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Abstract

Previous reports have shown that environmental temperature impacts proteome evolution in Bacteria and Archaea.
However, it is unknown whether thermoadaptation mainly occurs via the sequential accumulation of substitutions,
massive horizontal gene transfers, or both. Measuring the real contribution of amino acid substitution to thermoadap-
tation is challenging, because of confounding environmental and genetic factors (e.g., pH, salinity, genomic GþC
content) that also affect proteome evolution. Here, using Methanococcales, a major archaeal lineage, as a study model,
we show that optimal growth temperature is the major factor affecting variations in amino acid frequencies of pro-
teomes. By combining phylogenomic and ancestral sequence reconstruction approaches, we disclose a sequential sub-
stitutional scheme in which lysine plays a central role by fine tuning the pool of arginine, serine, threonine, glutamine,
and asparagine, whose frequencies are strongly correlated with optimal growth temperature. Finally, we show that
colonization to new thermal niches is not associated with high amounts of horizontal gene transfers. Altogether, although
the acquisition of a few key proteins through horizontal gene transfer may have favored thermoadaptation in
Methanococcales, our findings support sequential amino acid substitutions as the main factor driving thermoadaptation.

Key words: ancestral sequence reconstruction, horizontal gene transfer, Methanococci, protein, extremophiles, pro-
karyotes, evolutionary rates.

Introduction
Environmental surveys have revealed that microorganisms
are able to colonize a wide variety of environments (e.g.,
soil, ocean, fresh water, subsurface, human body), including
those with the most extreme physicochemical conditions
(e.g., high solvent/metal contaminations, hydrostatic pres-
sure, aridity, radiations, elevated temperatures, extreme pH
values, high salt concentrations) (Pikuta et al. 2007; Merino
et al. 2019). The ability of microbes to adapt to these harsh
conditions is a key issue with microbiological, ecological, evo-
lutionary, industrial, and biotechnical implications
(Canganella and Wiegel 2011; Dumorne et al. 2017; Coker
2019; Sayed et al. 2020). Regarding temperature, prokaryotes
are reported to grow in pure culture from �15 �C (the bac-
terium Planococcus halocryophilus Or1) up to 122 �C (the
archaeon Methanopyrus kandleri 116) (see Merino et al.
[2019] and references therein). Depending on their optimal
growth temperature (OGT), microorganisms are called psy-
chrophiles (OGT< 20 �C), mesophiles (20 �C<OGT� 45
�C), thermophiles (45 �C<OGT< 80 �C), or hyperthermo-
philes (80 �C�OGT) (Burgess et al. 2007; Merino et al. 2019).
Environmental temperature imposes strong constraints on
cells as it impacts the structure and the properties of macro-
molecules, the kinetics of chemical reactions, and enzymatic

activities. Low temperature decreases enzymatic activity and
membrane fluidity, alters the structure of proteins, and leads
to the formation of ice crystals damaging cell structures
(D’Amico et al. 2006; Siddiqui et al. 2013; De Maayer et al.
2014; Tribelli and Lopez 2018; Collins and Margesin 2019).
Thus, psychrophiles have enzymes able to maintain proper
folding and catalytic efficiency at very low temperatures
(Privalov 1990; Feller and Gerday 2003). They possess specific
chaperones (Petitjean et al. 2012): their membranes are
enriched in unsaturated lipids: and they accumulate intracel-
lular cryoprotectant compounds (Chintalapati et al. 2004;
Koga 2012; Siliakus et al. 2017; Collins and Margesin 2019).
High temperature increases membrane fluidity, denatures nu-
cleic acids and proteins, and impacts protein folding. As a
consequence, in thermophilic and hyperthermophilic prokar-
yotes, membranes are enriched in saturated lipids, stabilized
by membranous proteins, and contain specific transporter
systems (Albers et al. 2001; Konings 2006; Albers and
Driessen 2007; Koga 2012; Siliakus et al. 2017). These micro-
organisms also have protection systems against DNA damage
(Brochier-Armanet and Forterre 2006; Lipscomb et al. 2017).
Furthermore, the stems of their structural RNAs (i.e., transfer
RNA and ribosomal RNA) are enriched in G:C pairs, resulting
in increased RNA thermostability (Galtier and Lobry 1997).
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Thermophiles also harbor increased frequency and diversity
of tRNA modifications, that increase their stability, in com-
parison with their mesophilic and psychrophilic counterparts
(see Lorenz et al. [2017] and reference therein). In addition,
proteins from hyperthermophiles and thermophiles are more
compact and contain higher numbers of salt bridges, hydro-
gen bonds, and hydrophobic interactions, and harbor
improved packing that increase their stability at high temper-
ature (Vieille and Zeikus 2001; Berezovsky and Shakhnovich
2005; Coquelle et al. 2007; Greaves and Warwicker 2007; Luke
et al. 2007; Chakraborty et al. 2015). Finally, chaperones play
an important role by protecting nascent proteins from heat-
induced misfolding and aggregation (Godin-Roulling et al.
2015; Feller 2018).

Looking at how microbial species have coped with changes
in environmental temperature over evolutionary time is key
for deciphering the underlying adaptative mechanisms.
Phylogenetic studies reported that hyperthermophilic and
thermophilic prokaryotes exhibit shorter branches than their
mesophilic relatives, most probably as a consequence of
slower evolutionary rates (Woese 1987; Friedman et al.
2004; Stetter 2006; Drake 2009; Groussin and Gouy 2011).
Protein sequence comparisons in prokaryotes also revealed
positive correlations between OGT and glutamate, lysine, va-
line, tyrosine, and arginine frequencies, whereas glutamine
displays the opposite trend (McDonald et al. 1999; Kreil
and Ouzounis 2001; Vieille and Zeikus 2001; Tekaia et al.
2002; Farias and Bonato 2003; Zeldovich et al. 2007; Smole
et al. 2011). It would be tempting to interpret these observa-
tions as the result of a universal pattern of amino acid sub-
stitution that drives protein thermoadaptation in
prokaryotes (Chakravarty and Varadarajan 2000). Yet, the
situation is probably more complex, as temperature is not
the unique factor impacting amino acid frequencies in pro-
teomes. For instance, the genomic GþC content was shown
to dominate over other factors in prokaryotes, explaining
more than 75–80% of the observed variance (Kreil and
Ouzounis 2001; Boussau et al. 2008; Puigbo et al. 2008).
Furthermore, additional factors such as metabolism and sa-
linity also impact the amino acid composition of prokaryotic
proteomes (Paul et al. 2008; Vieira-Silva and Rocha 2008;
Narasingarao et al. 2012). As a consequence, the variation
of observed amino acid frequencies between proteomes is
the result of multiple factors with different and possibly op-
posite effects. This may explain discrepancies among studies,
in particular regarding the impact of OGT on serine, threo-
nine, asparagine, histidine, and isoleucine frequencies in pro-
teomes (Haney et al. 1999; McDonald et al. 1999; Kreil and
Ouzounis 2001; Singer and Hickey 2003; Smole et al. 2011). In
addition, although many studies focused on proteome amino
acid frequency variations, the underlying substitutional pro-
cess remains to be deciphered. Finally, it was also suggested
that horizontal gene transfer (HGT) might facilitate thermoa-
daptation by providing proteins with key functions and/or
with optimal amino acid composition (see, for instance,
Brochier-Armanet and Forterre 2006; Brochier-Armanet
et al. 2011; van Wolferen et al. 2013; Feng et al. 2014;

Lopez-Garcia et al. 2015; and references therein). However,
the relative contribution of HGTs to thermoadaptation com-
pared with that of variations in amino acid compositions
between proteomes needs to be clarified.

