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ABSTRACT
Solving the structure of an antibody-antigen complex gives atomic level information of the interactions 
between an antibody and its antigen, but such structures are expensive and hard to obtain. Alternative 
experimental sources include epitope mapping and binning experiments, which can be used as 
a surrogate to identify key interacting residues. However, their resolution is usually not sufficient to 
identify if two antibodies have identical interactions. Computational approaches to this problem have so 
far been based on the premise that antibodies with similar sequences behave similarly. Such approaches 
will fail to identify sequence-distant antibodies that target the same epitope. Here, we present Ab-Ligity, 
a structure-based similarity measure tailored to antibody-antigen interfaces. Using predicted paratopes 
on model antibody structures, we assessed its ability to identify those antibodies that target highly similar 
epitopes. Most antibodies adopting similar binding modes can be identified from sequence similarity 
alone, using methods such as clonotyping. In the challenging subset of antibodies whose sequences differ 
significantly, Ab-Ligity is still able to predict antibodies that would bind to highly similar epitopes 
(precision of 0.95 and recall of 0.69). We compared Ab-Ligity’s performance to an existing tool for 
comparing general protein interfaces, InterComp, and showed improved performance on antibody 
cases achieved in a substantially reduced time. These results suggest that Ab-Ligity will allow the 
identification of diverse (sequence-dissimilar) antibodies that bind to the same epitopes from large 
datasets such as immune repertoires. The tool is available at http://opig.stats.ox.ac.uk/resources.
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Introduction

Antibodies are immune proteins that have high specificity and 
affinity against their target antigens. Their target specificity is 
determined by the intermolecular interactions at the antibody- 
antigen interface. The types of interactions used in antibody- 
antigen binding are known to be distinct from those observed 
in general protein-protein interactions.1

The highest resolution method for studying antibody- 
antigen binding configurations is co-crystal complex struc-
tures. These give atomic level information but are expensive 
and difficult to obtain.2 Experimental mapping is often used as 
a surrogate because it is able to identify the binding regions of 
the antigen (“epitopes”) and antibody (“paratopes”; ref. 3). 
Competition assays exploit the cross-blocking effect of antibo-
dies that displace one another if they bind to similar or neigh-
boring epitopes.3,4 This method gives a coarse representation 
of which binders may share similar target sites, as minimal 
epitope overlap can be sufficient for a pair of antibodies to 
compete with each other.4 A more refined approach is hydro-
gen deuterium exchange (HDX). HDX assesses the solvent 
accessibility of the bound and unbound forms of the partner 
proteins, and highlights regions with the maximum changes 
upon binding (e.g., ref.5,6). The resolution is typically up to the 
range of peptides in the immediate proximity of the binding 

site. To achieve residue-level resolution, point mutations of the 
interacting proteins can be used to indicate key binding resi-
dues. Mutagenesis studies measure the binding kinetics upon 
mutation of specific residues, but structural integrity may be 
compromised by the mutations, leading to spurious results.7 

All three of these experimental techniques provide an approx-
imation of the binding regions, but are usually unable to 
provide a fine mapping of exact epitopes and paratopes.

Computational techniques have also been developed to 
identify antibodies that bind in similar ways. These have 
generally been exploited on large immunoglobulin sequen-
cing datasets (e.g., ref. 8). Many of these techniques require 
a large number of known binders to a given epitope, to be 
able to identify further binders.8 The informatics approaches 
employed to analyze datasets, when none or only a few bin-
ders to a given epitope are known, are mainly dependent on 
sequence similarity. This is based on the concept of “clono-
type” analysis,9 which considers the genotype and the 
sequence identity of complementarity-determining region 
(CDR) H3 (the third CDR on the heavy chain).9–11 

Clonotyping exploits the evolutionary origins of antibodies, 
using both the concept that antibodies from the same clone 
and lineage tend to bind similarly,12 and that the CDRH3 
region, the most sequence-variable region, is often responsi-
ble for much of the binding.13 Whilst clonotype analysis can 
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identify antibodies with similar binding modes, there are 
many cases where binding remains the same even when the 
CDRH3 sequences and/or the genotypes are different (e.g., in 
anti-lysozyme antibodies14).

