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Abstract

Multiple rare variants either within or across genes have been hypothesised to collectively influence complex human traits.
The increasing availability of high throughput sequencing technologies offers the opportunity to study the effect of rare
variants on these traits. However, appropriate and computationally efficient analytical methods are required to account for
collections of rare variants that display a combination of protective, deleterious and null effects on the trait. We have
developed a novel method for the analysis of rare genetic variation in a gene, region or pathway that, by simply
aggregating summary statistics at each variant, can: (i) test for the presence of a mixture of effects on a trait; (ii) be applied
to both binary and quantitative traits in population-based and family-based data; (iii) adjust for covariates to allow for non-
genetic risk factors and; (iv) incorporate imputed genetic variation. In addition, for preliminary identification of promising
genes, the method can be applied to association summary statistics, available from meta-analysis of published data, for
example, without the need for individual level genotype data. Through simulation, we show that our method is immune to
the presence of bi-directional effects, with no apparent loss in power across a range of different mixtures, and can achieve
greater power than existing approaches as long as summary statistics at each variant are robust. We apply our method to
investigate association of type-1 diabetes with imputed rare variants within genes in the major histocompatibility complex
using genotype data from the Wellcome Trust Case Control Consortium.
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Introduction

Despite the recent successes of genome-wide association studies

(GWAS), which can be well powered under the common disease,

common variant hypothesis, the majority of the genetic compo-

nent of many complex traits remains unexplained. For example,

hundreds of common genetic variants, in at least 180 loci, have

been associated with height in studies of up to more than 180,000

individuals. However, the individual effects of these variants are

modest and their cumulative effect explains just over 10% of the

phenotypic variation in height [1,2,3,4]. Rare variants may play

an important role in explaining the ‘‘missing heritability’’ of

complex traits. Due to recent advances in high-throughput re-

sequencing technology, it is becoming financially feasible to assay

rare genetic variation in thousands of individuals on the scale of

the whole-exome, or even the whole genome. Furthermore, with

the availability of whole-genome re-sequencing reference panels,

such as those made available through the 1000 Genomes Project

[5], imputation allows the possibility to predict genotypes at rare

variants not present on, or captured by, GWAS genotyping arrays.

Therefore, we now have an exciting opportunity to explore a

range of models that may help to explain the missing heritability of

complex traits using rare genetic variation. One such model is that

where a gene or region affects a complex trait as a consequence of

the combined effects of its constituent rare variants. The effects at

each rare variant can be either modest or highly penetrant, and

can act to either increase or decrease the trait or disease risk.

Recently published methods for the analysis of multiple rare

variants illustrate that power can be greatly increased by

combining information in a joint analysis in comparison to

studying individual variants one at a time [6,7,8,9,10,11]. These so

called ‘‘burden tests’’ are optimal when all variants have the same

direction of effect. However, these variants may act individually to

either increase or decrease trait values, or they may be neutral (i.e.

no effect on the trait). Ideally, we wish to test for the presence of a

mixture of increaser, decreaser and neutral effects at multiple rare

variants on a complex binary or quantitative trait. Zelterman and

Chen [12] describe tests of homogeneity against such central

mixture alternatives for general sampling distributions that are

based on the score function. These so called ‘‘C-alpha’’ tests are

powerful for detecting the presence of central mixtures [13]. Neale

et al. [14] proposed a C-alpha test for the analysis of sequence level

data for association with binary (disease) traits based on binomially

distributed measures of effect at each site. Their approach has the

advantage of allowing for a mixture of risk, protective and neutral

effects, but cannot explicitly be applied to quantitative traits,

account for non-genetic risk factors as covariates, or allow for

imputed variation. More recently, score-based variance compo-

nent tests SKAT (sequence kernel association test) [15] and an

optimized version (SKAT-O) [16] have been proposed for the
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detection of a mixture of effects which can be applied to both

binary and quantitative traits and which can adjust for covariates.

These tests have been shown to outperform burden tests and the

Binomial C-alpha test in a wide range of scenarios.

Here, we introduce a C-alpha test for the analysis of rare genetic

variation for association with both binary and quantitative traits

based on normally distributed measures of effect at each site.