Among prokaryotes, the Methanococci class represents a
very interesting model (Haney et al. 1999; McDonald et al.
1999). These archaea belong to Methanomada, a super-class
that encompasses two additional classes: Methanopyri and
Methanobacteria (Petitjean et al. 2015). Methanococci are
composed of a single order, the Methanococcales, and four
genera: the hyperthermophilic Methanocaldococcus, the hy-
per/thermophilic Methanotorris, the thermophilic
Methanothermococcus, and the thermo/mesophilic
Methanococcus (Whitman et al. 2015). Methanococcales are
all methanogens with OGT ranging from 35 �C
(Methanococcus vannielii) up to 90 �C (Methanocaldococcus
sp. FS406-22) (supplementary fig. S1 and table S1,
Supplementary Material online). Interestingly,
Methanococcales are very homogeneous with respect to mul-
tiple genomic and metabolic features, such as genomic GþC
content, CDS GþC content, carbon metabolism, and opti-
mal growth pH and NaCl level (supplementary table S1,
Supplementary Material online), factors all known to impact
amino acid frequencies in proteomes. The comparison of 115
homologous proteins from the hyperthermophilic
Methanocaldococcus jannaschii and mesophilic
Methanococcus species identified a set of 26 pairs of amino
acids with strong asymmetrical substitution biases possibly
linked to temperature adaptation (supplementary table S2,
Supplementary Material online) (Haney et al. 1999). A similar
analysis performed on 99 proteins identified 19 additional
pairs (supplementary table S2, Supplementary Material on-
line) (McDonald et al. 1999). Yet, these studies are incomplete
as they are based on a very limited set of proteins from a few
strains and do not correct for the influence of phylogenetic
relatedness among species, a phenomenon called phyloge-
netic inertia which can create artificial correlations between
two traits evolving along the same phylogeny (Felsenstein
1985).

Here, we present an in-depth investigation of the evolu-
tionary processes and molecular mechanisms driving ther-
moadaptation, using Methanococcales as a model. By
combining phylogenomics and ancestral sequence recon-
struction, we show that thermoadaptation is the main factor
impacting the variation of amino acid frequencies between
proteomes in this major archaeal lineage. Our analysis also
reveals that all proteins within proteomes are shaped by tem-
perature following the same pattern, irrespective of protein
function. The detailed analysis of the substitution patterns
associated with OGT changes disclosed a sequential substi-
tutional scheme involving lysine, as a central hub, and five
other major amino acids: arginine, serine, threonine, gluta-
mine, and, to a lesser extent, asparagine. Finally, large-scale
phylogenetic analyses showed that thermoadaptation is not
quantitatively associated with HGTs, suggesting that adapta-
tion toward mesophilic or thermophilic lifestyles does not
involve a massive turnover of gene content.
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FIG. 1. Correspondence analyses of amino acid compositions of 18 methanococcales proteomes. (A) First factorial map of the correspondence
analysis on the amino acid frequencies of 18 methanococcales proteomes. Dots represent the scores of each strain on the first two axes of the
analysis. Red dots indicate hyperthermophilic strains with OGT� 80 �C, namely: infer: Methanocaldococcus infernus ME (85 �C), villo:
Methanocaldococcus villosus KIN24-T80, vulca: Methanocaldococcus vulcanius M7 (80 �C), ferve: Methanocaldococcus fervens AG86 (85 �C), janna:
Methanocaldococcus jannaschii DSM 2261 (85 �C), FS406: Methanocaldococcus sp. FS406-22 (90 �C), igneu: Methanotorris igneus Kol 5 (88 �C).
Orange dots indicate strains with 80 �C>OGT> 45 �C, namely: formi: Methanotorris formicicus Mc-S-70, okina: Methanothermococcus okina-
wensis IH1 (62 �C), thermo: Methanothermococcus thermolithotrophicus DSM 2095, aeoli: Methanococcus aeolicus Nankai-3 (46 �C). Blue dots
indicate strains with OGT� 45 �C, namely: vanni: Methanococcus vannielii SB (35 �C), volta: Methanococcus voltae A3 (37 �C), marC5/C6/C7/S2/
X1: Methanococcus maripaludis strains C5 (37 �C), C6 (37 �C), C7 (37 �C), S2 (37 �C), and X1. (B) Correlation between OGT and scores on the first
axis of the correspondence analysis. Each dot corresponds to a methanococcales proteome. The values on the first axis of the correspondence
analysis are strongly correlated with OGT (r2¼�0.96, P value <0.001) but not with genomic GþC content (r2¼�0.06, P value¼ 0.8). (C)
Correlation between genomic GþC content and scores on the second axis of the correspondence analysis. Each dot corresponds to a meth-
anococcales proteome. The values on the second axis of the correspondence analysis are strongly correlated with GþC content (r¼�0.77, P
value<0.001) but not to OGT (r¼ 0.08, P value¼ 0.7). (D) Amino acid position on the first two factorial axes of the correspondence analysis on the
amino acid frequencies of Methanococcales proteomes. Amino acids associated with high OGT are on the left, amino acids associated with
moderate OGT are on the right.
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Results

Temperature Is the Dominant Factor Impacting
Amino Acid Frequencies of Methanococcales
Proteomes
To measure the individual contribution of temperature on
amino acid frequencies, we first performed a correspondence
analysis (CA) on the amino acid contents of 18 methanococ-
cales proteomes (fig. 1A). We observed that the first CA fac-
tor, accounting for 70% of the total variance, was highly
correlated with OGT (r2¼�0.96, P value <0.001) (fig. 1B
and table 1), and not with genomic GþC content
(r2¼�0.06, P value¼ 0.8), which is usually the dominant
contributing factor in prokaryotes. The second CA factor
(21% of the total variance) was highly correlated with geno-
mic GþC content (r2¼�0.77, P value <0.001) (fig. 1C and
table 1), and not with OGT (r2¼ 0.08, P value¼ 0.7). After
accounting for the effect of phylogenetic inertia (see Materials
and Methods) (Felsenstein 1985), OGT remains strongly cor-
related with the first CA factor (r2¼�0.79, P value <0.001),
and the genomic GþC remains associated with the second
CA factor (r2¼�0.89, P value <0.001) (table 1). We also
verified that OGT and genomic GþC content were indepen-
dent. As expected, there was no correlation between OGT
and genomic GþC content (r2¼ 0.0134 and P val-
ue¼ 0.9594, supplementary fig. S2, Supplementary Material
online), confirming earlier studies (Galtier and Lobry 1997;
Boussau et al. 2008).

To go further, we wondered whether temperature shapes
all proteins in the proteome following a consistent pattern, by

separately analyzing the core and accessory proteomes. The
first factor, accounting for 69% and 66% of the total variance
observed in core and accessory proteomes, respectively, was
highly correlated with OGT, whereas the second axis was
correlated with genomic GþC content (table 1 and supple-
mentary fig. S3, Supplementary Material online). This suggests
that OGT is the dominant factor impacting amino acid com-
positions of both core and accessory proteomes. Then, we
wondered if proteins with different functions are differentially
impacted by OGT. Applying between- and within-group cor-
respondence analyses (BCA and WCA, respectively) on the
four functional classes defined in the arCOG database (sup-
plementary fig. S4, Supplementary Material online)
(Makarova et al. 2015) revealed that 53% of the observed
variance is linked to between-group differences, whereas
the remaining 47% of the observed variance is linked to
within-group variations. BCA results indicated that the four
functional classes can be discriminated according to their
amino acid composition (supplementary fig. S5,
Supplementary Material online). The first two axes of the
BCA explained 53% and 41% of the amino acid compositional
variance observed between functional classes (supplementary
fig. S5, Supplementary Material online), but they were linked
neither to OGT nor genomic GþC content (table 1), mean-
ing that other factors (e.g., transcription levels) could be re-
sponsible of the observed variance. Regarding WCA, the first
two axes explained 66% and 20% of the variance in amino
acid frequency observed within functional classes (fig. 2).
Scores on the first axis were significantly correlated with
OGT (r2¼ 0.93–0.97, P value <0.01) and not with genomic

Table 1. Correspondence Analyses of Proteome Amino Acid Compositions of 18 Methanococcales.

