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Abstract 

Background:  To investigate the time-course effects of a self-regulated training session (performed at an rating per-
ceived exertion of 6/10), all-out session, and a control session on the metabolic, hormonal, and brain derived neuro-
trophic factor (BDNF) responses in Functional-Fitness (FFT) participants.

Methods:  In a randomized, crossover fashion, eight healthy males (age 28.1 ± 5.4 years old; body mass 77.2 ± 4.4 kg; 
VO2max: 52.6 ± 4.6 mL.(kg.min)−1; 2000 m rowing test 7.35 ± 0.18 min; 1RM back squat 135.6 ± 21.9 kg) performed a 
FFT session under two different conditions: all-out, or with the intensity controlled to elicit an rating perceived exer-
tion (RPE) of 6 in the Borg 10-point scale (RPE6). A control session (no exercise) was also completed. Metabolic (lactate 
and creatine kinase), hormonal (testosterone and cortisol), and BDNF responses were assessed pre, post-0 h, 1 h, 2 h 
and 24 h after the sessions.

Results:  Creatine kinase concentrations were significantly higher (p ≤ 0.05) after 24 h for both training sessions. Total 
and free testosterone concentrations were lower post-2 h for all-out when compared to the RPE6 session (p ≤ 0.05). 
Serum cortisol concentration increased post-0 h (p = 0.011) for RPE6 and post-0 h (p = 0.003) and post-1 h (p = 0.030) 
for all-out session when comparing to baseline concentrations. BDNF was significantly higher (p = 0.002) post-0 h 
only for the all-out session when compared to baseline. A positive correlation between blood lactate concentrations 
and BDNF (r = 0.51; p = 0.01) was found for both effort interventions.

Conclusions:  A single FFT session when performed in all-out format acutely increases the concentrations of serum 
BDNF. However, physiological stress markers show that the all-out session requires a longer recovery period when 
compared to the RPE6 protocol. These findings can be helpful to coaches and practitioners design FFT session.
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Introduction
Functional fitness training (FFT) (a.k.a. CrossFit) 
involves the performance of exercises that comprise 
whole body,  and that are executed in multiple planes 
of motion [1]. The FFT sessions can be designed to 
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challenge various physiological systems at the same 
time [2], through the use of gymnastics, weightlifting, 
and cardiovascular exercises [3], and thus, have been 
shown to improve multiple fitness components con-
comitantly. Practitioners commonly perform 3–5 whole 
body training sessions per week, and while the selec-
tion of exercises depends on which fitness components 
are being targeted [1], most sessions dedicate a period 
of time to metabolic conditioning [4].

One of the potential reasons why the physiological 
responses to metabolic conditioning of  FFT are not yet 
well understood lies in the fact that the sessions can vary 
significantly. The protocols might differ in their duration 
(2–30  min), exercise modality and selection (cardiovas-
cular, gymnastic, and/or weightlifting exercises), method 
[for time or as many rounds as possible (AMRAP)], and 
intensity (absolute or relative load) [5]. Many of these ses-
sions are performed as all-out efforts, where the goal is to 
complete the task in the shortest amount of time possi-
ble or to complete the highest amount of work in a set 
period of time [2, 6, 7]. As many of these sessions are per-
formed at a high intensity, previous research has shown 
that the metabolic conditioning sessions of FFT resulted 
in increased acute oxidative stress [8]; high metabolic, 
inflammatory [3], and cardiovascular responses; elevated 
perceived exertion [9]; and increased sympathetic nerv-
ous system markers (i.e., epinephrine and norepineph-
rine) [10]. As a result of the increases in oxidative and 
inflammatory markers, and the extreme effort associated 
with FFT, some studies have raised concerns about a ten-
dency for the development of symptoms of overtraining 
in functional fitness practitioners [8]. To address this 
issue, previous studies have demonstrated the effective-
ness of utilizing the rating of perceived exertion (RPE) to 
control the intensity of these sessions, and consequently, 
the physiological responses to exercise during [4] and 
after [2] a FFT session.

The distinct modes, intensity, and duration of exercises 
that can be manipulated in FFT sessions, along with dif-
ferences in individual responsiveness to the sessions, may 
lead to different hormonal responses post-FFT sessions 
[11]. Such changes in hormonal profiles following a ses-
sion might have important implications. Previous studies 
have revealed that long periods of hormonal disturbances 
are likely to lead to impairments in performance, inflam-
matory conditions, and increased muscle fatigability [12–
14]. Similarly, while transient increases in creatine kinase, 
and cortisol immediately following a training session are 
expected, chronically high levels are not desirable [4]. In 
this context, changes in hormonal responses can pro-
vide important information in detecting early signs of 
non-functional overreaching. Understanding the time-
course endocrine response to FFT sessions performed at 

different intensities, therefore, might assist in ensuring 
optimal training prescription.