Measures of effect at each site can be calculated from re-

sequencing, array genotyping or imputed data or taken directly

from summary measures of effect available, for example, from

meta-analysis or published data. Our test assesses the evidence for

a mixture of increaser, decreaser and neutral effects in a gene,

region or pathway and can be applied to both population and

family-based association studies and can adjust for covariates to

allow for non-genetic risk factors, such as indicators of population

stratification. We refer to our test as the Generalised C-alpha test. We

report the results of simulations to investigate the power of our test

to detect rare variant association with a quantitative trait, and

compare performance with existing approaches.

The HLA class II genes in the major histocompatibility locus

(MHC) play a major role in susceptibility to type-1 diabetes (T1D)

[17], but common variants mapping to other genes in this region

have also been implicated in the disease. Imputation into existing

GWAS genotype data up to publicly available reference panels of

sequence data can be used to identify novel and refined signals of

association with common SNPs (MAF.1%) [18] and is feasible

for the evaluation of rare variants [19]. We have used our

Generalised C-alpha test to evaluate the evidence for rare variant

association with T1D within genes in the MHC using GWAS

genotype data from the Wellcome Trust Control Consortium

(WTCCC) [20] imputed up to reference panels made available

through the 1000 Genomes Project [5].

Materials and Methods

Generalised C-alpha Test
Consider a gene, region or pathway containing K variants, each

with a minor allele frequency (MAF) less than a pre-defined

threshold and assayed in a sample of individuals measured for a

binary or a quantitative trait. Suppose that at each variant a

normally distributed estimate of the effect of the minor allele on

the trait of interest can be obtained. For example, in a case-control

association study such an estimate may be the log allelic odds ratio

obtained as a coefficient in a logistic regression; or in a quantitative

trait association study, the estimate may be the per-allele increase

in phenotypic value obtained as a coefficient in a linear regression.

For each variant alone, there is unlikely to be enough information

to make inference about association, unless the sample size is

unfeasibly large. However, if the gene is not associated with the

trait, then the distribution of estimates across all variants will be

Gaussian with mean zero. Conversely, if variants in the gene are

associated with the trait, there will be a mixture of Gaussian

distributions with different means, manifested as ‘‘overdispersion’’,

which can be detected by a C-alpha test.

More formally, let b̂bk denote the effect estimate, and ŝsk it’s

corresponding estimate of standard deviation, at variant k,

k = 1,…,K. We assume that b̂bk are independent Gaussian

distributed random variables with mean bk and standard deviation

sk. As described, such estimates will typically have been obtained

from a logistic (binary trait) or linear (quantitative trait) regression

of trait value on genotype. The C-alpha test of homogeneity can

be derived for a given sampling model. Here the effects are treated

as sampling units from a Gaussian sampling model. Under the null

hypothesis of no association with the trait, we assume that all bk

are equal to some fixed, unknown value, denoted b0. Under the

alternative hypothesis, we assume that the bk take on a mixture of

values, centred at b0. The C-alpha test statistic for a test of

homogeneity of bk against a central mixture of alternative

Gaussian hypotheses is

S~
XK

k~1

(b̂bk{b0)2{ŝs2
0k

n o
,

where ŝs0k is an estimate of sk under the null hypothesis. In

practice, we estimate ŝs0k by the observed standard deviation ŝsk.

Notice that S is simply the sum of the differences between the

variance of the observed measures of association and the expected

variance under the null hypothesis. To standardise S, we require

the estimated normalizing variance

c~2
XK

k~1

ŝs4
0k:

The standardised C-alpha test statistic is then

ZNORM~S=
ffiffiffi
c
p

,

which is asymptotically standard Gaussian distributed. The null

hypothesis of no association is rejected for values of ZNORM

significantly larger than that expected using a one-tailed test of size

a. The quantities S and c are easily derived using methods detailed

in Zelterman and Chen [12] for sampling units from a distribution

belonging to the exponential family: in this case, the Gaussian

distribution, b̂bk*N(bk,s2
k) where sk is treated as a nuisance

parameter. Note that a natural adjustment for the effect of non-

genetic risk factors can be achieved by including covariates in the

regression model used to estimate bk. Furthermore, we can

consider imputed variation by replacing direct genotypes with

dosages under an additive model, or by maximisation of the

missing data likelihood of the distribution of genotypes.