Complete Proteome Core Proteome Accessory Proteome BCA

1st Axis 2nd Axis 1st Axis 2nd Axis 1st Axis 2nd Axis 1st Axis 2nd Axis
Explained variance 70% 21% 69% 20% 66% 22% 53% 41%
Correlation with OGT 20.96* 0.08 20.95* 20.11 20.96* 0.01 0.43 20.11
Correlation with geno-

mic G 1 C content
20.06 20.77* 20.11 0.89* 0.01 0.87* 0.04 20.25

Correlation with OGT
(PIC)

20.79* 20.18 20.81* 0.2 20.73* 0.18 — —

Correlation with geno-
mic G 1 C content
(PIC)

20.32 20.89* 20.35 0.89* 20.18 0.86* — —

WCA

Information Storage and Processing Cellular Process and Signaling Metabolism Poorly Characterized

1st Axis 2nd Axis 1st Axis 2nd Axis 1st Axis 2nd Axis 1st Axis 2nd Axis
Correlation with OGT 0.96* 0.3 0.97* 0.14 0.97* 0.08 0.93* 0.22
Correlation with geno-

mic G 1 C content
0.07 0.86* 0.03 0.83* 0.03 0.91* 0.12 0.86*

Correlation with OGT
(PIC)

0.82* 0.23 0.8* 0.05 0.82* 0.23 0.59* 0.07

Correlation with geno-
mic G 1 C content
(PIC)

0.31 0.82* 0.13 0.78* 0.29 0.92* 0.42 0.84*

NOTE.—The table reports the results of correlation tests between scores on the first two axes of the correspondence analyses and either the OGT or the genomic GþC content
of the studied strains. Correspondence analyses were performed on complete proteomes, on the 1,026 methanococcales universal protein families (core proteome), and on the
3,533 remaining protein families (accessory proteome). Between class analysis (BCA) and within class analysis (WCA) were performed on the four functional classes of proteins,
defined according to the arCOG classification (Makarova et al. 2015). Variance between classes and within classes explained respectively 53% and 47% of the total variance
observed among functional classes. For each analysis, the percentage of variance explained by the first two axes is indicated. For correlation tests, significant results are indicated
by a star. Correction with the phylogenetic independence contrast (PIC) method did not change the results of the correlation tests.
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GþC content (r2¼ 0.03–0.12, P value >0.05), which also
holds true after correcting for phylogenetic inertia (table 1
and supplementary fig. S6, Supplementary Material online).
Conversely, scores on the second axis were significantly cor-
related with genomic GþC content (r2¼ 0.83–0.91, P value
<0.01) and not with OGT (r2¼ 0.08–0.22, P value >0.05),
which also holds true after correcting for phylogenetic inertia
(table 1 and supplementary fig. S6, Supplementary Material
online). This shows that within each functional class, OGT is
the major factor impacting amino acid composition varia-
tions among strains (supplementary fig. S6, Supplementary
Material online) and that strains can be discriminated accord-
ing to their OGT, irrespectively of the considered functional
class. It is noteworthy that similar results were obtained at a
smaller scale. Indeed, when analyzing functional arCOG cat-
egories, corresponding to subdivisions of the four functional
classes (supplementary fig. S4, Supplementary Material on-
line), 15 out of 19 displayed a significant correlation between
scores on the first axis of the CA and OGT (r2� 0.76, P value
<0.01, supplementary table S3, Supplementary Material on-
line). Altogether, these data indicate that, in Methanococcales,
environmental temperature has a major and consistent effect
on amino acid compositions within each class and category of
protein function.

Arg, Ser, Thr, Gln, Asn, and Trp Frequencies Are
Correlated with OGT
Next, we identified the amino acids that are hallmarks of
OGT. The CA of methanococcales proteomes showed that
some charged amino acids (arginine and lysine), uncharged
polar residues (asparagine, threonine, glutamine, and serine),
and one nonpolar residue (methionine) account most
strongly for compositional differences between proteomes
(fig. 1D). To go further, we measured the correlation between
OGT and individual amino acid frequencies in 538 single copy
core protein families shared between Methanococcales and
the two other classes of Methanomada using two different
approaches: a Pearson correlation test with correction for
phylogenetic inertia and the ANCOV method. The ANCOV
method, based on a Kalman filtering algorithm, estimates the
correlation between a quantitative trait (here OGT) and
amino acid frequencies in both extant and extinct species
by considering phylogenetic inertia (Lartillot 2014). Both
approaches highlighted a significant positive correlation be-
tween arginine and OGT and a significant negative correla-
tion between OGT and serine (table 2). Significant negative
correlations between OGT and asparagine, threonine, gluta-
mine, and tryptophan were also observed with the ANCOV
method (table 2). Interestingly, some of these amino acids

FIG. 2. Within-group correspondence analysis of proteins from 18 Methanococcales proteomes. Functional classes of the Methanococcales proteins
were defined according to the arCOG database. Each mark represents the score of a given functional class in a given Methanococcales strain, on the
first factorial map of the analysis. Colored ellipses and labels correspond to strains, light gray ellipses and labels correspond to mesophiles
(OGT� 45 �C), thermophiles (45 �C<OGT< 80 �C), and hyperthermophiles (80 �C�OGT). Width and height of ellipses are proportional to
scores variances of the group on the first and second axes.
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were reported to have temperature-dependent impact on
protein structure and stability (see Zhou et al. [2008] and
reference therein). For instance, arginine is known to increase
protein thermostability through hydrogen bonds (Coquelle
et al. 2007), whereas asparagine and glutamine are thermola-
bile and sensitive to deamination, a chemical reaction that
can lead to protein backbone cleavage at high temperature
(Tomazic and Klibanov 1988).

Evolution of OGT in Methanococcales
Next, we wondered how did OGT evolve along the phylogeny
of Methanococcales (supplementary fig. S7, Supplementary
Material online). To address this question, we used two dif-
ferent in silico methods that leverage existing correlations
between amino acid frequencies in proteomes and OGT to
estimate ancestral OGT at each node of the Methanococcales
phylogeny. The first method relies on the correlation between
the CA scores and OGT in present-day species (Boussau et al.
2008; Groussin and Gouy 2011), whereas the second method,
ANCOV, allows inferring quantitative traits along phylogenies
using ancestral information and, importantly, accounts for
phylogenetic inertia when inferring ancestral traits (Lartillot
2014). Before applying these two methods to ancestral OGT
inference, we tested their accuracy in OGT prediction.
Obviously, it is not possible to revive methanococcales ances-
tors to compare their OGT with in silico OGT predictions. To
circumvent this issue, we applied both methods on the 17
present-day methanococcales strains with known OGT (sup-
plementary table S1, Supplementary Material online). More
precisely, we inferred the OGT of each present-day strain
using information carried by the 16 other strains as input

data for ANCOV and the CA. Both methods provided con-
sistent estimations (r2¼ 0.99 and P value <10�14, supple-
mentary fig. S8A, Supplementary Material online) and
realistic estimations of the true strain OGT (CA scores:
r2¼ 0.96 and P value <10�9, ANCOV: r2¼ 0.96 and P value
<10�8, table 3). The average differences between real and
estimated OGTs were lower than 5 �C and 4.5 �C when using
the CA scores and ANCOV, respectively. These results suggest
that both methods can accurately predict OGT, at least when
applied to Methanococcales.

