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A B S T R A C T   

Background: Coronary artery disease (CAD) in type 2 diabetes mellitus (T2DM) patients often 
presents diffuse lesions, with extensive calcification, and it is time-consuming to measure coro-
nary artery calcium score (CACS). 
Objectives: To explore the predictive ability of deep learning (DL)-based CACS for obstructive CAD 
and hemodynamically significant CAD in T2DM. 
Methods: 469 T2DM patients suspected of CAD who accepted CACS scan and coronary CT angi-
ography between January 2013 and December 2020 were enrolled. Obstructive CAD was defined 
as diameter stenosis ≥50%. Hemodynamically significant CAD was defined as CT-derived frac-
tional flow reserve ≤0.8. CACS was calculated with a fully automated method based on DL al-
gorithm. Logistic regression was applied to determine the independent predictors. The predictive 
performance was evaluated with area under receiver operating characteristic curve (AUC). 
Results: DL-CACS (adjusted odds ratio (OR): 1.005; 95% CI: 1.003–1.006; P ＜ 0.001) was 
significantly associated with obstructive CAD. DL-CACS (adjusted OR:1.003; 95% CI: 
1.002–1.004; P ＜ 0.001) was also an independent predictor for hemodynamically significant 
CAD. The AUCs, sensitivities, specificities, positive predictive values and negative predictive 
values of DL-CACS for obstructive CAD and hemodynamically significant CAD were 0.753 (95% 
CI: 0.712–0.792), 75.9%, 66.5%, 74.8%, 67.8% and 0.769 (95% CI: 0.728–0.806), 80.7%, 62.1%, 
59.6% and 82.3% respectively. It took 1.17 min to perform automated measurement of DL-CACS 
in total, which was significantly less than manual measurement of 1.73 min (P ＜ 0.001). 
Conclusions: DL-CACS, with less time-consuming, can accurately and effectively predict obstruc-
tive CAD and hemodynamically significant CAD in T2DM.   

1. Introduction 

The increasing numbers of type 2 diabetes mellitus (T2DM), is a leading cause of disability and mortality, which poses focus on 
heightened coronary artery disease (CAD) [1]. Comorbidities of hyperglycemia, insulin resistance and hyperlipidemia in T2DM, have 
synergistically promoted the development and progression of CAD [2], and therefore patients with T2DM have higher incidence of 
CAD compared with the nondiabetic population [3]. Increase advanced glycation end products (AGEs) increase oxidative stress and 
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activate intracellular signal, which contribute to vascular inflammation, endothelial disfunction injury, vascular smooth muscle cells 
proliferation and platelet activity [4]. Multiple mechanisms promote vascular calcification through the release of osteoprogenitor cells 
form marrow into circulation [5], so CAD in T2DM patients often presents with multivessel disease, diffuse lesions, extensive calci-
fication and heavy plaque burden [6]. Addition of obstructive CAD to traditional model improved the prediction of major adverse 
cardiovascular events (MACE) in asymptomatic T2DM patients [7]. Patient with hemodynamically significant CAD was associated 
with a high incidence of MACE [8]. Therefore, predictions for obstructive CAD and hemodynamically significant CAD in T2DM can 
provide prognostic information and optimize downstream risk management. 

With the advantages of high sensitivity, non-invasion and easy accessibility, coronary artery calcium score (CACS) has been widely 
applied to assess CAD in T2DM patients. However manual measurement of CACS is time-consuming in T2DM patients with diffuse 
calcification. Research revealed that deep learning-based CACS (DL-CACS) exhibited great application value in medical imaging, and 
automated evaluation improved the efficiency, repeatability and objectivity of measurement [9]. Therefore, this study aimed to 
explore the predictive values of DL-CACS for obstructive CAD and hemodynamically significant CAD in T2DM patients. 

