermediate consequences that are not as
easy to classify as a discrete outcome (e.g., good vs.
bad). Nevertheless, we still observed evidence of illu-
sory causation across all measures and an OD effect
in causal ratings.

General discussion
In both experiments we found support for the use of
variable outcomes in generating OD effects, with
greater efficacy ratings in the high OD relative to the
low OD condition. In particular, we found that vari-
ability (Experiment 1) and ambiguity (Experiment 2)
in the outcomes presented to participants did not
alter the systematic biases associated with the OD ef-
fect. Importantly, these findings indicate that the OD
effect is comparable when using variable outcomes to
when using fixed-value outcomes (analogous to
discrete events), indicating that OD effects are not
confined to simplified binary outcomes. We consist-
ently found an illusory causation effect, indexed by
higher prediction ratings for Cloveritol relative to no
treatment, and overall positive causal judgments about
the efficacy of the treatment relative to no treatment.
While researchers have explored causal learning using
causes and effects that vary continuously (e.g., Soo &
Rottman, 2018), to our knowledge this is the first
demonstration of illusory causation and illusory cor-
relation more broadly, using continuous and variable
outcomes.

Fig. 6 Average health improvement predictions across trials as a function of OD (low vs. high) and cue type (treatment vs. no treatment) for
participants in Experiment 2. OD outcome density
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As anticipated, the evidence for OD effects in this
study was largely confined to efficacy ratings. While
there were consistent differences in the mean predic-
tions for Cloveritol and no treatment during training
and at test, suggestive of illusory causation, these differ-
ences were no greater in the high OD group than in the
low OD group. Most studies on OD effects have relied
only on causal or efficacy ratings at test as a measure of
causal illusion. Indeed, studies that have examined pre-
dictions made during training have not always found
strong evidence for OD effects, revealing potentially im-
portant discrepancies between the decision processes
made during training and judgments of causality
assessed at the end of training (e.g., Blanco & Matute,
2015; Dèttore & O’Connor, 2013; Waldmann, 2001).
Some authors have argued that the dissociation between
prediction and causal judgments occurs because these
measures are incomparable (Vadillo et al., 2011); predic-
tions during training are typically binary and summed
across the training procedure (proportion of “yes” re-
sponses to the question Will the patient recover? Yes/
no), whereas causal judgments are made on a linear nu-
merical scale. That we have observed the same dissoci-
ation between causal judgments and predictions made
using a linear numerical scale suggests that this argu-
ment is insufficient to account for the dissociation. Im-
portantly for our purposes, the discrepancy between
prediction and causal judgments is not uncommon in
contingency learning literature, suggesting that the
current experimental design did not produce unlawful
variations in illusory causation effects (Matute et al.,
2002; Shou & Smithson, 2015; Vadillo et al., 2005;
Vadillo & Matute, 2011).
Our results suggest that illusory causation and the OD

effect, in particular, do not depend on processing events
in a small number of artificially defined trial types like
those illustrated in Table 1. This is important for con-
firming the validity of contingency learning procedures
as laboratory models for the development of causal be-
liefs in the real world, but it also has theoretical implica-
tions. Viable theoretical approaches to causal learning
ought to provide a tractable account of illusory correl-
ation effects, explain why they are sensitive to OD, and
be applicable to situations involving both discrete and
continuous outcomes. Some existing theoretical ap-
proaches may be better placed than others to satisfy
these constraints. For instance, theorists have shown
that associative learning can account for both illusory
causation and the OD effect as biases that emerge early
in learning and which are corrected over time with
greater experience (Matute et al., 2015). This analysis re-
volves around updating the associative values of the
treatment cue and the context by comparing the out-
come prediction (a continuous value) against a binary

teaching signal, usually set to 1 or 0 to represent the
presence or absence of a discrete outcome. However,
learning algorithms of this kind operate in essentially the
same way when continuous values are used for the
teaching signal, for instance values that are directly pro-
portional to the magnitude of the outcome. In principle,
the same biases early in learning should still be observed
in this implementation. It is also possible that other
models of causal learning that, in principle, offer expla-
nations for illusory causation and OD effects, such as
Griffiths and Tenenbaum’s (2005) causal support theory,
can be easily modified for learning about continuous
outcomes. However, this remains a goal for future re-
search and theory development.
Notwithstanding the argument above, one might as-