Inferring ancestral OGT with these approaches requires
the estimation of ancestral amino acid frequencies, and
thus the reconstruction of ancestral sequences. We used
two different probabilistic methods to infer ancestral sequen-
ces: BPPANCESTOR (Dutheil and Boussau 2008) and
FASTML (Ashkenazy et al. 2012) (see Materials and
Methods). Both methods applied on the 538 single copy
core protein families of methanococcales provided consistent
results. In fact, the ancestral sequences inferred at each node
of the Methanococcales phylogeny displayed very similar
amino acid frequencies (all r2> 0.99 and P values <10�20,
supplementary table S4, Supplementary Material online), sug-
gesting that the choice of one method over the other will not
significantly impact the estimation of ancestral OGT. Then,
ancestral amino acid frequencies were used to infer OGT of
the each methanococcales ancestors using CA scores. As
expected, no significant difference was observed when using
FASTML or BPPANCESTOR data to infer ancestral OGT
(r2¼ 0.98 and P value<10�21, table 4). Interestingly, ancestral

Table 2. Correlations between OGT and Amino Acid Frequencies.

Amino Acid Pearson Correlation
Test after Correction
for Phylogenetic Inertia

Kalman–Gibbs
Estimated Correlation
(ANCOV Method)

Ala 0.19 0.32
Arg 0.72* 0.52*
Asn 20.47 20.49*
Asp 0.03 0.06
Cys 0.16 20.03
Glu 0.46 0.3
Gln 0.59 20.38*
Gly 20.1 0.06
His 0.23 0.12
Ile 0.02 20.04
Leu 0.18 0.09
Lys 0.59 0.25
Met 20.55 20.24
Phe 20.09 20.05
Pro 0.43 0.39
Ser 20.84* 20.57*
Thr 20.59 20.41*
Trp 0.34 0.51*
Tyr 0.2 0.16
Val 0.41 0.35

NOTE.—Correlations between OGT and individual amino acid frequencies were
tested using a Pearson correlation test and the ANCOV method on the 538 core
protein families shared between methanococcales and other methanomada.
Statistically significant correlations (P value <0.01 after correction for multiple
testing) are marked by a star.

Table 3. Comparison of Present-Day Strains Real OGT and Inferred
OGT with the Correspondence Analysis Score-Based Approach and
the ANCOV Method.

Optimal Growth Temperature

Strain CAS ANCOV Real

Methanocaldococcus fervens AG86 83 81 85
Methanocaldococcus infernus ME 93 90 85
Methanocaldococcus jannaschii

DSM 2661
85 90 85

Methanocaldococcus sp. FS406 22 84 85 90
Methanocaldococcus villosus 90 80 80
Methanocaldococcus vulcanius M7 78 79 80
Methanococcus aeolicus Nankai 3 41 44 46
Methanococcus maripaludis C5 42 37 37
Methanococcus maripaludis C6 42 37 37
Methanococcus maripaludis C7 42 37 37
Methanococcus maripaludis S2 41 38 37
Methanococcus maripaludis X1 41 37 —
Methanococcus vannielii SB 41 25 35
Methanococcus voltae A3 37 51 37
Methanothermococcus okinawensis

IH1
55 60 62

Methanothermococcus
thermolithotrophicus

58 58 65

Methanotorris formicicus 75 86 75
Methanotorris igneus Kol 5 77 79 88

NOTE.—The approach based on correspondence analysis scores (CAS) and the
ANCOV method applied on present-day strain to estimate their OGT provided
consistent results (r2¼ 0.99 and P value<10�14). Furthermore, the estimated OGT
were consistent with the real OGT of the strains (correspondence analysis scores:
r2¼ 0.96 and P value <10�9 and ANCOV: r2¼ 0.96 and P value¼ 10�8).
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OGTs inferred at each node of the phylogeny with either CA
scores or ANCOV were consistent (r2< 0.99 and P val-
ue¼ 10�14, table 4 and supplementary fig. S9A and B,
Supplementary Material online), yet with smaller confidence
intervals with ANCOV predictions (supplementary fig. S9A
and C, Supplementary Material online).

Both approaches predicted that the last common ancestor
of all present-day methanococcales was hyperthermophilic,
with an OGT close to 80 �C (fig. 3 and node 6 in supplemen-
tary fig. S9A, Supplementary Material online). Although all
Methanocaldococcus lineages remained adapted to hot envi-
ronments, independent OGT shifts occurred in
Methanotorris, Methanothermococcus, and Methanococcus.
Interestingly, opposite adaptation trajectories can be ob-
served for three pairs of sister lineages: 1) although the an-
cestral Methanotorris OGT was predicted to be close to 80 �C,
it increased up to 88 �C in the branch leading
to Methanotorris igneus and decreased down to 75 �C
in Methanotorris formicicus, 2) the OGT dropped down to
46 �C in the Methanococcus aeolicus lineage, whereas it
remained close to 60 �C in Methanothermococcus okinawen-
sis, and 3) the OGT was stable in the branch leading
to Methanothermococcus thermolithotrophicus, whereas it de-
creased to 35–37 �C in Methanococcus
vannielii, Methanococcus voltae and Methanococcus maripa-
ludis. Finally, along the tree, a negative correlation is observed
between branch lengths and OGT (supplementary fig. S10,
Supplementary Material online), confirming that mesophilic
organisms have globally higher substitution rates (Friedman
et al. 2004; Drake 2009; Groussin and Gouy 2011). The only
exception concerns Methanocaldococcus villosus
and Methanocaldococcus infernus, two sister hyperthermo-
philic lineages with very long branches as compared with
other hyperthermophiles. It is tempting to interpret this as
ancient marks of OGT shifts toward colder environments
that would have occurred in this lineage. Testing this

hypothesis would require a better taxonomic coverage of
this part of the Methanococcales tree. Altogether, our data
showed that, originating from a hyperthermophilic ancestor,
several adaptations to lower OGTs independently occurred
during the diversification of Methanococcales, and that the
colonization of these moderate environments was associated
with higher evolutionary rates.

Substitution Patterns Underlying OGT Shifts
The different adaptive trajectories observed in
Methanococcales represent a valuable resource to uncover
the molecular mechanisms underlying thermoadaptation.
For this, we computed the amino acid substitution matrices
corresponding to each of the 34 branches of the
Methanococcales phylogeny. Comparisons of sij, the number
of substitutions from amino acid i to amino acid j, and sji, the
number of substitutions from j to i (with i 6¼ j), using binomial
tests corrected for multiple testing identified 48 out of 190
amino acid pairs with a significant biased net balance (sup-
plementary table S5, Supplementary Material online). For 34
amino acid pairs, substitutions were biased in only one direc-
tion (i.e., from i to j but not from j to i), whereas for the 14
remaining pairs, biased substitutions were observed in either
one or the other direction, depending on given branches.
Altogether, among the 62 substitution types displaying a bi-
ased net balance, 23 (37.1%) were observed in a single branch
of the methanococcales tree, 9 (14.5%) in two different
branches, and 30 (48.4%) in at least three different branches
(supplementary table S5, Supplementary Material online). It is
worth noting that 21 out of these 30 pairs involved at least
one amino acid whose frequency was correlated with OGT
(table 5).

Recurrent substitutional biases were rare in branches of
hyperthermophiles where no major OGT shift was observed,
excepted for substitutions from lysine to arginine (supple-
mentary fig. S11A, Supplementary Material online). This

Table 4. Comparison of the Ancestral OGT Inferred with Correspondence Analysis Scores and ANVOC Approaches Using Either the Ancestral
Sequences Reconstructed with FASTML or BPPANCESTOR.