In addition to its effects on hormonal concentra-
tions, FFT has been demonstrated to elicit important 
alterations in other biomarkers. The brain derived neu-
rotrophic factor (BDNF) is a key biomarker that stimu-
lates neurogenesis, neuron survival, and modulates 
the differentiation of cells developed in the hippocam-
pus, which can be essential for cognition, memory [15] 
and consequently neuroplasticity improvement [16]. 
Murawska-Cialowicz et al. [17] revealed that 3 months of 
FFT training resulted in a significant increase in resting 
BDNF levels in male and female participants. Indeed, a 
single FFT session is a potent stimulus that leads to an 
acute increase in serum BDNF concentrations [18]. Of 
interest, prior study has demonstrated that blood lactate 
produced during exercise is correlated with BDNF pro-
duction [19] and recently a systematic review with meta-
analysis considered that FFT session normally causes a 
substantial metabolic stress, leading to metabolite accu-
mulation (e.g., lactate up to 18 mmol/L) [20]. Therefore, 
understanding the time-course of changes in peripheral 
BDNF levels and the possible relationship with lactate 
following FFT sessions performed at different intensities 
is an important pursuit.

Considering that the adaptations elicited during a 
training program result from the summation of train-
ing bouts, understanding the role that the intensity of 
FFT protocols have on neurotrophin, metabolic and 
hormonal biomarkers in a time-dependent manner is 
an important step to understand these adaptive mecha-
nisms. Specifically, this might assist in clarifying the key 
mediators by which FFT exerts beneficial or maladaptive 
effects. Assessing the response of different biomarkers 
to the training stimulus might help in understanding the 
overall effectiveness of FFT sessions performed at dis-
tinct intensities, and therefore, assist in optimizing train-
ing programs. Thus, the purpose of the present study was 
to investigate the  acute time-course of metabolic, hor-
monal and BDNF responses following two FFT sessions 
performed at different intensities (RPE6 and all-out). It is 
hypothesized that a higher intensity will lead to a more 
pronounced hormonal and metabolic response, with the 
lower intensity session (RPE6) showing a reduced magni-
tude of endocrine response to an FFT session.

Methods
Subjects
Eight male subjects (age 28.1 ± 5.4  years old; body 
mass 77.2 ± 4.4  kg; VO2max: 52.6 ± 4.6  mL.(kg.min)−1; 
2000  m rowing test: 7.35 ± 0.18  min; 1RM back squat: 
135.6 ± 21.9 kg) were recruited. All subjects were free of 
injury or known illnesses, were not using performance 
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enhancing drugs, and had more than 12 months of FFT 
experience (3.8 ± 1.4  years, 1.5–6  years of experience). 
Participants were advised to sleep six to eight hours the 
night before the tests, maintain regular nutritional and 
hydration habits, avoid intense exercise 48 h prior to the 
sessions, as well as avoid smoking, alcohol, and caffeine 
consumption 24  h before a session. All subjects pro-
vided informed consent, and the study was approved by 
the University Research Ethics Committee for Human 
Use (2.698.225/Universidade Estácio de Sá/UNESA/RJ 
and ethics ID Pro00110581) and conformed to the Hel-
sinki Declaration on the use of human participants for 
research.

Experimental design
In this study, the participants performed a FFT session 
under two different conditions, either with the inten-
sity controlled based on an RPE of 6 (RPE6) or as an 
all-out effort (all-out), in addition to a control session 
(CON). The metabolic and hormonal responses to the 
different conditions were the dependent variables. These 
responses were assessed prior to the start of the session, 
immediately post, and 1 h, 2 h and 24 h after the sessions, 

to compare the acute effects of a metabolic conditioning 
FFT session performed with different intensities (Fig. 1).