2. Material and methods 

2.1. Study population 

Institutional ethics review board approval was obtained in this study (NO. 2020-256) and written informed consent was waived 
because of the retrospective research design, however informed consents were acquired from the patients for the publication of their 
images. T2DM patients suspected of CAD who accepted CACS scan and coronary computed tomography angiography (CCTA) between 
January 2013 and December 2020 were enrolled, with clinical factors, plaque parameters and revascularization therapies [percuta-
neous coronary intervention (PCI) and coronary artery bypass grafting (CABG)] within 3 months after CCTA collected. The exclusion 
criteria in this research were shown in Fig. 1. 

Diagnostic criteria of T2DM was in accord with the guideline [10]. Clinical risk factors, in the aspects of age, sex, body mass index, 
hypertension, hyperlipidemia and smoker/drinker, were obtained from medical records Additionally, total cholesterol (TC), triglyc-
eride (TG), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, Apolipoprotein A (ApoA), Apolipoprotein B 
(ApoB), lipoprotein (a), fasting blood-glucose, glycosylated hemoglobin (HbA1c), high-sensitivity C-reactive protein, systolic blood 
pressure (SBP) and diastolic blood pressure (DBP) at baseline were collected. Hyperlipidemia was considered as serum TG ≥ 200 mg/dl 
or TC ≥ 230 mg/dl or taking antihyperlipidemic drugs. Hypertension was defined as SBP ≥140 mmHg or DBP ≥90 mmHg or taking 
antihypertensive drugs. Smoker/drinker was defined as having a history of smoking/drinking at present or in the past one year. 
Medications were also collected consecutively, including oral hypoglycemic agents, insulin, statin and antihypertensive drugs. 

Fig. 1. Flow chart.  

J. Hu et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e27937

3

2.2. CT protocols 

Image acquisitions were performed using 2 different vendors (Somatom Flash, Siemens Healthineers, Germany; Revolution CT, GE 
Healthcare, USA). Patients with heart rate ≥70 beats/min were given oral beta-blockers. Each patient received sublingual nitro-
glycerin before electrocardiograph (ECG)-triggered CACS scan and CCTA scan. The region of interest was located in the ascending 
aorta and a bolus-tracking technology was used, with contrast media (Ultravist, Bayer, Germany; Iodixanol, Nycomed, Norway) 
administered. Detailed scan parameters were displayed in Supplementary Table 1. 

Iterative reconstruction was applied to reconstruct CCTA images, with ECG editing used if necessary, and CCTA analysis used the 
phase with the optimal image quality. 

2.3. Automated and manual measurement of CACS 

A fully automated software (CACScoreDoc, ShuKun Network Technology, Beijing) was employed for CACS calculation based on DL 
algorithm. As described in previous study [9], the CACS images were transformed into three-dimensional (3D) volume data first. Then, 
all the voxel points were divided with a CT value ≥ 130 hounsfield unit (HU) and the connected regions in the volume were marked as 
they were suspected of the calcified regions. Coronary artery calcium lesions were segmented by cascaded modified 3D U-Net DL 
models [11] and divided into: left main stem calcium, left anterior descending calcium, left circumflex calcium and right coronary 
artery calcium. Then, the image segmentation results were based to calculate total DL-CACS (Fig. 2). Finally, radiologist confirmed the 
results calculated by the software and manual modification could be performed if there existed any incorrect identification of calcified 
regions. Total DL-CACS was divided into four groups: 0, 1–99, 100–299 and 300–999 [12]. 

CACS images were transferred to the advanced workstations (syngo.via v. 4.1, Siemens Healthcare; Advantage workstation v. 4.7, 
GE healthcare) for manual analysis. The CACS was computed if the CT attenuation ≥130 HU [13]. The computation of manual CACS 
was determined by the weighted density score given to the highest CT value (HU) multiplied by the calcified areas. Total manual CACS 
was acquired by adding the scores of every coronary artery. Radiology with 10 years of experience in CCTA diagnosis independently 
delineated the calcified regions and calculated the CACS in 100 randomly selected patients. 