To capture potential chemical interactions and the antibody- 
antigen binding configurations, macromolecular docking has 
been used.15 However, this method is slow and not scalable to 
the large datasets of antibody sequences available in the early 
discovery stage.16

In small molecule discovery, comparing the spatial arrange-
ments of pharmacophores (the atom features involved in inter-
actions) has been proposed as an alternative to docking when 
searching for similar binders. Pharmacophoric points are 
encoded using geometric hashing algorithms (e.g., ref.17–19). 
This approach is much faster than docking whilst giving compar-
able results.19 Some of the descriptors for ligand-binding pockets 
have been adapted for protein-protein interactions. The 
I2ISiteEngine uses atom type triangulation to describe protein- 
protein interfaces and is able to successfully identify similar 
interfaces across different protein families in a number of case 
studies.20 However, the all-atom description means it is far slower 
than its counterpart developed for the comparison of small 
molecules.17 Recently, a number of tools have been proposed 
for general protein-protein interface comparisons. MaSIF com-
pares molecular surfaces of protein-protein interfaces using geo-
metric deep learning.21 Whilst this technique showed promise 
using bound structures to search for similar binders, the perfor-
mance did not hold on a more challenging, unbound set. MaSIF’s 
high sensitivity to the precise location and chemical properties of 
the atoms suggests that it would depend heavily on model accu-
racy and would be unsuitable for use on modeled structures. 
InterComp has also been proposed for general protein-protein 
interface comparison. It aligns residues on the surfaces for com-
parison and scores their similarity using a combination of the Cα 
atom distances and their BLOSUM substitution score.22 The 
approach successfully identified similar surface patches but the 
algorithm is computationally intensive. Both of these methods 
were only applied on solved crystal structures and on general- 
protein-protein interfaces, not on models and more specifically, 
not on models of antibodies. In the context of finding antibodies 
in large sequencing datasets that target the same epitope, a tool 
needs to be fast, applicable on antibody-antigen interfaces, and 
able to cope with the predicted model structures of antibodies.

Here, we describe Ab-Ligity, an antibody version of the small 
molecule method Ligity.19 Ab-Ligity uses residue points tokenized 
by their physicochemical properties to allow rapid operation. To 
simulate a real-life scenario, we applied Ab-Ligity to antibody 
models and predicted paratopes, and showed that it can accurately 
predict antibodies that share similar target epitopes. As the major-
ity of the similar binders shared similar sequence composition and 
lengths, and can be identified by sequence-based metrics, we also 
considered the more challenging cases that could not be identified 
by such sequence-based metrics. In these more challenging cases 
of sequence-dissimilar antibodies, Ab-Ligity still accurately pre-
dicts antibodies that have similar binding modes. Ab-Ligity also 
performed better than InterComp, in a fraction of the time. 
Finally, we describe two case studies where Ab-Ligity predicts 
CDRH3 sequence-dissimilar and length-mismatched antibodies 
that bind to highly similar epitopes.

Results

Ab-Ligity compares two antibody paratopes by tokenized resi-
dues and distance hashes. It is designed to work on antibody 
models with predicted paratopes (see Supplementary Figure 
S1). Here, we used Parapred23 for paratope prediction (for full 
details, see Methods).

To test the power of Ab-Ligity to identify antibodies that bind 
to the same epitope, we simulated a real-life application of using 
antibody models and predicted paratopes. We built models of 920 
unique protein-binding antibodies using ABodyBuilder,24 and 
predicted their paratope residues with Parapred.23 Using these 
models and predicted paratopes, we tested if Ab-Ligity was able 
to identify antibodies that bind to the same epitopes (as defined by 
the antibody-antigen crystal complexes; see Methods). To allow 
for fair comparison with sequence-based metrics, we confined our 
performance evaluation to the pairs of antibodies that share the 
same CDRH3 lengths. We call this set the “full set”. Since the 
majority of the similar binders have the same CDRH3 length and 
highly similar CDRH3 sequences, we also tested Ab-Ligity perfor-
mance when we removed these “easy” comparisons (CDRH3 
identity >0.8). We call this set the CDRH3 ≤ 0.8 set. The number 
of comparisons for each of these tests are summarized in Table 1.