Author Summary

Rapid advances in sequencing technology mean that it is
now possible to directly assay rare genetic variation. In
addition, the availability of almost fully sequenced human
genomes by the 1000 Genomes Project allows genotyping
at rare variants that are not present on arrays commonly
used in genome-wide association studies. Rare variants
within a gene or region may act to collectively influence a
complex trait. Methods for testing these rare variants
should be able to account for a combination of those that
serve to either increase, decrease or have no effect on the
trait of interest. Here, we introduce a method for the
analysis of a collection of rare genetic variants, within a
gene or region, which assesses evidence for a mixture of
effects. Our method simply aggregates summary statistics
at each variant and, as such, can be applied to both
population and family-based data, to binary or quantita-
tive traits and to either directly genotyped or imputed
data. In addition, it does not require individual level
genotype or phenotype data, and can be adjusted for non-
genetic risk factors. We illustrate our approach by
examining imputed rare variants in the major histocom-
patibility complex for association with type-1 diabetes
using genotype data from the Wellcome Trust case Control
Consortium.

Flexible Rare Variant Analysis
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For genetic association studies, the expected effect of a minor

allele is zero, so that bk~0, and the C-alpha statistic reduces to:

ZNORM~
XK

k~1

b̂b2
k{ŝs2

k

n o, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
XK

k~1

ŝs4
k

vuut :

The assumption that the distribution of ZNORM is Gaussian

depends on: (i) the degree of sparseness in the data, as

summarised by the relationship between sample size and MAF

at each variant; (ii) the number of variants that are considered

and (iii) the independence of variants. When the data are too

sparse, because the sample size is too small and/or the MAF too

low, the maximum likelihood estimates of effect size computed at

each site are typically unstable. Furthermore, the discrepancy

between the empirical variance of the estimates, and their

variance under the reference asymptotic distribution can be

large, resulting in inaccurate type I error [21]. It is reasonable to

assume that large numbers of individuals will be genotyped

because in a practical study design, tests require large numbers of

individuals for adequate power, however the minimum MAF

must be constrained to ensure stability of estimates in the

presence of, for example, private mutations. The second and

third requirements ensure convergence of the null distribution of

the ZNORM to Gaussian by the central limit theorem. To estimate

significance accurately for low MAF, where small numbers of

variants are considered or where variants are correlated,

standard permutation testing is required. See Text S1 for details

of the standard permutation approach utilised here.

Simulation Study
We conduct simulations to investigate the performance of the

Generalised C-alpha test for the identification of rare variants

associated with a binary or quantitative trait. We compare the

performance of the Generalised C-alpha test to three existing

approaches: (i) the optimized score-based variance component test

(SKAT-O, by Lee et al. [15] (ii) the Binomial C-alpha rare variant

test by Neale et al. [14], and (iii) GRANVIL, a burden test of

association of binary or quantitative traits with accumulations of

minor alleles at rare variants in a generalised linear modelling

framework by Morris and Zeggini [10]. A short summary of these

tests is given here.

– SKAT-O performs a test of association between genetic variants

in a region and binary or continuous traits using kernel

machine methods. SKAT-O aggregates individual score test

statistics obtained at each variant to compute an overall p-value

for the region. SKAT-O can be applied to imputed data and

can allow adjustment for covariates.

– The Binomial C-alpha test is a rare variant test developed for

binary (disease) traits. The test models the number of minor

alleles, yk, at variant k out of a total of nk observations by a

binomial (nk, pk) distribution, where k = 1,…,K. Under the null

hypothesis, pk = p0, the proportion of cases present in the

sample. Under the alternative hypothesis, pk can take on a

mixture of values across the K variants, with some variants

deleterious (i.e. with greater frequency in the cases than

controls, pk.p0), some protective (i.e. with greater frequency

in the controls than the cases pk,p0), and some neutral (i.e.

with equal frequency in cases and controls pk = p0). It can

then be shown that the Binomial C-alpha test statistic is

simply:

ZBIN~

XK

k~1

(yk{nkp0)2{nkp0(1{p0)
� �, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p0(1{p0)
XK

k~1

nk(1{nk)

vuut
ZBIN has a standard Gaussian distribution under the null

hypothesis of no association, which is rejected for values of

ZBIN significantly larger than that expected for a one-tailed

test of size a. The Binomial C-alpha test cannot adjust for

covariates and cannot be directly applied to imputed data.

– GRANVIL models the trait value of an individual as a function

of the proportion of rare variants at which they carry at least

one minor allele in a generalised linear regression framework.

GRANVIL can thus be applied to binary and quantitative

traits, can incorporate imputed genotypes, and can allow

adjustment for covariates. However, GRANVIL is a burden

test, and thus assumes the direction of effect of all rare variants

is the same, within the same gene or pathway.