2.4. Plaque analysis in CCTA images 

Dedicated software (CoronaryDoc, ShuKun Network Technology, Beijing) embedded with DL algorithm was utilized to process 
CCTA images for vessel extraction and image post-processing [14]. Two radiologists (9 and 10 years of experience in CCTA diagnosis) 
who were ignorant about patient information assessed the diameter stenosis (DS), high-risk plaque (HRP), multi-vessel coronary artery 
disease (MVD) independently on patient-based analysis. Any discrepancy was resolved in consensus with senior radiologist with 20 
years of experience. DS was classified into: no visible stenosis, minimal stenosis, mild stenosis, moderate stenosis, severe stenoses and 
occluded [15]. Obstructive CAD was identified as DS ≥ 50% in CCTA. MVD was identified as DS ≥ 50% by visual evaluation in two or 
more major coronary arteries or side branches [16]. HPR features were defined as spotty calcification, low attenuation, napkin ring 
sign and positive remodeling [17]. If two or more HRP features were satisfied, HRP was considered to be positive [15]. 

2.5. CCTA derived fractional flow reserve (CT-FFR) analysis 

CT-FFR calculations were performed using CCTA datasets in dedicated software (DEEPVESSEL-FFR, Keya Medical) as previously 
described [18]. The DL framework included multilayer neural network (MLNN) and bi-directional recursive neural network (BRNN). 
The MLNN with three fully connected layers took the anatomical structure along coronary artery trees as the input, including lesion 
characteristics and proximal/distal markers defined for each lesion. The fully connected layers transformed input characteristics into 
features with weight Vs, which were received by BRNN. First, a 3D coronary artery tree and its centerlines were extracted for a given 

Fig. 2. Automated identification of calcified regions in coronary arteries and results presentation of DL-CACS. DL-CACS, deep learning-based 
coronary artery calcium score. 

J. Hu et al.                                                                                                                                                                                                              



Heliyon 10 (2024) e27937

4

CCTA image. Subsequently CT-FFR values were determined along these centerlines with the MLNN-BRNN. The CT-FFR values were 
calculated at the 2 cm distal to each lesion and CT-FFR ≤0.8 was defined as hemodynamically significant CAD. 

2.6. Intra-observer and inter-observer agreement 

Intra-observer and inter-observer variabilities for DL-CACS, DS, HRP and MVD were conducted respectively among 50 random 
patients. The same observer evaluated the parameters with the time internal of 1 month or above in order to eliminate recall bias. 

Table 1 
Clinical characteristics.  

Characteristics Total cohorts (n 
= 469) 

Obstructive CAD Hemodynamically significant CAD 

Positive cohort 
(n = 266) 

Negative cohort 
(n = 203) 

P Positive cohort 
(n = 192) 

Negative cohort 
(n = 277) 

P 

Age (years) 64 (56, 70) 64 (58, 72) 62 (54, 69) 0.012* 64 (58, 71) 62 (54, 69) 0.031* 
Male 289 (61.6) 198 (74.4) 91 (44.8) ＜ 

0.001* 
150 (78.1) 139 (50.2) ＜ 

0.001* 
Body mass index (kg/m2) 24.30 (22.65, 

26.75) 
24.20 (22.68, 
26.53) 

24.40 (22.50, 
27.00) 

0.639 24.20 (22.53, 
25.98) 

24.40 (22.70, 
27.40) 

0.095 

Smoker 140 (29.9) 98 (36.8) 42 (20.7) ＜ 
0.001* 

77 (40.1) 63 (22.7) ＜ 
0.001* 

Drinker 91 (19.4) 65 (24.4) 26 (12.8) 0.002* 44 (22.9) 47 (17.0) 0.109 
Hyperlipidemia 240 (51.2) 142 (53.4) 98 (48.3) 0.273 103 (53.6) 137 49.5) 0.372 
Hypertension 366 (78.0) 211 (79.3) 155 (76.4) 0.442 152 (79.2) 214 (77.3) 0.623 
Systolic blood pressure 

(mmHg) 
135 (123, 150) 134 (120, 148) 137 (124, 150) 0.231 135 (120, 148) 135 (124, 150) 0.466 

Diastolic blood pressure 
(mmHg) 

80 (73, 87) 80 (72, 87) 80 (75, 88) 0.183 80 (71, 86) 80 (74, 88) 0.105 

Duration of diabetes 
(years) 