Selecting similarity thresholds

Definition of similar epitopes captured in crystal structures
In order to identify a standardized definition of when two epitopes 
are the same, we ran a grid search on the corresponding “crystal 
paratope” and “crystal epitope” similarity scores as calculated by 
Ab-Ligity, maximizing the Matthews correlation coefficient 
(MCC; see Methods and Supplementary Materials S2.1). This 
procedure suggested an epitope similarity threshold of 0.1 was 
appropriate (Supplementary Table S1) and visual inspections of 
examples confirmed this. Epitope pairs above this threshold are 
considered positive (Table 1).

We anticipated that only a small portion of antibody pairs 
would have been considered similar. To address this class 
imbalance, we used the MCC that considers both positive 
and negative predictions to select a similarity threshold as 
described above. We observed that, out of all antibodies that 
share the same CDRH3 lengths, only 2.37% (719/30276; see 
Table 1) were considered similar.

Selecting a similarity threshold for predicted paratopes in 
antibody models
In a real-life scenario where antibody models and predicted 
paratopes would be used, we needed to establish a model 
paratope similarity threshold that can recapitulate the defini-
tion of similar epitopes as defined by the crystal structures. 
Similar to the earlier strategy, we ran a grid search on a range of 
“model paratope” similarity scores, and found a threshold of 
0.1 that gives the best MCC (0.90, see Supplementary Materials 

Table 1. Number of positive and negative comparisons in the datasets, based on 
Ab-Ligity’s definition of similar epitopes.

Set Positive Negative

Full 719 29,557
CDRH3 ≤ 0.8 set 266 29,519
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S2.2 and Supplementary Table S2). Above the model paratope 
similarity of 0.1, paratopes are predicted to bind to a common 
epitope.

Using Ab-Ligity to predict antibodies that bind to highly 
similar epitopes

We assessed the performance of Ab-Ligity on two datasets of 
different difficulties: the “easy” full set and the “hard” 
CDRH3 ≤ 0.8 set. Sequence-based methods can identify rela-
tively accurately CDRH3 sequence-similar antibodies that will 
bind to the same epitope.25 In our dataset, the majority of the 
antibody pairs that target highly similar epitopes have similar 
CDRH3 sequences. Table 1 shows that 63.0% (453/719) of the 
positive pairs that bind to highly similar epitopes have CDRH3 
sequence identities >0.8. This set represents “easy” cases, and Ab- 
Ligity is able to stratify between similar and dissimilar binders 
with good accuracy on the “easy” full set (precision of 0.95 and 
recall of 0.85; Table 2 and Supplementary Tables S3 and S4).

To assess Ab-Ligity’s performance on a more challenging 
set, we removed the “easy” comparisons. The remaining 37.0% 
(266/719; see Table 1) of the pairs that bind to similar epitopes 
have their CDRH3 sequence identities ≤0.8, and would not be 
identified by sequence-based methods such as clonotype. On 
this more challenging subset of cases, Ab-Ligity’s precision 
remains at 0.95 and its recall drops slightly (0.69; Table 2). 
(Supplementary Materials S6 and Supplementary Tables S8 – 
S9 show the performance stratified by sequence identities in 
the remaining five CDRs.) These results demonstrate that Ab- 
Ligity is able to accurately identify sequence-dissimilar anti-
bodies that have similar binding modes.

Sensitivity analyses

We observed that paratope prediction and modeling accuracy 
affect the performance of Ab-Ligity (see Supplementary 
Materials S7, Supplementary Figures S2 – S4). We assessed 
the sensitivity of Ab-Ligity’s performance in three situations: 1) 
varying the distance bin size in hashing, 2) changing the 
Parapred prediction threshold, and 3) applying Ab-Ligity to 
only the variable heavy (VH) or light chain (VL). The latter two 
factors change the paratope size. Using different Parapred 
thresholds affects the number of paratope residues predicted 
on each of the antibodies and potentially introduces noise if an 
inappropriate threshold is selected. We checked the perfor-
mance on VH and VL alone as almost all current large sequen-
cing datasets are unpaired;26 if Ab-Ligity is able to accurately 
predict on a single chain, its potential application space is 
increased.