Our simulations make use of a simple model of population

genetics to generate high-density haplotype data in 30–200 kb

genomic regions, designed to represent a gene. Haplotypes are

then randomly paired together to form individuals for analysis,

and quantitative trait values are generated according to their

genotypes at rare causal variants, selected at random according to

the underlying trait association model. In the trait association

model that we consider here, we assume that the expected

phenotypic value of an individual is determined by the net effect of

a combination of increaser causal variants, which serve to elevate

the mean trait value in the population, and decreaser causal

variants, which serve to reduce it. The trait association model is

parameterised in terms of: (i) the maximum MAF of each

individual causal variant; (ii) the total MAF of all causal variants

in the gene; (iii) the relative proportion of increaser and decreaser

causal variants; and (iv) the joint contribution of the causal variants

in the gene to the trait variance. Full details of the simulation

process are described in Text S1.

The Generalised C-alpha test, SKAT-O and GRANVIL are

applied directly to the simulated quantitative trait. However, to

apply tests designed for binary traits, we dichotomise the

quantitative distribution by assigning individuals as ‘‘cases’’ if

they belong to the upper 50% of the trait distribution, or

‘‘controls’’ otherwise. The Generalised C-alpha test, as well as the

Binomial C-alpha test, is then applied to the dichotomised trait.

The significance of the Generalised C-alpha and Binomial C-

alpha test statistics are evaluated empirically by standard

permutation testing (see Text S1 for details), whilst GRANVIL

relies on the asymptotic properties of a linear regression model and

SKAT-O uses Davies method [22] for approximating the

distribution of the test statistic. For each simulation, we permute

1,000 or 100,000 times to ensure accurate assessment at 0.05 and

161025 significance levels, respectively. Simulations are repeated

10,000 times for each set of parameter values.

Rare Variant Analysis of Imputed Data with T1D
We evaluated the evidence for rare variant (MAF,1%) signals

of association with T1D in genes on chromosome 6 using the

Generalised C-alpha test applied to rare variants using genotype

data from the WTCCC [18]. All WTCCC samples are

ascertained from the UK. We applied the same quality control

(QC) filters employed and described by the WTCCC to exclude

samples and SNPs from the analysis. These high-quality samples

Flexible Rare Variant Analysis
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were imputed up to the Phase 1 1000 Genomes Project reference

panel (June 2011 interim release) [5] comprising 1,094 phased

individuals from multiple ancestry groups. Adjustment for fine-

scale population structure is critical in rare variant analysis

because recent founder effects can exert greater impact on

association analyses with rare variants than with common variants

[23]. To control for population structure we constructed principal

components to represent axes of genetic variation within the UK

and included these as covariates in association analyses to obtain

estimates of effect at each SNP that are adjusted for ancestry.

These procedures for imputation and control of fine-scale

population structure are the same as those utilised by Magi et al.

[24], full details of which are presented in their paper.

For each gene, the Generalised C-alpha test was applied to

SNPs in two MAF ranges: 0.1%,MAF,0.5% (very rare) and

0.5%,MAF,1% (rare). Measures of effect at each SNP used in

the Generalised C-alpha test were the log odds ratios estimated

from single SNP additive tests of association using simple logistic

regression. The Generalised C-alpha test was applied to the

original data and then, in order to determine a permuted p-value,

to repeated permutations of the case/control status and covariate

data (see Text S1 for details of the standard permutation

approach). We performed two separate analyses with and without

adjustment for the lead MHC SNP for T1D, rs9268645. Assuming

there are approximately 30,000 genes in the human genome [25],

a p-value of less than 0.05/30,000 = 1.761026 is required to

ensure genome-wide significance. Hence for each analysis, we

performed 600,000 permutations and declared genome-wide

significance for a given gene if less than 1 of 600,000

(,1.761026) permutations resulted in a C-alpha test statistic

larger than the original.

Results

Simulation Study
The assumption that the C-alpha statistic is normally distributed

under the null hypothesis depends on the quantity and indepen-

dence of the variants considered as well as the accuracy of the

individual estimates at each variant, which in turn depends on the

sample size and the MAF. By considering regions of a fixed size

and varying the minimum MAF of alleles considered and the

sample size, we were able to effectively vary the number of variants

and the allele frequency distribution in order to explore type I

error and power.