5 (2, 10) 6 (2, 14) 5 (2, 10) 0.184 6 (2, 15) 5 (2, 10) 0.030* 

Laboratory tests 
Fast glucose (mmol/L) 6.88 (5.87, 

8.46) 
6.96 (5.91, 8.67) 6.81 (5.71, 8.22) 0.287 6.88 (5.90, 8.45) 6.89 (5.83, 8.47) 0.806 

HbA1c (%) 7.20 (6.50, 
8.50) 

7.50 (6.60, 8.90) 6.80 (6.20, 7.70) ＜ 
0.001* 

7.50 (6.60, 9.00) 7.10 (6.40, 7.90) ＜ 
0.001* 

Total cholesterol (mmol/ 
L) 

4.30 (3.64, 
5.17) 

4.17 (3.56, 5.02) 4.51 (3.82, 5.34) 0.009* 4.27 (3.69, 5.07) 4.30 (3.63, 5.21) 0.653 

Triglycerides (mmol/L) 1.47 (1.06, 
2.24) 

1.45 (1.07, 2.15) 1.52 (1.05, 2.39) 0.450 1.38 (1.09, 2.15) 1.52 (1.04, 2.36) 0.428 

HDL-C (mmol/L) 1.06 (0.91, 
1.27) 

1.04 (0.90, 1.22) 1.07 (0.92, 1.29) 0.086 1.06 (0.90, 1.23) 1.06 (0.91, 1.28) 0.587 

LDL-C (mmol/L) 2.42 (1.87, 
3.33) 

2.40 (1.83, 3.24) 2.55 (1.93, 3.35) 0.244 2.46 (1.91, 3.33) 2.40 (1.85, 3.31) 0.428 

Hs-CRP (mg/L) 1.58 (0.73, 
3.64) 

1.58 (0.69, 3.38) 1.58 (0.73, 4.39) 0.597 1.56 (0.68, 3.33) 1.70 (0.74, 4.25) 0.427 

DL-CACS 78.18 (1.49, 
256.89) 

150.94 (48.13, 
364.09) 

9.33 (0.00, 90.60) ＜ 
0.001* 

232.74 (74.17, 
450.58) 

18.96 (0.00, 
114.19) 

＜ 
0.001* 

Categorical DL-CACS    ＜ 
0.001*   

＜ 
0.001* 

0 108 (23.0) 31 (11.7) 77 (37.9)  17 (8.9) 91 (32.9)  
1-99 157 (33.5) 77 (28.9) 80 (39.4)  47 (24.5) 110 (39.7)  
100-299 103 ((22.0) 71 (26.7) 32 (15.8)  53 (27.6) 50 (18.1)  
300-999 101 (21.5) 87 (32.7) 14 (6.9)  75 (39.1) 26 (9.4)  

Revascularization therapy 82 (17.5) 80 (30.1) 2 (1.0) ＜ 
0.001* 

68 (35.4) 14 (5.1) ＜ 
0.001* 

PCI 79 (16.8) 77 (28.9) 2 (1.0)  65 (33.9) 14 (5.1)  
CABG 3 (0.6) 3 (1.1) 0 (0.0)  3 (1.6) 0 (0.0)  

Medication compliance 
Oral hypoglycemic 

agents 
403 (85.9) 233 (87.6) 170 (83.7) 0.235 171 (89.1) 232 (83.8) 0.104 

Insulin 67 (14.3) 47 (17.7) 20 (9.9) 0.017* 36 (18.8) 31 (11.2) 0.021* 
Statin 116 (24.7) 78 (29.3) 38 (18.7) 0.008* 58 (30.2) 58 (20.9) 0.022* 
Antihypertensive drugs 335 (71.4) 196 (73.7) 139 (68.5) 0.216 143 (74.5) 192 (69.3) 0.223 

CAD, coronary artery disease; HbA1c, glycosylated hemoglobin; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein 
cholesterol; hs-CRP, high-sensitivity C-reactive protein; DL-CACS, deep learning-based coronary artery calcium score; PCI, percutaneous coronary 
intervention; CABG, coronary artery bypass grafting. 
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2.7. Statistical analysis 