The subjects completed a metabolic conditioning train-
ing session (five to seven days apart) in a randomized 
fashion under two different conditions: (a) all-out or 
(b) intensity-controlled, based on an RPE6 (hard) on a 
modified version of the Borg CR-10 scale (RPE6) [2]. A 
control session, where the participants were instructed 
to spend 22  min in a sitting position, without any type 
of exercise, was also performed. The metabolic condi-
tioning training session was the Tibana Test [2], which 
involved the completion of four different bouts of work, 
each separated by 2 min of rest (Fig. 2). The rounds con-
sisted of 4 min of as many rounds as possible (AMRAP) 
of five thrusters (60 kg) and 10 box jumps over (round 1); 
4 min of AMRAP of 10 power clean (60 kg) and 20 pull-
ups (round 2); 4 min of AMRAP of 15 shoulder to over-
head (60 kg) and 30 toes to bar (round 3); and 4 min of 
AMRAP of 20 calories of rowing and 40 wall ball (9 kg; 
round 4).

During the all-out condition, the subjects were 
instructed to complete the maximum number of rep-
etitions possible for each round. In the RPE6 condition, 
they performed the same conditioning session, but were 

Fig. 1  Schematic study design and timeline used to examine the time-course effects of RPE6, all-out and control sessions on metabolic (lactate 
and creatine kinase), hormonal (cortisol, total and free testosterone) and brain derived neurotrophic factor (BDNF) response in practitioners of FFT
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told to self-regulate the intensity of their effort based on a 
perception of effort of 6 out of 10, on an adapted version 
of the Borg CR-10 scale [21, 22]. To achieve this, subjects 
were instructed to take more breaks if needed, or to pace 
themselves in the execution of their exercises to keep the 
perception of effort at the desired level. No changes to the 
weights were performed during the sessions. The adapted 
Borg CR-10 scale was printed and available to the par-
ticipants as a visual reminder of the prescribed target 
intensity. This strategy has been shown to be successful in 
ensuring the athletes perform their FFT sessions within 
the desired intensity, based on previously published work 
[2, 7]. During each metabolic condition training session 
and the control session, blood samples were collected 
from the antecubital vein to analyze changes in the con-
centrations of creatine kinase, cortisol, total testosterone, 
free testosterone and BDNF.

Blood samples collected, hormonal and BDNF analysis
Blood samples were collected immediately before (pre) 
and immediately (post-0 h), 1 h (post-1 h), 2 h (post-2 h) 
and 24 h (post-24 h) after the FFT and control sessions 
by venipuncture from the antecubital vein. The samples 
were collected in 5-mL evacuated tubes (Vacutainer; 
Becton, Dickinson and Company, Franklin Lakes, NJ, 
USA). The tubes were refrigerated for 1  h and samples 

were centrifuged at 2.900 RPM for 15  min at 4  °C, and 
the resultant serum divided into several aliquots, and 
frozen at − 80  °C until analysis. Hormonal analyses 
were performed using a commercial PCR kit lot 167404 
(Roche), specific for humans in an automated device 
(Cobas E601—Roche) for PCR by the electrochemilumi-
nescence method. Serum was analyzed for BDNF using 
a commercially available enzyme-linked immunosorbent 
assay (ELISA) kit according to manufacturer’s instruc-
tions (MyBioSource Inc., San Diego, CA, USA). All 
samples were determined in duplicate to guarantee the 
precision of the results. Detection range of this method 
was 31.25–2000  pg/mL, sensitivity of this methods was 
18.75 pg/mL, with an intraassay coefficient of 4% and an 
inter-assay coefficient of 8%. All analyses were performed 
in the Immune Gerontology/ Molecular Biology Labora-
tory of Applied Exercise at the University.

Creatine kinase analysis
Whole-blood creatine kinase activity was assessed from 
a single fingertip capillary sample with the subject in a 
seated position. After pre-warming the hand, a sample 
of blood (30 μL) was obtained and analyzed using a col-
orimetric assay procedure (Reflotron, Boehringer Man-
nheim, Germany). Before each testing session, quality 
control (calibration) measurements were undertaken 

Fig. 2  Description of the metabolic conditioning sessions (Tibana Test). AMRAP, as many rounds as possible
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according to the manufacturer’s recommendations. The 
‘‘normal’’ reference range for creatine kinase activity, as 
provided by the manufacturer, is 24–195 U/L.

Blood lactate
Standard procedures were followed for blood lactate 
collection, management, and analysis according to Falk 
Neto et al. [2]. Capillary blood samples were collected 
through a transcutaneous puncture on the medial 
side of the tip of the middle finger using a disposable 
hypodermic lancet. Blood lactate concentration was 
determined by photometric reflectance on a validated 
Portable Accutrend Plus system (Roche, Sao Paulo, 
Brazil).