Type I error. We began by considering evaluation of the type

1 error rate of the Generalised C-alpha test by performing

simulations of 2,000 samples in a 50 kb region under a null model

where there are no causal variants. Table 1 presents estimated

type I errors of the Generalised C-alpha test applied to a

quantitative trait and a binary trait (where the binary trait is a

dichotomised version of the quantitative trait). Over all simula-

tions, the mean number of rare variants with at least 4 copies of

the minor allele (0.2%,MAF,1%) was 34; and with at least 10

copies (0.5%,MAF,1%) was 15. Results indicate that the type I

error of the Generalised C-alpha tests applied to both the

quantitative and the binary trait is well calibrated.

Power comparison. Next, we considered evaluation of the

power of the Generalised C-alpha test by performing simulations

of 5,000 and 10,000 samples in a 100 kb region under a range of

trait association models. In all simulations, we assume that the

maximum MAF of any causal variant is 1%, and the total MAF of

causal variants within the gene is 5%, which together account for

0.6% of the trait variance. Simulation results evaluating power are

shown in Figure 1 for 10,000 samples and in Figure S1 for 5,000

samples. The Generalised C-Alpha tests, the Binomial C-alpha

and SKAT-O are robust to the presence of a mixture of risk and

protective variants.

For quantitative traits and sufficiently large minimum MAF (see

asymptotic properties), the Generalised C-alpha performed better

than all the other tests compared. In the examples we selected, it

performed equally as well or better than SKAT-O for variants

with more than ,15–25 copies of the minor allele (MAF.,0.3%

for 5,000 samples or MAF.,0.25% for 10,000 samples) for any

combination of risk or protective variants (only shown for 50% risk

causal variants). However, the SKAT-O was optimal for variants

with fewer copies of the minor allele. In our qualitative analyses of

a binary trait, the Binomial C-alpha test and the Generalised C-

alpha test were comparable for variants with MAF.,0.5% but

the power of the Generalised C-alpha test declined for variants

with fewer than ,15–20 copies of the minor allele (MAF,,0.3%

for 5,000 samples and MAF,,0.2% for 10,000 samples).

Asymptotic properties. The power of the Generalised C-

alpha test applied to the quantitative and the dichotomised traits

decreases rapidly as the number of copies of the minor allele for

included rare variants falls below ,10 in the models we have

considered (MAF,,0.2% for 5,000 samples or MAF,,0.1% for

10,000 samples). Rapid decreases in power with decreasing MAF

are likely to be a consequence of increasing sparseness leading to

violation of the assumptions of asymptotic normality in the

Generalised C-alpha test. Of course, in a given region, the total

number of variants considered increases as the minimum MAF

decreases – in simulations for 10,000 individuals, the number of

variants in our simulated 100 kb region when minimum MAF is

0.5% is 28 increasing to 94 for a minimum MAF of 0.1% - and

losses in power are also a consequence of an increased number of

non-causal variants being included in this total, but this factor

affects the power of all the tests similarly (Figure S2).

Computation time. Computation time for the Generalised

C-alpha depends on the sample size, the number of markers and

the method used to estimate the normally distributed measures of

effect at each variant. To analyse all ,160 markers sequenced on

5,000 or 10,000 individuals in a 100 kb region and obtain

permuted p-values with 1,000 permutations in a Generalised C-

alpha test of association required ,5.0 s and ,10 s, respectively,

for a quantitative trait (using estimates of effect derived from linear

regression) and ,20% longer for a binary trait (using estimates of

effect derived from logistic regression). Increasing the number of

permutations to 100,000 increased the run times ,20-fold.

Halving the number of markers analysed only marginally reduced

run times. These estimates were based on simple code pro-

grammed in R and run on a Unix operating system. Coding in

a language that allows faster numerical computation times is

expected to reduce run times.

Rare Variant Analysis of Imputed Data with T1D
After QC and imputation, the WTCCC data comprised 2,938

T1D cases and 1,963 controls with directly or imputed genotypes

available at 490,888 SNPs with 0,MAF,1%, located in 1,611

distinct genes on chromosome 6; gene boundaries were identified

from the UCSC human genome database (build 37). Table 2

shows the genes demonstrating genome-wide significant evidence

of rare variant association with type-1 diabetes on chromosome 6.

Genome-wide significant (Bonferroni correction for 30,000 genes

at a 5% significance level: p,1.761026) evidence of association

with T1D were observed with rare variants in 17 genes throughout

the 7.5 Mb extended Major Histocompatibility Complex (MHC)

region (ranging from the GNL1 gene to the COL11A2 gene). The

strongest signal of association was observed at C6orf10

Flexible Rare Variant Analysis
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(ZNORM = 89.1, p,1.761026), which contains rare variants

previously implicated in susceptibility to T1D [26].