Correspondence Analysis Scores-Based Ancestral OGT Estimation ANCOV-Based Ancestral OGT Estimation

Ancestral node FASTML BPPANCESTOR BPPANCESTOR

ancestor_2 88 86 86
ancestor_7 78 78 82
ancestor_9 60 58 59
ancestor_14 41 41 36
ancestor_17 41 41 34
ancestor_16 41 41 36
ancestor_15 42 41 36
ancestor_13 47 46 41
ancestor_1 91 90 85
ancestor_12 56 53 51
ancestor_11 65 62 62
ancestor_10 68 65 65
ancestor_8 79 76 78
ancestor_5 85 85 86
ancestor_4 85 84 86
ancestor_3 85 84 84

NOTE.—Applying the approach based on correspondence analysis scores on ancestral sequences reconstructed either with FASTML or BPPANCESTOR provided very consistent
ancestral OGT estimations (r2¼ 0.98 and P value<10�21). Similarly, OGT estimations based on the correspondence analysis scores and ANCOV were very consistent (r2¼ 0.99
and P value <10�14).
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suggests that these lineages have reached a near equilibrium
state. The only exception concerned the stem of the clade
encompassing Methanothermococcus infernus and
Methanothermococcus, where biased substitutions from glu-
tamine, serine, and threonine toward lysine were also
detected (supplementary fig. S11A, Supplementary Material
online). Surprisingly, this pattern mirrored the one observed
in branches associated with a decrease in OGT, yet in oppo-
site directions (see below).

For lineages that shifted toward lower temperatures, a
strong and recurrent substitutional bias from arginine to ly-
sine was observed (table 5 and supplementary fig. S11B,
Supplementary Material online). Yet, the pool of lysine did
not expand because the lysine enrichment from arginine was
concomitantly counterbalanced by biased substitutions from
lysine toward serine and asparagine, and to a lesser extent to
threonine and glutamine (supplementary fig. S11B,
Supplementary Material online). Our analysis also showed
that glutamate and aspartate represent other sources of ser-
ine, threonine, asparagine, and glutamine when OGT
decreases. Interestingly, biased substitutions between alanine
and serine were associated with OGT variations, suggesting
that alanine may represent another path to fine tune the pool
of serine in proteomes. Finally, slight substitutional biases
between methionine and leucine were associated with OGT
variations. Regarding Methanothermococcus thermolithotro-
phicus and Methanothermococcus okinawensis, two thermo-
philic lineages with stable OGT, an intermediary pattern is
observed, with biased substitutions from lysine to arginine,
and biased substitutions from lysine to glutamine, asparagine,
and serine (supplementary fig. S11B, Supplementary Material
online). This suggests that these two lineages are in a kind of
transition zone, around 60–65 �C, where substitution

patterns associated with OGT increase and OGT decrease
coexist.

We showed that OGT is the dominant factor shaping
proteome amino acid frequencies in Methanococcales and
that no other genetic or environmental factor (e.g., genomic
GþC content, pH, metabolism) is as strong as temperature
to change the amino acid frequencies of proteomes (see
above). The analysis of substitutional patterns along the
Methanococcales phylogeny disclosed a scheme in which ly-
sine represents a substitutional hub that controls the fre-
quencies of amino acids shown to be directly correlated
with OGT (fig. 4). It is interesting to note that in this substi-
tutional scheme, the frequency of lysine was not correlated
with OGT because of the coexistence of opposite, yet equil-
ibrated, substitution patterns leading to lysine from the one
hand and departing from lysine on the other hand.

Horizontal Gene Transfer and the Adaptation to
Moderate Environments
We then asked whether transitions from hot to moderate
environments in Methanococcales were promoted or facili-
tated by HGT. To test this hypothesis, we checked whether
HGT occurred at higher rates in branches associated with
OGT shifts. Among the 9,540 protein families assembled
from the 27 methanomada proteomes, 2,116 contained
more than two sequences and at least one sequence of meth-
anococcales. Using the ALE software (Szöll}osi et al. 2013), we
identified 2,360 HGT events in Methanococcales affecting
1,394 (65.9%) protein families (fig. 5). This represents in aver-
age 1.12 events per protein family. We see a weakly significant
correlation between the distribution of these HGT events
along the phylogeny of Methanococcales and OGT
(r2¼�0.31, P value¼ 0.07) or OGT variations (r2¼ 0.34, P

Methanocaldococcus infernus ME   85°C

Methanocaldococcus villosus KIN24-T80  80°C

Methanocaldococcus vulcanius M7  80°C

Methanocaldococcus fervens AG86  85°C

Methanocaldococcus jannaschii DSM 2661  85°C

Methanocaldococcus sp. FS406-22  90°C

Methanotorris formicicus Mc-S-70  75°C

Methanotorris igneus Mc-S-70  88°C

Methanococcus aeolicus Nankai-3  46°C

Methanothermococcus okinawensis IH1  62°C

Methanothermococcus thermolithotrophicus DSM 2095  65°C

Methanococcus voltae A3  37°C

Methanococcus vannielii SB  35°C

Methanococcus maripaludis S2 37°C

Methanococcus maripaludis X1

Methanococcus maripaludis C5 37°C

Methanococcus maripaludis C6 37°C

Methanococcus maripaludis C7 37°C

85 [76-95]

86 [82-90]

86 [81-90]

84 [77-90]

84 [74-94]

83 [72-93]

78 [67-89]

82 [77-88]

65 [52-78]

59 [49-69]

41 [33-49]

36 [33-40]

36 [35-38]

36 [34-39]

36 [34-39]
0.0 0.04

Methanothermococcus thermolithotrophicus DSM 2095  65°C

90°C 80°C 70°C 60°C 50°C 40°C 30°C

62 [50-74]

51 [39-62]

FIG. 3. Evolution of OGT in Methanococcales. Rooted maximum likelihood phylogeny of Methanococcales inferred with 538 single copy core
protein families shared between Methanococcales and other Methanomada (127,077 amino acid positions). The tree is rooted in the branch
separating Methanococcales from other Methanomada classes. The whole tree is shown as supplementary figure S7, Supplementary Material
online. Branches were colored according to OGT estimated at each node of the phylogeny with the ANCOV method. Estimated ancestral OGT and
confidence interval (95%) are on the left of each node. OGT of present-day strains are indicated at each leave. Scale bars represent the OGT (�C)
color scheme and the average number of substitutions per site.
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value¼ 0.048). Using COUNT (Csuros 2010) or GLOOME
(Cohen et al. 2010), two other programs modeling gene
gain and loss along a phylogeny, provided similar results (sup-
plementary table S6, Supplementary Material online). The
comparison of sister-branches associated with opposite
OGT variations did not show correlation between HGT and

OGT (fig. 5). For instance, a similar amount of HGT events
was inferred in two sister-lineages with opposite OGT varia-
tions: 141 events in the branch of Methanotorris formicicus
Mc-S-70 (OGT variation¼�7 �C) and 132 events in the
branch of Methanotorris igneus Kol 5 (OGT variation¼þ6
�C). Similarly, in the branch leading to Methanothermococcus
okinawensis IH1, 128 HGT events were associated with a slight
OGT increase (þ3 �C), whereas 101 events were predicted in
the Methanococcus aeolicus Nankai-3 branch despite an im-
portant decrease in OGT (�13 �C). Finally, the slight OGT
increase observed in Methanothermococcus thermolithotro-
phicus DSM 2095 (þ3 �C) was associated with a large number
of HGTs (219 events), whereas many less events occurred
in Methanococcus voltae A3 (149 events)
and Methanococcus vannielii SB (160 events), despite large
decreases in OGT (�25 �C and�27 �C, respectively). As HGT
events are not distributed evenly along the phylogeny, we
verified that the lack of association between OGT variation
and the number of HGTs was consistent all along the phy-
logeny of Methanococcales. We found that most HGT events
are located along terminal branches rather than along inter-
nal branches (fig. 5), which is expected as HGTs associated
with internal branches correspond to gene acquisition that
got fixed over evolutionary times. When focusing our analysis
on HGT events occurring on terminal branches only, we ob-
served even weaker correlations between HGT and OGT
variations (fig. 5). Altogether, these results suggest that adap-
tation toward cold environments was not promoted or ac-
companied by higher rates of HGT in Methanococcales.