Statistical analysis
The data are presented as means and 95% confidence 
intervals (CI). Shapiro–Wilk tests were applied to assess 
the normal distribution of the variables assessed. In case 
of non-normal distribution, the variables were log trans-
formed before analysis. Repeated measures ANOVA was 
used to compare creatine kinase, and hormonal status 
between the FFT sessions and the control session. Tuk-
ey’s post-hoc test was applied in the event of a significant 
main effect. Repeated measures ANOVA was also used 
to compare creatine kinase and hormonal concentrations 
between pre- values and post-FFT sessions in different 
time points. Lastly, percentage of change from baseline of 
creatine kinase, and hormonal concentrations was calcu-
lated for the different time points and repeated measures 
ANOVA was also used to compare creatine kinase, and 
hormonal changes between functional fitness sessions 
and control session. Cohen’s d effect sizes (ES) were cal-
culated using the Cohen´s convention [23] to evaluate 
the magnitude of the change of creatine kinase and hor-
monal concentrations during the functional fitness and 
control sessions (ES ≤ 0.20 represents a small ES; 0.50 a 
moderate ES; 0.80 a large effect size). Simple Pearson’s 
r correlations were used to determine the associations 
between the hormonal responses and blood lactate con-
centration and RPE after the FFT sessions and the con-
trol condition. The magnitude of the correlations was 
classified as: r ≤ 0.1 trivial; 0.1 < r ≤ 0.3 small; 0.3 < r ≤ 0.5 
moderate; 0.5 < r ≤ 0.7 large; 0.7 < r ≤ 0.9 very large; r > 0.9 
almost perfect [24]. The level of significance was p ≤ 0.05 
and SPSS version 20.0 (Somers, NY, USA) software was 
used.

Results
Participants completed a greater number of repetitions 
(214.4 ± 18.6 repetitions) during the all-out session 
when compared to the RPE6 session (190.5 ± 12.5 rep-
etitions). Blood lactate concentration and RPE were also 
higher after the all-out session (18.9 ± 3.9 mmol/L; RPE: 
9.6 ± 0.7) than the RPE6 session (12.8 ± 3.2 mmol/L; RPE: 
6.2 ± 0.8). An in-depth discussion of these results and its 
implications has already been published [4].

Table  1 presents the hormonal responses pre- and 
post-functional fitness sessions. Considering the base-
line values, only the cortisol concentration pre- all-out 
session was greater (p = 0.048) than the control session. 
Creatine kinase concentration was greater 0 h (p = 0.038), 
1  h (p = 0.010), 2  h (p = 0.011) and 24  h (p = 0.041) 
after the RPE6 and 0  h (p = 0.001), 1  h (p = 0.002), 2  h 
(p = 0.015) and 24  h (p = 0.058) after the all-out ses-
sions. When compared to baseline, serum cortisol con-
centration was greater post-0 h (p = 0.011) for RPE6 and 
post-0  h (p = 0.003) and post-1  h (p = 0.030) for all-out 
session. For the all-out session, cortisol concentration 
post-24 h was significantly less (p = 0.010) than pre- val-
ues. Total testosterone and free testosterone were sig-
nificantly greater (p ≤ 0.05) post-0 h for RPE6 (p = 0.007 
for total testosterone and p = 0.010 for free testosterone) 
and all-out (p = 0.005 for total testosterone and p = 0.003 
for free testosterone) sessions when comparing to base-
line concentrations. However, total testosterone and free 
testosterone were significantly lower (p = 0.009 for total 
testosterone and p = 0.010 for free testosterone) post-1 h 
comparing to baseline concentrations only for RPE6 ses-
sion. BDNF concentration was higher (p = 0.002) post-0 h 
only for the all-out session when comparing to base-
line concentrations. However, BDNF was significantly 
lower post-24  h after the all-out (p = 0.042) and RPE6 
(p = 0.032) sessions, when compared to baseline values.

Figure  3 shows the percentage of change in creatine 
kinase concentration for each FFT session and the con-
trol session. The percentage of change post-1 h was sig-
nificantly higher for all-out session compared to RPE6 
session (p = 0.047). No other differences were observed 
in creatine kinase percentage change between all-out and 
RPE6 sessions. Effect size (ES) of the changes post-0  h 
are 0.00 for control, 0.65 for all-out and 0.28 for RPE6; 
ES Post-1 h are 0.02 for control, 0.69 for all-out and 0.14 
for RPE6; ES Post-2 h are 0.01 for control, 0.54 for all-out 
and 0.24 for RPE6; ES Post-24 h are 0.13 for control, 0.85 
for all-out and 0.51 for RPE6.