Common SNPs in the MHC have been previously associated

with T1D [17,20]. Exactly which and how many loci in the MHC

determine susceptibility remains unclear as a consequence of the

high gene density and the strong association between alleles in the

region. To take account of established associations in the MHC,

we repeated our analyses on the genes with rare variants showing

genome-wide significance evidence of association with T1D with

adjustment for the lead MHC SNP (rs9268645) [17]. The

common SNP explained the rare variant association in 11 of the

MHC genes; 6 MHC genes achieved genome-wide significant

Table 1. Null simulations.

Minimum
MAF %

Mean no. of variants
in region Type I error rates for significance level (95% Confidence Interval)

161025 161024 161023 161022

Generalised C-alpha Test applied to a quantitative trait

0.2 34 ,0.00001 (0.00000–0.00003) 0.00008 (0.00001–0.00016) 0.00081 (0.00059–0.00104) 0.00947 (0.00870–0.01025)

0.5 15 0.00001 (0.00000–0.00003) 0.00009 (0.00002–0.00016) 0.00102 (0.00079–0.00126) 0.00993 (0.00919–0.01067)

Generalised C-alpha Test applied to a dichotomised version of a quantitative trait

0.2 34 ,0.00001 (0.00000–0.00003) 0.00010 (0.00002–0.00018) 0.00091(0.00067–0.00115) 0.00952 (0.00875–0.01030)

0.5 15 0.00001 (0.00000–0.00003) 0.00013 (0.00005–0.00021) 0.00115(0.00090–0.00141) 0.01061 (0.00984–0.01137)

Observed type I errors at selected significance levels for the Generalised C-alpha test for association with a quantitative trait and a dichotomised version of a
quantitative trait in a 50 kb region where the rare variants tested do not account for any of the trait variance. Tests only consider variants in the region with a
maximum MAF of 1% and a minimum MAF as indicated in the table. Type I error is estimated over 100,000 replicates of data for a sample of size 2,000. Significance in
each replicate of data is assessed empirically by random permutation of the quantitative trait value and recalculation of the test statistic 1,000 times as described in
Text S1.
doi:10.1371/journal.pgen.1003694.t001

Figure 1. Power Comparisons. Power to detect association in a region is shown for the Generalised C-alpha test, SKAT-O and the GRANVIL test
applied directly to the quantitative trait and for the Generalised C-alpha and the Binomial C-alpha tests applied to the dichotomised quantitative trait.
(A) Power is shown as a function of the percentage of causal variants in a region of size 100 kb that are risk as opposed to protective when the
minimum MAF of variants considered is fixed at 0.5% for a sample size of 10,000. Results show that as the proportion of risk causal variants
approaches 50%, the C-alpha and SKAT-O tests maintain power and that the Generalised C-alpha applied directly to the quantitative trait has optimal
power. (B) Power is also shown as a function of the minimum MAF of variants considered when the percentage of risk causal variants in a region of
size 100 kb is fixed at 50% for a sample 10,000 individuals. Results show that the power of the Generalised C-alpha test is optimal for variants with
MAF.,0.3% but SKAT-O is optimal for lower MAF. For quantitative traits, the power of the Generalised C-alpha test remains better than the Binomial
C-alpha applied to a dichotomized version of the trait as long as variants have MAF.,0.1%. For binary traits, the Binomial C-alpha test has greater or
equivalent power than the Generalised C-alpha test.
doi:10.1371/journal.pgen.1003694.g001

Flexible Rare Variant Analysis

PLOS Genetics | www.plosgenetics.org 5 August 2013 | Volume 9 | Issue 8 | e1003694



evidence of rare variant association with T1D after adjustment for

the lead MHC SNP.

Discussion

We have developed the Generalised C-alpha test for the analysis

of multiple rare variants that display a mixture of increaser and

decreaser effects on a binary or quantitative trait. The Generalised

C-alpha test is a score test combining routinely calculated

Gaussian distributed measures of effect at multiple variants in

order to increase the power to detect an effect at the gene, region

or pathway level. The Binomial C-alpha test for binary traits, [14]

and, more recently, SKAT-O [15], have been shown to have

several advantages over previously proposed tests by Li and Leal

[8], Madsen and Browning [9] and Price et al. [11]: most notably

increased power in the presence of a mixture of increaser and

decreaser effects. Our results confirm that the Generalised C-alpha

test is also robust to the presence of bi-directional effects, with no

apparent loss in power across a range of different mixtures.