Because punctual HGT events may have played an impor-
tant role in thermoadaptation, we searched for transferred
protein families specifically associated with mesophilic and
thermophilic lifestyles in methanococcales. Among the
2,116 protein families, we identified 358 families (16.9%) pre-
sent in mesophiles/thermophiles and absent in hyperthermo-
philes: 291 (13.8%) were specific to methanococcales, whereas
67 (3.1%) were also present in some methanobacteriales (sup-
plementary table S7, Supplementary Material online).
Because the ancestor of Methanomada is inferred as hyper-
thermophilic (fig. 3), it is tempting to interpret the presence
of these 67 protein families in unrelated thermophilic and
mesophilic strains of methanococcales and methanobacter-
iales as the result of convergent acquisitions via HGT, possibly
linked to the OGT decreases observed during the diversifica-
tion of these two lineages. Among these 67 protein families,
15 (0.7%) are largely distributed, being present in more than
80% of the mesophilic and thermophilic methanomada
strains (supplementary table S7, Supplementary Material on-
line). This suggests that these protein families could corre-
spond to important factors for adaptation toward moderate
environments, whereas the protein families with more re-
stricted taxonomic distributions could result from punctual
and strain-specific HGT, without a link to a mesophilic life-
style. The phylogenetic analysis of these 15 protein families
confirmed that they spread among mesophilic and thermo-
philic methanomada through independent HGT from various
and unrelated prokaryotic donors, and in most cases from
mesophilic or thermophilic species (supplementary fig. S12,

Table 5. Substitution Types Displaying a Significant Asymmetrical
Net Balance in at least Three Branches of the Methanococcales Tree
and Involving at least One Amino Acid with Frequency Correlated
with OGT.

i j
Number of
Branches Net Change

OGT Variation
(min/max)

Ser Ala 3 48–69 12/16
Lys Arg 13 79–655 27/16
Met Leu 3 92–128 20/11
Gly Asn 5 56–78 26/11
Asn Ser 8 53–135 213/16
Asp Asn 7 131–241 214/13
Lys Ser 12 42–664 214/13
Glu Ser 11 42–112 214/13
Glu Asn 8 89–156 214/13
Asp Ser 5 44–78 214/13
Ala Ser 11 57–281 214/0
Lys Asn 8 106–459 214/13
Lys Gln 5 56–178 214/13
Glu Gln 5 44–248 214/13
Glu Thr 4 32–55 213/25
Lys Thr 8 51–188 214/24
Thr Ser 3 72–88 213/26
Arg Lys 4 140–226 213/26
Leu Met 3 70–142 214/25
Pro Ser 3 40–83 214/27
Val Thr 3 86–110 213/211

NOTE.—The data were extracted from the table shown as supplementary table S5 ,
Supplementary Material online. Amino acids whose frequency is correlated with
OGT are italicized. Net change corresponds to the net difference between the
number substitutions from i! j and from j! i in the branches where an asym-
metrical flow is observed. OGT variation corresponds to the minimum and max-
imum OGT variations associated with these branches.

LysArg Lys

Ala

LysGln

LysAsp

LysAsn

LysGlu

LysThr

LysSer

FIG. 4. Substitutional patterns associated with thermoadaptation in
Methanococcales. Red and blue circles highlight amino acids whose
frequencies are positively and negatively correlated to OGT, respec-
tively. Arrows indicate substitutions associated with OGT decrease
(blue) and OGT increase (red).
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Supplementary Material online). Altogether, our data show
that only 67 proteins have been acquired via independent
HGT in mesophilic and thermophilic methanomada. If these
proteins have contributed to thermoadaptation, most of
them are likely not essential to mesophilic lifestyle, as only
15 of them are largely distributed in these lineages.

A survey of the literature identified interesting links be-
tween temperature and some of these protein families, such
as type B cyclophilin (PpiB) protein family (FAM000106). This
protein is part of the peptidyl-prolyl cis–trans isomerases
(PPiases) that are involved in protein folding in the three
domains of life (Maruyama et al. 2004; Manteca et al. 2006).
Several studies established a link between PpiB and cold re-
sistance (e.g., in Bacillus subtilis, Graumann et al. 1996;
Legionella pneumophila, Rasch et al. 2019; Methanococcoides
burtonii, Goodchild et al. 2004; Thermococcus sp. KS1, Ideno
et al. 2001; and yeast, Lee et al. 2018), suggesting that PpiB
could be important for life at low or suboptimal OGT and
thus for the colonization of moderate environments. The
FAM001035 corresponds to the GlpF protein, a membrane
transporter that is essential for the uptake of glycerol, an
important cryoprotectant (Richey and Lin 1972).
Furthermore, an elegant experimental evolution study
showed that the deletion of the glpf gene induces an increase
of OGT in Escherichia coli (Blaby et al. 2012), suggesting again
a link between GlpF and thermoadaptation. It was also shown
that the Aldo/Keto reductases (FAM00281) enhance cold
tolerance in plants (�Eva et al. 2014). Finally, correlations be-
tween the expression of some of other protein families and
cold shock factors were reported in some organisms. For

instance, the expression of the sodium/proline symporter
coding gene putp (FAM000590) and several cold shock pro-
tein coding genes was shown to be controlled by the same
regulator (YcfR) in E. coli (Zhang et al. 2007), whereas the acyl-
CoA thioesterase FadM (FAM001298) belongs to the Fad and
Fab super-families that contained many members involved in
lipid metabolism that are induced by cold shocks (Spaniol
et al. 2013). Further investigations on the function of these
proteins are needed to confirm a potential role in thermoa-
daptation and resistance to low temperature in
Methanococcales.

Discussion
Deciphering adaptive paths underlying responses to environ-
mental changes is a major challenge in biology. Previous stud-
ies have shown that thermoadaptation heavily impacts the
amino acid frequencies of proteomes in prokaryotes (Kreil
and Ouzounis 2001; Vieille and Zeikus 2001; Tekaia et al.
2002; Farias and Bonato 2003; Zeldovich et al. 2007;
McDonald 2010; Smole et al. 2011). Yet, other factors, such
as genomic GþC content, optimal growth salinity, optimal
growth pH, and metabolism are known to affect amino acid
frequencies of proteomes. Because of these confounding fac-
tors, the substitutional patterns involved in thermoadapta-
tion remained partially understood. In this context,
Methanococcales represent a very interesting model as strains
from this major archaeal lineage have very different OGT but
are similar with respect to the other aforementioned con-
founding factors. Consistently, we showed that temperature

FIG. 5. Quantification of HGT in Methanococcales. Internal branches are named according to their reference number on the tree (black number) or
according to the strain name for terminal branches. The number of HGTs detected with ALE is indicated above each branch (blue). On the right
part, branches are ordered according to the number of inferred HGTs. For each bar, the corresponding OGT variation according to figure 3 is
indicated between brackets, colors correspond to mesophiles (OGT� 45 �C): blue; thermophiles (45 �C<OGT< 80 �C): orange; hyperthermo-
philes (80 �C�OGT): red.
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is the dominant factor affecting proteome amino acid fre-
quencies in this lineage, explaining most of the observed var-
iance, irrespective of protein function.