Statistical analysis was performed with SPSS Statistics (v. 26.0, IBM Corp, Armonk, NY, USA), R environment (R version 4.05 and R 
Studio version 4.0), PASS software (version 15.0.5, Kaysville, Utah, USA), and MedCalc Software (v. 19.6.4, Ostend, Belgium). Power 
analyses for receiver operating characteristic (ROC) curves were performed with PASS software. A two-sided P < 0.05 was deemed to 
be statistically significant. Overall, 16.3% of observations were missing, and continuous variables were imputed using multiple 
imputation. Five imputations were carried out with “mice” package and the imputation data with the least Akaike Information cri-
terion (AIC) was selected for subsequent statistical analysis. The variables with missing rate ≧ 50% were deleted, including ApoA, 
ApoB, lipoprotein (a). 

Continuous data were recorded as means ± standard deviations or median and quartile (Q1, Q3) according to the distributions 
(One-sample Kolmogorov-Smirnov test). Independent-sample t-test was used to analyze data with normal distribution, while Mann- 
Whitney U test was performed conversely. Categorical variables were expressed as count (%) and compared with chi-square test, 
while differences in CAD, HRP and revascularization therapy among different categorical DL-CACS were analyzed with chi-square test 
for trend. The agreement between DL-CACS and manual CACS was evaluated with intraclass correlation coefficient (ICC). The intra- 
and inter-observer agreements of DL-CACS, DS, HRP and MVD were assessed by ICC or Kappa statistic. 

Clinical risk factors, DL-CACS and plaque features were filtered first by univariate logistic regression. Variables with P ＜ 0.1 were 
integrated into multivariate logistic regression, and subsequently significant variables with P ＜ 0.05 in multivariate logistic regression 
were independent predictors with the odds ratio (OR) and 95% confidence interval (CI) calculated. Predictive performance was 
determined by the area under curve (AUC) of ROC. Sensitivity, specificity, positive predictive value (PPV) and negative predictive 
value (NPV) were calculated according to the maximum Youden index. 

3. Results 

3.1. Clinical characteristics 

Totally, 469 T2DM patients with suspected CAD were included finally (Fig. 1). There were 289 males and 180 females, with the 
median age of 64 (56, 70) years. There were 266 patients with obstructive CAD and 192 patients with hemodynamically significant 
CAD. Power analyses of DL-CACS for both obstructive CAD and hemodynamically significant CAD showed adequate statistical power 
(both power = 1.00). The detailed clinical characteristics at baseline were shown in Table 1. Electrolyte data, liver and kidney function 
tests were demonstrated in Supplementary Table 2. 

In comparison with patients without obstructive CAD, patients with obstructive CAD had higher age, HbA1c and DL-CACS. Patients 
with obstructive CAD showed higher proportions of male, smoker, drinker, revascularization therapy, insulin use and statin use than 
patients without obstructive CAD. The level of TC in patients with obstructive CAD was significantly lower, which might be related 
with higher percentage of statin use. Patients with hemodynamically significant CAD had higher age, duration of T2DM, HbA1c and 
DL-CACS and higher proportions of male, smoker, revascularization therapy, insulin use and statin use than patients without he-
modynamically significant CAD. 

3.2. The comparison between DL-CACS and manual CACS 

There was no difference between DL-CACS [122.26 (5.01, 417.66)] and manual CACS [114.19 (4.18, 398.43)], and the ICC was 
0.961 (95% CI: 0.943–0.974; P ＜ 0.001). 

3.3. Reproducibility analysis 

Good or excellent intra-observer and inter-observer reliabilities for DL-CACS, DS, HRP and MVD assessment were shown in Sup-
plementary Table 3. 

3.4. Differences in CAD, HRP and revascularization therapy among different categorical DL-CACS 

The proportions of obstructive CAD, hemodynamically significant CAD and revascularization therapy increased gradually with 

Table 2 
Differences in CAD, HRP and revascularization among different categorical DL-CACS.  