For cortisol concentrations, RPE6 and all-out ses-
sions presented a significantly higher percentage change 
post-0 h compared to control session (Fig. 4). Effect size 
(ES) of the changes post-0 h are 0.13 for control, 1.07 for 
all-out and 1.34 for RPE6; ES Post-1 h are 0.68 for control, 
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0.81 for all-out and 0.73 for RPE6; ES Post-2 h are 0.35 for 
control, 0.21 for all-out and 0.18 for RPE6; ES Post-24 h 
are 0.65 for control, 1.31 for all-out and 0.67 for RPE6. 
The percentage change for total testosterone and free tes-
tosterone was significantly different (p ≤ 0.005 for total 
testosterone and p = 0.003 for free testosterone) only 
post-2  h between RPE-6 and all-out (Fig.  5). The Effect 
size (ES) of the changes for testosterone post-0 h was 0.17 
for control, 1.26 for all-out and 0.57 for RPE6; ES Post-1 h 
are 0.40 for control, 1.02 for all-out and 0.37 for RPE6; 
ES Post-2 h are 0.05 for control, 0.71 for all-out and 0.14 

for RPE6; ES Post-24 h are 0.40 for control, 0.88 for all-
out and 0.21 for RPE6. No statistically significant differ-
ences (p > 0.05) were observed in the percentage change 
after the sessions for BDNF (Fig. 6). Effect size (ES) of the 
changes post-0 h are 0.20 for control, 1.33 for all-out and 
0.59 for RPE6; ES Post-1 h are 0.07 for control, 0.67 for 
all-out and 0.56 for RPE6; ES Post-2 h are 0.42 for con-
trol, 0.40 for all-out and 0.05 for RPE6; ES Post-24 h are 
0.27 for control, 1.21 for all-out and 1.33 for RPE6.

There were no significant correlations observed 
between blood lactate concentration or RPE at the end 
of the functional fitness sessions and creatine kinase, 
free testosterone, or total testosterone in the 24  h 

Table 1  Creatine kinase and hormonal responses pre- and post-functional fitness sessions with self-regulation of intensity (RPE6) and 
ALL-OUT and control session [mean (95% CI)]

BDNF, Brain-Derived Neurotrophic Factor; *Significantly different from control session (p ≤ 0.05); †Significantly different from pre (p ≤ 0.05)

Pre Post-0 h Post-1 h Post-2 h Post-24 h

Control

 Creatine kinase, U/L 282 (159–404) 281 (161–402) 287 (149–424) 279 (151–407) 270 (134–405)

 Cortisol, ug/dL 8.9 (7.0–10.7) 8.7 (7.0–10.5) 7.6 (6.4–8.9) 8.3 (7.2–9.4) 7.1 (6.1–8.1)

 Total testosterone, ng/dL 571 (496–646) 583 (503–663) 534 (456–611) 565 (497–633) 526 (455–597)

 Free testosterone, ng/dL 20.3 (17.6–23.0) 20.9 (18.3–23.5) 18.7 (16.1–21.4) 19.6 (17.5–21.7) 18.3 (16.2–20.3)

 BDNF, pg/mL 374 (167–581) 291 (67–650) 344 (31–669) 508 (122–898) 239 (167–311)

RPE6

 Creatine kinase, U/L 318 (100–536) 410 (111–710)† 359 (126–592)† 392 (143–641)† 490 (192–788)†

 Cortisol, ug/dL 11.0 (7.6–14.4) 16.7 (12.4–21.0)† 14.6 (9.7–19.6) 10.3 (5.6–15.0) 8.8 (7.0–10.7)

 Total testosterone, ng/dL 514 (385–644) 604 (460–748)† 460 (332–587)† 535 (408–663) 544 (474–614)

 Free testosterone, ng/dL 18.3 (13.6–22.9) 21.5 (16.3–26.7)† 16.3 (11.8–20.9)† 19.0 (14.4–23.7) 19.5 (17.0–22.0)

 BDNF, pg/mL 254 (64–445) 565 (151–978) 437 (134–740) 332 (51–613) 97 (45–151)†

ALL-OUT

 Creatine kinase, U/L 259 (169–350) 346 (219–474)† 356 (236–476)† 332 (196–467)† 456 (181–731)†

 Cortisol, ug/dL 13.9 (9.5–18.4)* 19.7 (14.9–24.5)† 19.5 (13.9–25.1)† 15.1 (11.4–18.8) 8.2 (6.7–9.7)†

 Total testosterone, ng/dL 526 (491–562) 610 (539–682)† 493 (465–522) 504 (480–528) 570 (525–614)†