The Generalised C-alpha test performs better than SKAT-O when

the data is not too sparse: in our examples we showed the Generalised

C-alpha was optimal as long as there were at least 15–25 copies of a

minor allele at each rare variant. When data is sparse, so that either

the sample size is too small and/or the MAF is too low, estimates of

allelic effects at each SNP are not robust, and the asymptotic

assumptions on which the Generalised C-alpha test are based are

inappropriate. Similarly, for testing rare variant association with a

binary trait, we have shown that the Generalised C-alpha test has

lower power that the Binomial C-alpha test in the presence of variants

with very low minor allele counts: a minimum MAF.,0.5% is

recommended in order to achieve comparable power in these tests.

In any application, the Generalised C-alpha test works on the

assumptions that there are (i) a sufficiently large set of variants; (ii)

that estimates of effect based on these variants are robust and

independent and; (iii) normally distributed. These assumptions are

often unrealistic: they are violated for example, in the presence of

linkage disequilibrium, small sample size, low MAF or few variants.

Hence, it is imperative that permutation testing is employed for

accurate estimation of significance. For analysis of the whole

genome, 1,000 permutations, for which a simply coded version of

the test can be run in a matter of seconds, is recommended as a first

approach; regions where the test is significant with a p-value,0.001

can then be rerun with 100,000 or more permutations for an

accurate estimate of genome-wide significance.

Unlike the Binomial C-alpha test, the Generalised C-alpha test

can naturally adjust for additional covariates and can easily

incorporate imputed variation. Unlike SKAT-O, the Generalised

C-alpha test can be applied to summary statistics, without

requirement of the individual level genotype data. For example,

the Generalised C-alpha test can be quickly and easily applied to

published data. However, this is recommended only for discovery

as permutation testing cannot be implemented in this case and test

Table 2. Genes demonstrating genome-wide significant evidence of rare variant association with type-1 diabetes on chromosome
6.

Gene symbol

NCBI Build 37 chromosome 6 position
(BP)

Number of rare
variants

Unconditional
analysisa

Conditional analysis: adjusted for
lead MHC SNPb

Start Stop ZNORM ZNORM p

Very rare variation 0.1%,MAF,0.5%

HLA-DRB5 32,485,162 32,557,562 189 60.5 40.3 5.261026

Rare variation 0.5%,MAF,1%

GNL1 30,513,695 30,525,008 9 51.0 14.1 1.761026

DHX16 30,620,896 30,640,830 7 45.5 14.0 3.561026

C2 31,865,561 31,913,448 12 20.7 12.9 4.061025

CFB 31,895,265 31,919,860 8 19.9 9.7 1.361024

TNXB 32,008,931 32,077,151 21 29.9 34.5 ,1.761026

AK123889 32,223,487 32,233,615 18 41.2 24.1 1.061024

C6orf10 32,256,302 32,339,656 97 89.1 57.8 3.061026

BTNL2 32,362,512 32,374,900 6 26.0 15.7 ,1.761026

HLA-DRB5 32,485,162 32,557,562 62 43.2 29.4 ,1.761026

HLA-DRB6 32,520,489 32,552,155 34 44.1 27.6 ,2.561026

HLA-DQA2 32,709,162 32,715,219 6 28.6 13.1 2.361025

HLA-DQB2 32,723,875 32,731,330 6 18.5 17.0 ,1.761026

TAP2 32,781,499 32,806,547 18 21.8 18.9 ,1.761026

HLA-DMB 32,902,409 32,908,817 8 10.3 8.2 2.861025

BRD2 32,936,436 32,949,281 13 14.9 11.2 8.761026

COL11A2 33,130,468 33,160,245 13 31.2 17.4 1.761026

aGenes with a permuted p-value less than 1.761026 (indicating genome wide significance assuming a significance level of 5% and that there are 30,000 genes in the
human genome [25]) in a Generalised C-alpha test.
bFor these genes, results are also shown when effects are adjusted for the lead common MHC SNP (rs9268645). Both analyses are adjusted for 3 principal components to
account for population structure. For the unconditional analysis results are based on 600,000 permutations; for the conditional analysis results are based on 575,000
permutations. MAF, minor allele frequency; BP, base pair; MAF: Minor Allele Frequency; MHC, Major histocompatibility complex; NCBI, National Center for Biotechnology
Information.
doi:10.1371/journal.pgen.1003694.t002
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statistics are likely to be inflated leading to increased type I errors:

In this case, any regions identified would require further

investigation for any confirmation of association.