Categorical DL-CACS Obstructive CAD [n (%)] Hemodynamically significant CAD [n (%)] High-risk plaque [n (%)] Revascularization [n (%)] 

0 31 (28.7) 17 (15.7) 22 (20.4) 6 (5.6) 
1–99 77 (49.0) 47 (29.9) 56 (35.7) 23 (14.6) 
100–299 71 (68.9) 53 (51.5) 48 (46.6) 26 (25.2) 
300–999 87 (86.1) 75 (74.3) 42 (41.6) 27 (26.8) 
P for trend ＜0.001 ＜0.001 ＜0.001 ＜0.001 

DL-CACS, deep learning-based coronary artery calcium score; CAD, coronary artery disease. 
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increased categorical DL-CACS (All P for trend ＜ 0.001, Table 2). With the increase of categorical DL-CACS, the proportion of HRP 
increased gradually, however there existed slight decrease when DL-CACS was above 300 (P for trend ＜ 0.001). 

3.5. Predictive performance of DL-CACS for obstructive CAD 

Univariate and multivariable logistic regression showed DL-CACS (adjusted OR: 1.005; P ＜ 0.001), age (adjusted OR: 1.034; P =
0.004), male (adjusted OR: 3.766; P ＜ 0.001), smoker (adjusted OR: 1.723; P = 0.048) and HbA1c (adjusted OR: 1.313; P ＜ 0.001) 
were significantly associated with obstructive CAD (Table 3). The AUC, sensitivity, specificity, PPV and NPV of DL-CACS for 
obstructive CAD were 0.753 (95% CI: 0.712–0.792), 75.9%, 66.5%, 74.8% and 67.8% respectively (Fig. 3A). 

3.6. Predictive performance of DL-CACS for hemodynamically significant CAD 

Univariate and multivariable logistic regression showed DL-CACS (adjusted OR: 1.003; P ＜ 0.001), male (adjusted OR: 2.275; P =
0.004), BMI(adjusted OR: 0.900; P = 0.013), obstructive CAD (adjusted OR: 5.876; P ＜ 0.001), MVD (adjusted OR: 4.098; P ＜ 0.001) 
and HRP (adjusted OR: 2.093; P = 0.007) were recognized as independent predictors for hemodynamically significant CAD (Table 4). 
The AUC, sensitivity, specificity, PPV and NPV of DL-CACS for hemodynamically significant CAD were 0.769 (95% CI: 0.728–0.806), 
80.7%, 62.1%, 59.6% and 82.3% respectively (Fig. 3B). Fig. 4 (A-D) demonstrated a representative case. 

3.7. Time comparison between DL-CACS and manual CACS 

Median time of DL-CACS was 1.17 (1.08, 1.25) minutes, including automated calculation time of 0.88 (0.83, 0.93) minute and 
doctor’s confirmation time of 0.27 (0.20, 0.37) minute, which was significantly less than manual measurement time of 1.73 (1.48, 
2.26) minutes (Z = − 9.665; P ＜ 0.001). 

4. Discussion 

In this study, DL-CACS, with fast and reliable calculation, could be used for predictions of obstructive CAD and hemodynamically 
significant CAD in T2DM patients, which showed wide prospect in clinical application. 

Finding new and efficient method to predict high-risk CAD is vital importance, as unique factors in T2DM patients increase 
atherosclerotic plaque and thrombosis, thereby leading to myocardial infarction [19], so early detection of high-risk CAD patients with 
MACE risk can offer opportunity for early intervention and therapy. The study demonstrated that DL-CACS was associated with 
obstructive CAD and hemodynamically significant CAD, and showed accurate predictive ability. The proportions of CAD, HRP and 
revascularization therapy increased gradually with increased categorical DL-CACS, indicating DL-CACS could reflect the risk and 
severity of CAD in T2DM. Currently, it remains highly controversial to screen asymptomatic CAD with CCTA in T2DM patients [20,21]: 
relative low incidence and cardiac event rate, expensive cost and radiation exposure. With the advantages of good discrimination, low 
cost and low radiation dose, DL-CACS serves as a specific predictor for symptomatic CAD [22] and is also a risk stratification and 
management tool for asymptomatic CAD in T2DM patients [23]. Besides, the research [11] indicated it was achievable to acquire 
DL-CACS based on non-gated chest CT image within a short time without ading radiation dose or extra economic cost, which showed 
good clinical universality and might be a potential evaluation tool for CAD in T2DM patients. 