 Free testosterone, ng/dL 18.3 (16.7–20.0) 20.7 (18.8–22.7)† 17.3 (15.7–18.8) 17.1 (16.0–18.2) 19.9 (18.7–20.9)

 BDNF, pg/mL 298 (36–559) 632 (410–855)† 478 (173–783) 180 (41–319) 97 (55–139)†

Fig. 3  Percentage change in creatine kinase (CK) concentration 
post-FFT sessions with self-regulation of intensity (RPE6) and ALL-OUT 
and control session [mean (95% CI)]. *Significantly different from 
control (p ≤ 0.05); †Significantly different from RPE6 (p ≤ 0.05)

Fig. 4  Percentage change in cortisol concentrations post-FFT 
sessions with self-regulation of intensity (RPE6) and ALL-OUT and 
control session [mean (95% CI)]. *Significantly different from control 
(p ≤ 0.05)
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after functional fitness sessions. However, cortisol and 
BDNF concentrations after the FFT sessions were sig-
nificantly correlated with blood lactate concentration, 
and RPE (Table 2).

Discussion
The major new finding from this study was that BDNF 
concentrations were greater post-exercise for the all-out 
session only. Similarly, the percentage change in creatine 
kinase at different time points after the sessions was only 
consistently higher than the control condition in the all-
out session. These results suggest that intensity is a key 
factor in determining the responses elicited by FFT ses-
sions. As the metabolic conditioning sessions of FFT are 
usually performed as “all-out” efforts, these results dem-
onstrate that these types of sessions elicit a high level 
of hormonal and metabolic stress, and that manipulat-
ing the intensity of the metabolic conditioning sessions 
through the use of perceived exertion can lead to lower 
levels of hormonal and metabolic stress, potentially pre-
venting negative outcomes associated with too much 
intense training, such as non-functional overreaching or 
overtraining.

Exercise-induced muscle damage (EIMD) can be 
attributed to the performance of unaccustomed exer-
cise, or when the intensity, volume, and duration of the 
training stimulus is excessive to the participant, espe-
cially in poorly trained individuals [25]. Amongst other 
things, EIMD increases cell membrane permeability to 
muscle enzymes [26], causing leakage which is reflected 
in increased levels of several metabolic molecules in 
the interstitial fluid and blood [27, 28]. Furthermore, 
it is well known that all-out effort muscular work can 
potentially lead to muscle fiber impairment, that is cor-
related to increased serum creatine kinase concentra-
tion, with previous FFT studies demonstrating elevated 
creatine kinase levels post all-out sessions. Timón et  al. 
[29] analyzed creatine kinase concentrations in two dif-
ferent training sessions, with the workout 1 consisting of 
as many rounds as possible of burpees and toes to bar, 
with the number of repetitions increasing for five min-
utes. Workout 2 consisted of three rounds of 20 repeti-
tions of wall ball (9 kg) and 20 repetitions of power cleans 
in the shortest possible time. The creatine kinase post-
24  h after training was approximately 673 and 864  U/L 
for workouts 1 and 2, respectively. Gomes et al. [30] also 
evaluated creatine kinase concentrations following a sin-
gle workout (‘Cindy’—as many rounds as possible of 5 
pull-ups, 10 push-ups, and 15 air squats in 20-min), and 
showed that creatine kinase concentrations increased 
post exercise (174.9 to 226.7 U/L) and remained elevated 
post-24  h (~ 270 U/L). The increase in the concentra-
tion occurred even though no external load was utilized, 
highlighting that the overall intensity of the session might 
be the key factor for creatine kinase changes.

In fact, when the intensity was likely reduced, the cre-
atine kinase response to exercise was affected. Tibana 
et al. [11] analyzed the time-course response of creatine 

Fig. 5  Percentage of change of total testosterone (A) and free 
testosterone (B) post-functional fitness sessions with self-regulation 
of intensity (RPE6) and ALL-OUT and control session [mean (95% CI)]. 
*Significantly different from control (p ≤ 0.05); †Significantly different 
from RPE6 (p ≤ 0.05)

Fig. 6  Percentage of change of Brain-Derived Neurotrophic Factor 
(BDNF) post-functional fitness sessions with self-regulation of 
intensity (RPE6) and ALL-OUT and control session [mean (95% CI)]
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kinase following a FFT competition, where athletes were 
part of a team of three competitors. The results showed 
no statistical difference in creatine kinase concentration 
from baseline to post-competition. The fact that during 
team competitions in FFT the athletes perform a lower 
volume of repetitions when compared to individual com-
petitions is a potential explanation for these results. In 
agreement with Tibana et al. [11], our results found a sig-
nificant increase on creatine kinase percentage change 
post-24  h only after the all-out protocol. It is possible 
then, that a FFT session performed at a lower inten-
sity (RPE6) can provide an adequate training stimulus, 
with a lower stress level to the participants. This would 
allow practitioners to manage the athletes’ training load 
throughout a training period, ensuring proper recovery 
during the week of training, potentially minimizing the 
negative effects associated with frequent all-out bouts of 
metabolic conditioning [6].