Distance bin size
During the hashing procedure, Ab-Ligity discretizes the dis-
tances between residues (i.e., edge length of the triangles) into 
distance bins of 1 Å. We observed that tightening the bin width 
to 0.5 Å marginally reduces the classification performance with 
a precision and recall of 0.93 and 0.85 in the full set and 
a similar change on the CDRH3 ≤ 0.8 set (see Supplementary 
Table S10). Increasing the bin size harms performance, poten-
tially as it over-smooths residue distances (see Supplementary 
Table S10).

Parapred predictions
Ab-Ligity uses predicted paratopes, so we examined how their 
accuracy influences performance. The Parapred prediction 
threshold of 0.67 from the original paper23 was selected such 
that the size of the predicted paratopes replicates that of actual 
paratopes. At this threshold, the precision and recall of Parapred 
were found to be 0.67 and 0.73 (see Supplementary Table S11). 
We increased the threshold to 0.80 (increasing precision and 
reducing the number of residues predicted; see Supplementary 
Figure S5 and Supplementary Table S11) to investigate the effect 
on Ab-Ligity. We saw little effect on the performance of Ab- 
Ligity: the precision and recall were 0.95 and 0.85 for the original 
Parapred threshold (0.67), compared to 0.96 and 0.80 in the 
increased Parapred thresholds (see Supplementary Table S12).

We then reduced the Parapred threshold, increasing the 
paratope size but lowering the precision of paratope prediction. 
This reduction in the Parapred threshold decreased Ab-Ligity 
performance (see Supplementary Table S12). This drop in 
performance is probably due to an elevated level of noise (i.e., 
the inclusion of residues not involved in binding) in the 
Parapred predictions.

Performance on heavy chains or light chains alone
Since most publicly available immune repertoire datasets are 
from bulk sequencing of unpaired antibody chains,26 we assessed 
the applicability of Ab-Ligity on unpaired heavy and light chains.

We built homology models for heavy chain or light chain 
separately and extracted the predicted paratopes on these 
models. In Table 3 and Supplementary Tables S13 – S14, we 
show that heavy chain paratopes alone can be used to accu-
rately identify antibodies that bind to the same epitopes, with 
a precision of 0.88 and recall of 0.78. Using the light chain 
alone, Ab-Ligity can also identify antibodies that bind to simi-
lar epitopes but with lower precision (Table 3 and 
Supplementary Tables S13 – S14). We also evaluated using 
the heavy chain or light chain paratopes from paired antibody 
models and the results were almost identical (see 
Supplementary Materials S7.3).

Table 2. Precision and recall on the full and CDRH3 ≤ 0.8 sets, using the selected 
paratope similarity thresholds for Ab-Ligity (0.1) and InterComp (0.6), based on 
Ab-Ligity’s definition of similar epitopes.

Method Ab-Ligity InterComp

Set Precision Recall Precision Recall
Full 0.95 0.85 0.92 0.77
CDRH3 ≤ 0.8 set 0.95 0.69 0.86 0.59

Table 3. Precision and recall on the full set, using heavy chain and light chain only 
homology models and the predicted paratopes on the corresponding single 
domain.

Method Ab-Ligity InterComp

Domain Precision Recall Precision Recall
VH 0.88 0.78 0.74 0.82
VL 0.67 0.89 0.17 0.94
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Comparing Ab-Ligity to interComp

We compared Ab-Ligity to an existing general protein-protein 
interface comparison tool, InterComp. Since the original pub-
lication of InterComp22 did not indicate a threshold for interfaces 
to be considered similar, we conducted the same evaluation as for 
Ab-Ligity. The InterComp epitope similarity threshold was 
selected at 0.7 by maximizing the MCC between crystal paratope 
and crystal epitope similarities (see Supplementary Materials 
S2.1 and Supplementary Table S1). Based on this definition of 
similar epitopes, 0.6 is the optimal cutoff for InterComp model 
paratope similarity (Supplementary Table S2).