The diffuse calcification of coronary arteries in T2DM posed challenges for manual measurement of CACS, which took a relatively 
long time. In this study, DL-CACS could overcome the above deficiencies and achieved stable and reliable results. The automated 
calculation time of DL was less than 1 min and the doctor’s confirmation time was less than half a minute, which showed excellent 
prospect in clinical application. The agreement of DL-CACS and manual CACS was in accord with previous study [24]. The ICC of 
DL-CACS and manual CACS was better than previous study (0.96 vs. 0.94), which was related with doctor’s confirmation on the basis 
of DL. Although fully automated calculation was fast and didn’t occupy doctor’s time, there existed rare cases of wrong identification 
of calcified regions, such as calcifications of the aortic sinus, mitral valve and left hilum adjacent to the left circumflex calcium, so 
doctor’s confirmation could further improve the accuracy. 

Table 3 
Univariate and multivariate logistic regression of variables for obstructive CAD.  

Variable Univariate Multivariate 

OR (95% CI) P OR (95% CI) P 

Age 1.025 (1.007–1.043) 0.007 1.034 (1.011–1.058) 0.004 
Male 3.584 (2.425–5.295) ＜0.001 3.766 (2.270–6.247) ＜0.001 
Smoker 2.236 (1.468–3.407) ＜0.001 1.723 (1.005–2.954) 0.048 
Drinker 2.201 (1.338–3.621) 0.002  0.305 
Insulin 1.964 (1.123–3.434) 0.018  0.983 
TC 0.865 (0.743–1.006) 0.060  0.374 
HbA1c 1.304 (1.155–1.473) ＜0.001 1.313 (1.146–1.503) ＜0.001 
DL-CACS 1.005 (1.004–1.007) ＜0.001 1.005 (1.003–1.006) ＜0.001 

CAD, coronary artery disease; TC, total cholesterol; HbA1c, glycosylated hemoglobin; DL-CACS, deep learning-based coronary artery calcium score. 
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Prediction of obstructive CAD with CCAT as reference standard was more representative than that with invasive coronary angi-
ography (ICA) as golden standard, because high positive rate of obstructive CAD in the patients who accepted ICA might lead to 
selection bias. Consistent with previous study [25], DL-CACS accurately estimated the pretest likelihood of obstructive CAD, but the 
AUC was lower than previous study (AUC: 0.753 vs. 0.819) [22], which might be related with the below reasons. First, diffuse coronary 
calcification in T2DM had influence on the DS assessment, especially for the intermediate lesion approaching 50% stenosis. Second, 
relatively high positive rate of obstructive CAD (56.7%) might be one reason of low specificity and NPV. Third, patients with CACS 
≥1000 were excluded in this study, out of concern for high false positive rate resulted from massive calcification in DS assessment, 
which led to the decreased AUC because increased CACS was associated with high incidence of CAD. In addition, it was controversial 
whether massive calcification had effect on the accuracy of CT-FFR [26,27]. Researches pointed out high CACS (＞1000) affected the 
accuracy of CT-FFR [28], especially for the specificity [26]. DL-CACS showed excellent sensitivity to detect hemodynamically sig-
nificant CAD. Meanwhile, high NPV of DL-CACS demonstrated an effective alternative to rule out hemodynamically significant CAD. 