In general, the hormonal acute response is dependent 
upon the exercise intensity and is the most critical ele-
ment to tissue remodeling [31]. In the male population, 
testosterone is a potent anabolic hormone that mediates 
protein accretion and enhances neural function [32]. A 
striking finding of the current study was that the total 
and free testosterone concentrations were lower post-2 h 
for all-out when compared to RPE6 session, suggesting 
a reduction in the secretory capacity linked to the gon-
adotropin action. Considering that the all-out session 
is characterized by greater energy demand and a higher 
level of neuromuscular fatigue, with the musculature 
often taken to the point of muscle failure, it is possible 
that this type of session needs a longer recovery before 
homeostasis can be restored and hormonal levels can be 
adjusted. Overall, the all-out session appeared to disrupt 
hormonal balance immediately after the session, and 2 h 
was not sufficient to  restore testosterone levels. Never-
theless, the increased testosterone levels post-24 h com-
pared to immediately after the sessions (post-0  h), may 
reflect a compensatory mechanism in response to the 
testosterone alteration in previous time-points.

Cortisol levels increased immediately post-session 
in both the RPE6 and all-out conditions, with no differ-
ence between sessions. This increase is likely related to 
enhanced glycogenolysis, gluconeogenesis, and protein 
catabolism to mobilize fuels for recovery and regen-
eration after exercise [33]. When investigating the time-
course response of physiological, psychological and 
performance markers following a FFT competition, 
Tibana et  al. [11] showed a significant decrease in cor-
tisol concentrations after 48  h when compared to their 
pre-competition levels, indicating that cortisol release 
might have a later onset. Additionally, the authors did not 
observe any correlations between hormonal concentra-
tions, metabolic responses, and immune variables with 
performance changes (countermovement jump), rein-
forcing the idea that cortisol changes in the short term 
are limited.

Prior studies showed that different exercise protocols 
can act as a stimulus to the hypothalamic-pituitary-
adrenocortical axis, which in turn lead to increases in 
circulating cortisol levels [4, 34]. However, evidence sug-
gests that cortisol levels increase at a rate relatively pro-
portional to the exercise intensity yet reach a final level 
dependent upon the athlete’s training status, total dura-
tion of the exercise session, and the hormonal half-life 
[35–37]. Previous findings support this assertion. Jacks 
et al. [34] demonstrated that exercise sessions that lasted 
less than 40  min in duration elicited no significant dif-
ferences in cortisol concentrations regardless of their 
intensity. Likewise, well trained individuals can tolerate 
a higher intensity of exercise prior to seeing an increase 
in cortisol concentrations, [36], which might partially 
explain our findings. Moreover, the release of cortisol 
typically is upstream of the immune system response 
[37]. Cortisol is also known to have potent anti-inflam-
matory effects, considering its role in maintaining neu-
trophilia, lymphopenia and cytokines bioavailability, 
which suggests that this hormone has a variety of effects 
on different functions [37].

Previous investigations that explored the BDNF kinet-
ics after diverse exercise protocols have demonstrated 

Table 2  Correlations between cortisol and BDNF concentrations after the functional fitness sessions and blood lactate concentration, 
and ratings of perceived exertion after the functional fitness sessions

BDNF, Brain-Derived Neurotrophic Factor; *statistically significant correlation

Post-0 h Post-1 h Post-2 h Post-24 h

Cortisol

 Blood lactate concentration r = 0.58; p ≤ 0.01* r = 0.53; p ≤ 0.01* r = 0.35; p = 0.09 r = 0.15; p = 0.48

 Ratings of perceived exertion r = 0.75; p ≤ 0.01* r = 0.71; p ≤ 0.01* r = 0.54; p ≤ 0.01* r = 0.21; p = 0.33

BDNF

 Blood lactate concentration r = 0.51; p = 0.01* r = 0.47; p = 0.02* r = − 0.18; p = 0.40 r = − 0.57; p ≤ 0.01*