In Table 2, we show the results of Ab-Ligity and InterComp 
using Ab-Ligity’s definition of similar crystal epitopes. In the 
Supplementary Materials S5, we give the corresponding results 
for the methods using InterComp’s definition of similar epi-
topes. Both Table 2 and the Supplementary Tables S5 – S7 
show that the two methods have comparable performance, 
with Ab-Ligity showing improved performance on the more 
challenging CDRH3 ≤ 0.8 set, regardless of whether the perfor-
mance is assessed using the definition of ground truth by Ab- 
Ligity or InterComp (i.e., which pairs of antibody-antigen struc-
tures were considered to have similar epitopes by the two 
methods).

We carried out the same sensitivity analyses on InterComp 
as described above for Ab-Ligity. In terms of Parapred thresh-
olds and predictions on VH or VL chains alone, very similar 
effects were observed (see Supplementary Materials S7).

As well as outperforming InterComp, Ab-Ligity is also sig-
nificantly faster. We measured the algorithm run-time on 
a single 3.40 GHz i7-6700 CPU core. On the full set of 
920 × 920 pairwise comparisons, Ab-Ligity takes 0.5 CPU- 
minute to generate the 920 hash tables for all paratopes, and 
18.5 minutes for an optimized all-against-all similarity calcula-
tion. InterComp does not require pre-processing, but the all- 
against-all query takes 65.5 minutes. It is now possible to 
model large portions of next-generation sequencing 
datasets,27 and Ab-Ligity would allow rapid comparison of 
binding sites in these datasets. For example, Ab-Ligity would 
take one day to process on 150 cores a next-generation dataset 
of 100,000 antibodies, compared to five days for InterComp.

Anti-lysozyme antibodies with dissimilar CDRH3 
sequences against highly similar epitopes

To show the power of Ab-Ligity to predict similar binding of 
antibodies with dissimilar CDRH3 sequences, we examined 
three anti-lysozyme antibodies, HyHEL-26, HyHEL- 
10 L-Y50F mutant and HyHEL-63 (annotated as 
1NDM_BA_C, 1J1O_HL_Y and 1NBY_BA_C, respectively, 
in Figure 1). These antibodies are known to all adopt the same 
binding mode against lysozyme (Figure 1a; ref.28). Their 
CDRH3 loops are seven residues long, but differ by at least 
three residues between any pair, so would not be considered 
to share the same clonotype (Figure 1b). We have also 
included a counter-example of the 3C8 antibody (annotated 
as 6OKM_HL_R in Figure 1) against tumor necrosis factor 
receptor superfamily member 4 (TNFRSF4). This antibody 
also has seven-residue long CDRH3 sequence and shares 

a maximum sequence identity of 0.57 with HyHEL-26 
(1NDM_BA_C).

We used Ab-Ligity to calculate the similarity of their bind-
ing using models of predicted paratopes. As outlined above, an 
Ab-Ligity score of above 0.1 indicates that the antibodies in 
comparison have similar binding sites. The pairwise similarity 
scores of all three anti-lysozyme antibodies are all above 0.1, 
indicating that Ab-Ligity would classify them as targeting the 
same epitope. This classification is consistent with the observa-
tion in the co-crystal complexes (Figure 1a). Conversely, the 
Ab-Ligity scores of these three anti-lysozyme antibodies with 
the anti-TNFRSF4 antibody were all below 0.1. Reflected in the 
crystal structures shown in Figure 1a, the anti-TNFRSF4 anti-
body clearly binds to a different antigen and epitope to the 
other three antibodies.

CDRH3 sequences with different lengths engage the same 
epitope in human immunodeficiency virus core gp120

Ab-Ligity may also be useful in cases where antibodies have 
different CDRH3 lengths but similar binding modes. Sequence- 
based metrics are not applied to such cases.9 One example of 
mismatched CDRH3 lengths binding the same epitope are two 
human immunodeficiency virus-neutralizing antibodies, VRC01 
(Protein Data Bank (PDB) code and chain ID 4LSS_HL) and its 
variant, VRC07 (4OLU_HL). They target the gp120 core with 
highly similar binding modes (Figure 2). Their heavy and light 
chain germlines are the same but their CDRH3 sequences differ 
in length and composition. Aligning by the international 
ImMunoGeneTics information system (IMGT)-numbered 
positions,29 only 12 of the 18 residues are aligned and identical. 
These two antibodies are known to engage a similar epitope30 

and Ab-Ligity based on models of these antibodies and predicted 
paratopes correctly predicts this (Ab-Ligity score of 0.24; ≥0.1 
Ab-Ligity similarity threshold).