A recent study revealed large amounts of HGT in three
unrelated major archaeal lineages (i.e., uncultured marine
groups II and III, Thaumarchaeota, and Halobacteria) known
to have evolved from (hyper)thermophilic ancestors, suggest-
ing that, in Archaea, massive HGTs played a crucial role in
adaptation to mesophilic lifestyle (Lopez-Garcia et al. 2015).
Our data indicated that in Methanococcales OGT shifts to-
ward moderate environments were not associated with
higher rate of HGT (see below). This may suggest that the
high rates of HGT uncovered in uncultured marine groups II
and III, Thaumarchaeota, and Halobacteria are specific of
these lineages or that they are linked to multiple factors
(e.g., major metabolic changes, colonization of new ecological
niches), rather than to thermoadaptation alone.
Strengthening this hypothesis, large amounts of HGT are
not observed in other lineages that shifted from (hyper)ther-
mophilic toward mesophilic lifestyles (e.g.,
Methanobacteriales, Methanomicrobiales) (Lopez-Garcia
et al. 2015). The in-depth analysis of methanomada pro-
teomes disclosed 2,360 HGT events, mainly located along
terminal branches. Weakly significant correlations between
the number of HGT and OGT shifts were observed, suggest-
ing that adapting to new OGT did not require massive gene
turnovers or acquisitions. Among the 1,394 protein families
impacted by HGT, only 358 were specifically found in ther-
mophiles or mesophiles. Interestingly, data from the literature
suggested that some of the 15 acquired protein families with
the largest taxonomic distribution in mesophilic and thermo-
philic methanomada could be involved in suboptimal growth
temperature or cold temperature adaptation. However, none
of the 358 proteins are found ubiquitous in mesophilic meth-
anococcales. In fact, most of them display a narrow taxo-
nomic distribution, indicating punctual and strain-specific
acquisitions. This suggests that even if these genes are specif-
ically found in Methanomada living in moderate environ-
ments, none of them can be considered as an essential or
ubiquitous marker of life in moderate environments. Yet, we
do not exclude that HGT might have facilitated to a certain
degree the transition to moderate environments, for instance
through independent and opportunistic strain-specific
acquisitions of a few genes from different microbial commu-
nities living in such environments.

By combining phylogenomics and ancestral sequence re-
construction, we investigated OGT evolution in
Methanococcales. Ancestral sequence reconstruction meth-
ods are powerful approaches allowing to decipher ancient
phenotypes and the properties of ancient biomolecules
(Thomson et al. 2005; Boussau et al. 2008; Gaucher et al.
2008; Finnigan et al. 2011; Groussin and Gouy 2011). The
inference of ancestral quantitative traits from molecular
sequences requires efficient methods 1) to reconstruct reli-
able ancestral sequences and 2) to deduce ancestral traits
from the reconstructed sequences. This issue has been
addressed in a recent study by Randall et al. (2016) who
benchmarked the efficiency of ancestral reconstruction

methods using an elegant approach based on random mu-
tagenesis PCR to artificially evolve a gene along a phylogeny.
They showed that tested methods inferred correctly the
ancestral states of most amino acid sites in sequences and
captured the true ancestral phenotype even when the true
ancestral genotype was not accurately reconstructed. They
showed also that probabilistic approaches outperform max-
imum parsimony-based approaches. In the case of
Methanococcales, we used two different probabilistic meth-
ods (including the best method identified by Randall and
colleagues) to reconstruct ancestral sequences correspond-
ing to 538 single copy core proteins at each node of the
Methanococcales phylogeny. These sequences represented
approximatively 25–40% of the proteomes of the strains
and were used to estimate proteome ancestral amino acid
frequencies. Both methods provided very similar results. This
strongly suggests that the choice of the method is unlikely
to have strong impact on our analysis, which we confirmed
when inferring ancestral OGTs from reconstructed ancestral
amino acid frequencies. To avoid methodological biases, we
used two in silico methods relying on very different
approaches to infer ancestral OGT. One relies on existing
correlations between amino acid frequencies in present-day
methanococcales proteomes and OGT, whereas the second
uses a Kalman filtering algorithm to infer quantitative traits
along the phylogeny using ancestral information. Both
methods provided consistent estimations of ancestral
OGT. In particular, they predicted the OGT of the ancestor
of Methanococcales to be close to 80 �C, and provided
similar OGT variation patterns along the phylogeny. Of
course, this does not fully guarantee that these ancestral
OGTs were estimated with complete accuracy. Addressing
this issue is challenging as it would require to resurrect the
ancestral organisms. An alternative approach would consist
in resurrecting ancestral proteins and to experimentally de-
termine their properties, such as thermostability. We would
also need to account for the heterogeneous thermostability
among individual proteins in a given organism, some pro-
teins being poor predictors of the OGT of the organism
(see, for instance, Dehouck et al. 2008; Romero-Romero
et al. 2016; and references therein). As a consequence, eval-
uating the accuracy of methods used to reconstruct ances-
tral OGT would require large-scale in vitro investigations
that are beyond the scope of our study. To circumvent
this issue, we used an empirical approach to test for the
accuracy of OGT reconstruction methods. Using a leave-
one-out approach, we predicted the OGT of each individual
present-day methanococcales using the association between
amino acid frequencies and OGT found with the rest of the
data (“training” data) and compared these estimations with
known OGTs. This cross-validation approach showed that
both OGT reconstruction methods have high accuracy. It
further suggests that the 538 single copy core proteins con-
tained sufficient information to provide a good estimate of
OGT.

By comparing sequence evolution along the phylogeny of
Methanococcales, we disclosed a substitutional scheme in
which lysine occupies a key position, acting as a hub
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contributing to fine tune the pool of arginine and the pool of
serine, threonine, asparagine, and glutamine during OGT
shifts. It is noteworthy that, despite its key position in the
network, the frequency of lysine does not appear correlated
with OGT because of opposite substitution patterns. The
central position of lysine in the substitutional network is puz-
zling, because using lysine as an intermediate is costlier from
an evolutionary point of view. In fact, although a single mu-
tation at the DNA level is required to directly substitute ar-
ginine to serine or threonine, at least three mutations are
needed when using lysine as an intermediate (supplementary
fig. S13, Supplementary Material online). Similarly, one sub-
stitution is required to move directly from arginine to gluta-
mine, while two are required when lysine is used as
intermediate. This strongly suggests that site-specific antago-
nist selective pressures against direct substitutions from argi-
nine to serine, threonine, asparagine, and glutamine might
exist and remain to be discovered. As a consequence, parallel
substitution patterns are observed in sequences, with sites
carrying arginine shifting to lysine, whereas those carrying
lysine shift to serine, threonine, glutamine, or asparagine lead-
ing to a global relaxation of structural and packing constrains
of proteins in mesophiles. Accordingly, viewing thermoadap-
tation as variations in amino acid frequency is an oversimpli-
fication of the underlying process.

In conclusion, our study reveals Methanococcales as an
interesting biological model to investigate the molecular
mechanisms associated with thermoadaptation. Next steps
will require additional investigations and data. For instance,
increasing the taxonomic sampling in key regions of the
Methanococcales phylogeny could provide a more precise
picture of OGT variations that occurred during the diversifi-
cation of this important archaeal lineage. Priority targets
would be the region encompassing Methanocaldococcus infer-
nus and Methanocaldococcus villosus, two hyperthermophilic
sister-strains with abnormal high evolutionary rates, as well as
branches associated with major OGT shifts (e.g., the
Methanotorris genus, the Methanococcus aeolicus and
the Methanococcus voltae lineages). Increasing the genomic
coverage within Methanococcales could also reveal additional
major shifts in OGT and provide a finer description of the
amino acid substitutional patterns associated with OGT var-
iation. For instance, as a consequence of the currently avail-
able taxonomic sampling of Methanococcales, most of the
identified OGT shifts occurred from hyperthermophilic to-
ward thermophilic or mesophilic lifestyles. Accordingly, the
substitutional scheme proposed is possibly incomplete. A
better knowledge of the biology and physiology of
Methanococcales is also essential. In particular transcriptomic
and proteomic experiments could provide data to investigate
the function of the genes acquired via horizontal gene trans-
fer by mesophilic and thermophilic strains and determine if
they have played a role in thermoadaptation. Finally, identi-
fying additional clades in which OGT dominates over other
confounding factors with respect to variations in amino acid
frequencies in proteomes is essential to determine whether
the substitutional scheme disclosed in this study is specific of
Methanococcales or common to Prokaryotes.