sume that learners have a natural tendency to parse con-
tinuous outcome events into discrete outcome
categories, and that it is this process that gives rise to
the OD effect. Participants might spontaneously classify
continuous events in discrete terms if doing so enabled
them to decide whether outcome information was con-
sistent with or contrary to their current causal hypoth-
esis. This seems relatively plausible for Experiment 1,
where the distribution of outcome magnitudes was bi-
modal and high and low outcomes were distinctly sepa-
rated, even when variability was introduced to the precise
magnitudes observed in each trial. It is less clear that it
would be an obvious or indeed useful strategy for partici-
pants to adopt in Experiment 2, where the distribution of
outcome magnitudes was unimodal. Nevertheless, even in
this design, when confronted with ambiguous outcome
magnitudes around the middle of the range, it is possible
that the learner spontaneously classifies the outcome as
being part of a high or low category, in which case they
may do so in a way that is biased towards their current
causal beliefs (e.g., an outcome around 50 counts as good
recovery if Cloveritol was administered but is regarded as
poor recovery if no treatment was delivered).
Such a hypothesis parallels previous work with am-

biguous cue information, which has shown that learners
spontaneously categorise ambiguous intermediate obser-
vations in a discrete fashion in the direction of their
causal hypothesis, and subsequently use them in contin-
gency judgments (Marsh & Ahn, 2009). This hypothesis
is speculative and requires further research since the
current experiments were not designed to provide evi-
dence that bears on it. However, in any case, we have
shown here that, in the presence of variability in a con-
tinuous outcome, illusory causation still varies lawfully
as a function of OD. We argue that this is an important
step because it better emulates the ambiguous and fluc-
tuating properties of real-world experience. Recovery
from illness is a pertinent example. We almost always
recover from a bout of the common cold, and so the
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probability of recovery as a long-term outcome is high.
However, the rate of recovery and the persistence of un-
pleasant symptoms during recuperation are highly vari-
able outcomes and are not necessarily easy for the
patient or health practitioner to classify in a discrete
fashion. Thus, our experimental approach provides a
more realistic laboratory model for common day-to-day
causal beliefs that impact on decisions we make about
health and medical treatments.
An understanding of the role cognitive biases play in in-

fluencing how we learn about causal relationships is im-
portant as it allows us to recognise the many ways in
which we are biased to form erroneous associations be-
tween events. Findings from this set of experiments sug-
gest that even when the outcomes are difficult to classify
into neat categories, people still show a bias to detect pat-
terns of causality where there is none, and this bias is fur-
ther inflated by factors that increase the rate of cue–
outcome coincidences. As alluded to in the introduction,
the overestimation of a causal relationship between unre-
lated events is particularly problematic when the errone-
ous belief is used to guide subsequent behaviours. To
illustrate, although the efficacy of some CAM treatments,
and the “science” behind them, remain highly debated,
CAM has evolved to be a commercially successful indus-
try, where users are willing to pay hefty treatment costs
without insurance coverage. In Australia, a wide variety of
medications are made affordable for the consumer
through subsidies provided by the Pharmaceutical Benefits
Scheme (PBS). CAM treatments are not routinely funded
under the PBS, partly because of their weak evidence base.
Even so, consumer expenditure on alternative therapies
approached $3.5 billion (Complementary Medicines
Australia, 2014), approximately $1.8 billion more than pa-
tient expenditure on PBS-funded medications, which ap-
proximated $1.5 billion in the same year (Department of
Health, 2015). Out-of-pocket expenditure on CAM ser-
vices is even greater in the United States, with the average
user spending approximately $435 a year on complemen-
tary health approaches (Nahin et al., 2016). Although
some may argue that CAM is at best harmless, research
into pseudo-medicine administered to Australian children
found that most fatalities related to CAM were a result of
the failure to use, or rejection of, conventional medicine
in favour of CAM therapies (Lim, Cranswick, & South,
2010). This suggests that illusory causation in the context
of health therapies can no longer be perceived as harmless
when errors in causal learning may lead to dire conse-
quences. It is, therefore, pertinent that we understand the
mechanisms behind these cognitive biases and how we
can prevent harmful illusions from developing. To do this,
we first need to test these effects in an ecologically valid
manner that reflects actual experiences of cue–outcome
relationships in the real world.

Conclusions
In summary, researchers may benefit from adopting a
contingency learning paradigm with continuous and
variable outcome events that is more ecologically sound,
particularly when investigating false causal beliefs in
medicine and public health where the consequences of
choosing the wrong treatment as a result of biased con-
tingency judgments could have detrimental effects
(Freckelton, 2012). This experimental approach may be
an important stepping stone to bridging the gap between
experimental research and real-world experience.
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