Patients with obstructive CAD and hemodynamically significant CAD had higher proportions of insulin use and insulin use was 
associated with obstructive CAD and hemodynamically significant CAD in univariate logistic regression, which might be mostly due to 
the fact that patients with consecutive insulin use had worse pancreatic beta cell functionality and viability and had more difficulty in 

Fig. 3. ROC curves of DL-CACS for obstructive CAD (AUC: 0.753, 3A) and hemodynamically significant CAD (AUC: 0.769, 3B). ROC, receiver 
operating characteristic; DL-CACS, deep learning-based coronary artery calcium score; CAD, coronary artery disease; AUC, area under ROC curve. 
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controlling the blood glucose. In the study, we assumed insulin other treatment for T2DM, because oral hypoglycemic agents, such as 
Sodium-Glucose Cotransporter-2 Inhibitors (SLGT-2i) or metformin, had direct antioxidant and antiatherosclerotic effects on T2DM 
patients, followed by promotion in insulin sensitivity, leading to a decrease in cardiovascular complications [29]. 

The present study had several limitations. Firstly, it was researched retrospectively and therefore prospective research in large 
cohort studies would be needed further. Meanwhile, screening for asymptomatic CAD in T2DM patients with DL-CACS is beneficial to 
early treatment and prevention of complication. Secondly, the study was of limited value in patients with T2DM and CAD who had 
non-calcified plaque only, although the number of this population was relatively small. This subgroup may benefit from annual 
monitor of CACS because of diffuse calcification of coronary artery during the process. Thirdly, analysis in “gray-zone” patients (CT- 
FFR value between 0.75 and 0.80) was not allowed because of insufficient sample size. Expanding the sample size is essential to guide 
the treatment strategy in “gray-zone” patients. Fourthly, the percentage of missing data was relatively high, because many variables 
were included in the study. Last, we acknowledged that a positive rate of 56.7% obstructive CAD was relatively high, leading to the 
selection bias. 

5. Conclusion 

DL-CACS can accurately and effectively predict obstructive CAD and hemodynamically significant CAD in T2DM patients, with less 
time-consuming, and has broad clinical application prospect. 

Data availability statement 

The data that has been used is confidential. However, data may be available on a reasonable individual request upon approval of all 
authors. 

Funding 

This work was supported by Jiangsu Medical Association [SYH-3201150-0016(2021011)] and Suzhou Municipal Health Com-
mission (GSWS2020003, KJXW2020007). 

CRediT authorship contribution statement 

Jingcheng Hu: Writing – original draft, Software, Resources, Methodology, Data curation, Conceptualization. Guangyu Hao: 
Writing – original draft, Visualization, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Jialiang Xu: 
Resources, Methodology, Investigation, Formal analysis. Ximing Wang: Supervision, Resources, Project administration, Data cura-
tion. Meng Chen: Writing – review & editing, Writing – original draft, Validation, Supervision, Software, Resources, Project 
administration, Methodology, Funding acquisition, Data curation, Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Table 4 
Univariate and multivariate logistic regression of variables for hemodynamically significant CAD.  

Variable Univariate Multivariate 

OR (95% CI) P OR (95% CI) P 

Age 1.021 (1.003–1.040) 0.024  0.821 
Male 3.546 (2.340–5.372) ＜0.001 2.275 (1.291–4.012) 0.004 
BMI 0.929 (0.877–0.984) 0.012 0.900 (0.829–0.978) 0.013 
Smoker 2.274 (1.520–3.402) ＜0.001  0.170 
Duration of T2DM 1.026 (0.999–1.053) 0.055  0.423 
Insulin 1.831 (1.088–3.082) 0.023  0.844 
HbA1c 1.223 (1.097–1.363) ＜0.001  0.510 
DL-CACS 1.005 (1.004–1.006) ＜0.001 1.003 (1.002–1.004) ＜0.001 
Obstructive CAD 21.041 (12.049–36.743) ＜0.001 5.876 (3.076–11.228) ＜0.001 
Multi-vessel disease 16.176 (9.457–27.668) ＜0.001 4.098 (2.193–7.659) ＜0.001 
High-risk plaque 4.852 (3.235–7.277) ＜0.001 2.093 (1.223–3.581) 0.007 

T2DM, type 2 diabetes mellitus; HbA1c, glycosylated hemoglobin; CAD, coronary artery disease; DL-CACS, deep learning-based coronary artery 
calcium score. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e27937. 
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