Materials and Methods

Data Retrieval and Protein Family Assembly
We retrieved and assembled in a local database 27 methano-
mada proteomes deduced from complete or nearly complete
genomes available at the National Center for Biotechnology
Information (ftp://ftp.ncbi.nlm.nih.gov/genomes/Bacteria/)
(supplementary table S1, Supplementary Material online):
18 corresponded to Methanococcales, eight to
Methanobacteriales, and one to Methanopyrales strains.
OGTs were recovered from literature and from the DSMZ
cultivation database (https://www.dsmz.de/, last accessed
2020/12/12) (supplementary table S1, Supplementary
Material online).

Homologous protein families were assembled using the
SILIX (v1.2.9) program (Miele et al. 2011). More precisely, pairs
of proteins providing High-scoring Segment Pair (HSP) with
at least 35% of amino acid identity and 80% of sequence
coverage were gathered in the same family. Assembled pro-
tein families were refined using the HIFIX software (v1.0.5)
(Miele et al. 2012) with default parameters. This led to the
assembly of 9,540 protein families, among which 3,435 are
specific to Methanococcales, 4,981 do not contain methano-
coccales sequences, and 1,124 are shared between methano-
coccales and other methanomada. Among the 9,540 protein
families, 538 were largely distributed in Methanomada (i.e.,
present in a single copy in at least 80% of the 27 methano-
mada proteomes). These protein families represent the core
proteome of Methanomada. In contrast, the core and the
accessory proteomes of Methanococcales encompass 1,026
and 3,533 protein families, respectively. Functions associated
with protein families were retrieved from the archaeal clusters
of orthologous genes (arCOG) database (Makarova et al.
2015).

Statistical Analyses and Correction for Phylogenetic
Inertia
All statistical analyses were performed using R (R Core Team
2014). Correspondence analyses were performed using the
ADE4 package (Dray and Dufour 2007). Interpreting correla-
tions among quantitative traits such as amino acid compo-
sition, OGT, and genomic GþC content as the result of an
adaptive process, could be misleading as these could be the
consequence of the phylogenetic inertia (Felsenstein 1985).
Thus, observed correlations could reflect inherited traits
rather than a genuine effect of environmental constraints
on genomic sequences. Accordingly, the correlations ob-
served in our data were tested using the phylogenetic inde-
pendent contrast (PIC) method introduced by Felsenstein
(1985) and implemented in APE (Paradis et al. 2004).
Briefly, the PIC method assumes that traits evolve indepen-
dently in each daughter branch after a speciation event and
calculate contrasts at each node of a given phylogeny. These
contrasts are statistically independent, and thus can be fur-
ther used to test association between traits without the con-
founding effect of phylogenetic inertia (Blomberg and
Garland 2002).
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Inference of a Reference ML Phylogeny of
Methanomada
For each of the 538 protein families defining the core prote-
ome of methanomada, a multiple alignment was built with
the PRANK algorithm (Loytynoja and Goldman 2008) imple-
mented in GUIDANCE (Penn et al. 2010) and trimmed using
BMGE version 1.12 (Criscuolo and Gribaldo 2010), with de-
fault parameters. The 538 trimmed multiple alignments were
combined to build a large supermatrix (127,077 amino acid
positions, 27 methanomada strains).

A maximum likelihood phylogenetic analysis of this super-
matrix has been performed with the PHYML software (v 3.1)
(Guindon et al. 2010) using the Le and Gascuel model (Le and
Gascuel 2008), with a gamma distribution (four categories of
sites). The branch robustness of the reconstructed tree was
assessed with the nonparametric bootstrap procedure imple-
mented in PHYML (100 replicates of the original multiple
alignment).

Detection of HGT Events
The quantification of the number of HGT that occurred in
each branch of the Methanomada phylogeny was performed
with ALE (Patterson et al. 2013). As ALE needs an ultrametric
species tree for reconciliation analyses, we have reconstructed
an ultrametric reference phylogeny of Methanomada with
PhyloBayes version 4.1 (Blanquart and Lartillot 2006) using
the supermatrix gathering the 538 methanomada core pro-
tein families, with the autocorrelated relaxed clock model
(Thorne et al. 1998), a gamma prior (mean¼ 2,000 and stan-
dard deviation¼ 2,000) on the age of the root, 10,000 points
sampling, and a burn-in of 1,000. The multiple alignments of
the 2,116 protein families containing more than two sequen-
ces and at least one methanococcales sequence were built
with PRANK and trimmed using BMGE as described above.
For each protein family a maximum likelihood phylogeny has
been inferred with PHYML as described above. The 100 max-
imum likelihood trees resulting from bootstrap replicates
were compared with the ultrametric reference phylogeny of
Methanomada.

Gene gains and losses were also analyzed using COUNT
version 10.04 (Csuros 2010) and GLOOME (Cohen et al.
2010). Contrary to ALE, COUNT and GLOOME evolutionary
scenarios are based on gene presence/absence phylogenetic
profiles and do not consider gene phylogenies. COUNT was
run using the following optimized parameters: uniform du-
plication and gain rates, three gamma discrete categories for
family loss, gain, and duplication factor. Parameters of the
phylogenetic birth-and-death model were computed to max-
imize likelihood. GLOOME was run on a dedicated server
(http://gloome.tau.ac.il/, last accessed 2020/12/12) using the
following parameters: rate inference with empirical Bayesian
estimate using a gamma prior distribution with three discrete
categories.

Methanococcales Ancestral Sequences
Reconstruction
Ancestral sequence reconstructions of the 538 Methanomada
core protein families were performed at each node of the ML

reference phylogeny of Methanococcales using two methods:
BPPANCESTOR (Dutheil and Boussau 2008) and FASTML
(Randall et al. 2016). In the case of BPPANCESTOR, evolu-
tionary parameters for the ancestral sequence reconstruction
were estimated with BPPML (Dutheil and Boussau 2008) us-
ing the branch heterogeneous model COALA (Groussin et al.
2013). At each node of the Methanococcales phylogeny, 100
ancestral sequences were reconstructed using
BPPANCESTOR (Dutheil and Boussau 2008). In the case of
FASTML, the reference phylogeny of Methanococcales was
inferred using the NJ algorithm in order not to induce biases
in the ancestral sequence reconstruction process. However,
the resulting NJ tree was identical to the phylogeny inferred
with PHYML. FASTML ancestral sequence inference was per-
formed using default parameters (i.e., a WAG substitution
matrix and rate variation modeled by a discrete gamma dis-
tribution with four rate categories).

Ancestral amino acid frequencies were then computed by
averaging the amino acid frequencies of the 100 ancestral
sequences and used to estimate ancestral OGT with two
independent methods: the approach implemented in the
ANCOV software (Lartillot 2014) and the linear regression
approach described elsewhere (Boussau et al. 2008;
Groussin and Gouy 2011). Briefly, estimation of ancestral
OGT by ANCOV uses amino acid frequencies in present-
day and ancestral sequences together with OGT of extant
species to estimate ancestral OGT within the species phylog-
eny, whereas the linear regression approach requires calculat-
ing CA scores for ancestral sequences. Ancestral OGT are
then deduced from the linear regression between scores on
the first axis of the CA and present-day OGT.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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