 Ratings of perceived exertion r = 0.47; p = 0.02* r = 0.34; p = 0.10 r = − 0.32; p = 0.13 r = − 0.55; p ≤ 0.01*
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acute transient increases in circulating levels during high-
intensity when compared with low-intensity exercise [38, 
39], with the highest concentrations occurring immedi-
ately post exercise. To the best of our knowledge, the pre-
sent study is the first to analyze the role of the intensity 
on time-course changes in peripheral BDNF levels fol-
lowing FFT sessions. The current findings indicate that 
BDNF was greater (p = 0.002; ES = 1.33) post-0  h only 
for all-out session when compared to baseline concentra-
tions, suggesting that intensity can modulate the BDNF 
amplitude response caused by FFT. Corroborating this 
finding, we found a positive correlation between blood 
lactate concentration during the sessions and BDNF 
values (post-0  h: r = 0.51; p = 0.01*; post-1  h: r = 0.47; 
p = 0.02*). Previous studies proposed that tropomyosin 
receptor kinase B receptor [40], Ca2+-stimulated intra-
cellular signaling [41] and lactate concentrations [42] 
can modulate BDNF mRNA levels, which favors positive 
effects on neuroplasticity.

In a recent review, Müller et  al. [43] highlighted a 
potential regulatory mechanism for the relationship 
between lactate and BDNF levels in response to exer-
cise. It is well established that lactate promotes plastic-
ity by potentiating NMDA glutamate receptor activity 
in neurons. Moreover, lactate upregulated intracellu-
lar NADH and calcium levels, which consequently can 
induce BDNF activation. This potential molecular basis 
to explain the contribution of the BDNF signaling path-
way induced by lactate from astrocytes [43]. Moreo-
ver, lactate modulates PGC1α/FNDC5/BDNF pathway 
in response to exercise through SIRT1 activation [44]. 
However, while cortisol released during intense exercise 
might inhibit BDNF synthesis [44], the present study 
did not find a relationship between BDNF and cortisol 
responses. Further investigations are required to explain 
this result. The increases in BDNF concentration despite 
the changes in cortisol might algo suggest that other adja-
cent molecular pathways were involved in the changes in 
BDNF concentrations.

Recently, Ben-Zeev et  al. [45] showed that a 3-month 
FFT program in middle-school adolescents was able to 
enhance short-term spatial learning, visual pattern sepa-
ration, and inhibitory control. When comparing a FFT 
program to a walking intervention and a control group, 
Wilke et  al. [46] suggested that FFT was more effective 
in improving working memory when compared to low 
intensity cardiovascular exercise. Thus, it is possible 
that the increase in BDNF levels after the all-out session 
reported in the present study can be one of the elements 
that links exercise to cognitive benefits [46].

Despite the interesting results of this study, some limi-
tations need to be mentioned. First, the findings are lim-
ited to a relatively small (n = 8) sample of convenience, 

our specific athlete characteristics, and time frame. 
Moreover, the Tibana test does not contain all gymnas-
tics movement, weightlifting and powerlifting exercises 
that are usually performed during the  metabolic condi-
tioning of  FFT session. Future studies should include 
the investigation of regulatory molecules (e.g. catecho-
lamine, neurotransmitters and glucocorticoid receptors) 
and immune variables that participate directly in the 
increased hormonal and metabolic responses follow-
ing exercise in order to clarify adjacent mechanisms. In 
addition, whether longer periods of FFT sessions per-
formed at different intensities (RPE6 and ALL-OUT, for 
example) will continue to produce further hormonal and 
metabolic adaptations, and if these changes are associ-
ated with modifications in muscle properties, strength, 
and functional ability remains a provocative hypothesis 
for further investigation.

Conclusion
Taken together, the results demonstrate that the intensity 
at which the metabolic conditioning of FFT sessions are 
performed has a significant effect on hormonal and met-
abolic concentrations following exercise. All-out efforts 
can increase the acute concentration of BDNF and cre-
atine kinase, while leading to an acute reduction in tes-
tosterone levels that return to baseline levels, and above, 
24  h post training. When sessions are performed at a 
lower intensity (RPE6), a rapid recovery of physiological 
stress markers is seen when compared to an all-out ses-
sion. The results also allow coaches and practitioners to 
improve their training programs based on the changes in 
hormonal and metabolic responses due to alterations in 
the intensity of the sessions. Future studies should evalu-
ate the chronic effects of different training intensities in 
the markers of overreaching and overtraining syndrome 
in previously trained subjects.
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