Evaluation of rare variants extracted from existing GWAS data

via imputation up to re-sequencing reference panels, such as those

made available by the 1000 Genomes Project, has been demon-

strated to be feasible [18]. We applied the Generalised C-alpha test

to rare variants imputed into the WTCCC T1D GWAS across the

MHC where genes have been shown to play the single most

important role in susceptibility to T1D in both common variant and

haplotype analyses. Genome-wide significant association with T1D,

independent of the lead common variant GWAS signal in the

region, was observed at multiple genes. These included HLA class II

genes, DR and DQ, where coding polymorphisms have been shown

to account for most of the association with T1D observed at the

HLA locus [27,28,29]. The identification of rare disease-associated

variants within genes in this region highlights the complex genetic

architecture of T1D in the MHC, and requires further investigation

to disentangle the effects of common and rare variation on immune

disease susceptibility.

In summary, the Generalised C-alpha test is a novel, flexible and

powerful method for the analysis of rare genetic variation. There is

no single alternative test, amongst those we have considered, that is

uniformly most powerful over all models and genetic architectures.

Our test, however, has the unique advantage that it can be applied

to summary statistics from published literature, without the need for

individual level genetic data. The fact that the Generalised C-alpha

test simply aggregates data from summary statistics allows for great

flexibility in general allowing direct application to both binary and

quantitative traits, to population (using summary statistics from

generalized linear models, as illustrated here) and family based data

(using summary statistics from the transmission disequilibrium test,

for example), and to imputed genotype data whilst simultaneously

allowing for the adjustment of additional covariates. We are already

using the method in our analyses and it is currently implemented

using the R-PLINK/SEQ library available from: http://atgu.mgh.

harvard.edu/plinkseq/. R package is available from http://www.

well.ox.ac.uk/,rivas/calphanorm.tar.gz.

Supporting Information

Figure S1 Power Comparisons. Power to detect association

in a region is shown for the Generalised C-alpha test, SKAT-O

and the GRANVIL test applied directly to the quantitative trait

and for the Generalised C-alpha and the Binomial C-alpha tests

applied to the dichotomised quantitative trait. (A) Power is shown

as a function of the percentage of causal variants in a region of size

100 kb that are risk as opposed to protective when the minimum

MAF of variants considered is fixed at 0.5% for a sample size of

5,000. Results show that as the proportion of risk causal variants

approaches 50%, the C-alpha and SKAT-O tests maintain power

and that the Generalised C-alpha applied directly to the

quantitative trait has optimal power. (B) Power is also shown as

a function of the minimum MAF of variants considered when the

percentage of risk causal variants in a region of size 100 kb is fixed

at 50% for a sample 10,000 individuals. Results show that the

power of the Generalised C-alpha test is optimal for variants with

MAF.,0.3% but the SKAT-O is optimal for lower MAF. For

quantitative traits, the power of the Generalised C-alpha test

remains better than the Binomial C-alpha applied to a

dichotomized version of the trait as long as variants have

MAF.,0.12%. For binary traits, the Binomial C-alpha test has

greater or equivalent power than the Generalised C-alpha test.

(TIF)

Figure S2 Power By Region Size. Power is shown as a

function of region size when the percentage of risk causal variants

is fixed at 50%, the minimum MAF of variants considered is fixed

at 0.5% for a sample size of 10,000 individuals. Here, the region

size is a proxy for the number of variants considered and results

show that power decreases for all methods as the number of non-

causal variants included increases. Results are presented for a

model assuming a total MAF of 5% for all causal variants in the

region, a maximum MAF of any individual causal variant of 1%

and where causal variants account for 0.6% of the phenotypic

variance. The trait mean is determined by the net effect of the risk

causal variants, which serve to increase the mean trait value, and

the protective causal variants, which serve to decrease the trait

mean. Power is estimated at a 5% significance level over 10,000

replicates of data. Significance in each replicate of data is assessed

empirically by random permutation of the trait value and

recalculation of the test statistic: permutation occurs 1000 times

to ensure accurate assessment at a significance level of 5%.

(TIF)

Text S1 A flexible approach for the analysis of rare variants

allowing for a mixture of effects on binary or quantitative traits:

Supplementary Methods.

(DOCX)
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