Discussion

Here, we present Ab-Ligity, an antibody-protein binding site 
structural similarity metric that can identify CDRH3 sequence- 
dissimilar antibodies that engage the same epitope. Our results 
show that Ab-Ligity is able to identify antibodies that bind to the 
same epitopes using model structures and predicted paratopes, 
even for pairs of sequence dissimilar antibodies. We evaluated the 
robustness of Ab-Ligity to the distance hashing, its dependence on 
the accuracy of paratope prediction by Parapred, and its applic-
ability on unpaired antibody sequencing datasets. We also com-
pared Ab-Ligity to InterComp, an existing protein surface 
similarity metric and found improved performance for harder 
cases with dissimilar sequences, and for the application on heavy 
chains- or light chains-only paratopes, and a far faster run-time. 
From the available structural data, we show that Ab-Ligity can 
identify antibodies that bind to the same epitope with dissimilar 
CDRH3 lengths, beyond the constraints of most CDRH3 
sequence-based metrics.

Given the fast run-time of Ab-Ligity compared to existing 
tools, it may be possible to screen a library of antibodies for 
alternative binders. The only limitation is computational 
power in particular to carry out the homology modeling step 
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(currently one of the fastest tools takes 30 seconds to model 
a single antibody24). Using Ab-Ligity on libraries of sequences 
may also require further calibration dependent on their prop-
erties, if they are significantly different from those found in 
known structures.31

Binding site comparison with tools, such as Ab-Ligity, 
opens up an alternative way to search for binders with similar 
binding modes. Typically in antibody discovery, multiple 
diverse hits are desired to avoid developability issues in the 
downstream optimization process.32 Ab-Ligity has the ability 

Figure 2. Analysis of two anti-gp120 antibodies. VRC01 antibody (PDB code and chain IDs: 4LSS_HL_G) is colored in blue; VRC07 (PDB code and chain IDs: 4OLU_HL_G) 
is shown in pink. The gp120 core antigen is displayed as white surfaces and the superimposed antibodies are in cartoons. The CDRH3 loops are in solid shades of the 
cartoon representation. The PDB code, heavy and light chain ID, and antigen chain ID are separated by (‘_’) and listed in the legend with the corresponding CDRH3 
sequences. CDRH3 sequences are shown by aligning their IMGT positions and ‘-’ indicates a gap in the alignment according to the IMGT numbering scheme.29 Crystal 
paratope residues within the CDRs are in bold, and Parapred-predicted paratopes within the CDRs are underlined. The other five CDR sequences are listed in 
Supplementary Table S16. The Ab-Ligity paratope similarity score for the pair is listed.

Figure 1. Analysis of anti-lysozyme (HEL) antibodies with dissimilar CDRH3 sequences and highly similar epitopes.  
(A) Structural superposition of three anti-lysozyme and one anti-TNFRSF4 antibodies co-crystallized with their antigens (lysozyme or TNFRSF4) in white. The three anti- 
lysozyme antibodies were HyHEL-26 (1NDM_BA_C), HyHEL-10 L-Y50F mutant (1J1O_HL_Y) and HyHEL-63 (1NBY_BA_C); and the anti-TNFRSF4 antibody is 3C8 
(6OKM_HL_R). The antigens from the three anti-lysozyme antibody crystal structures are aligned. The legend shows the colors of the antibodies with their PDB codes 
followed by the heavy-light chain and antigen chain identifiers, separated by (‘_’). The CDRH3 sequences are displayed next to the respective antibody identifiers. Crystal 
paratope residues within the CDRs are in bold, and Parapred-predicted paratopes within the CDRs are underlined. The other five CDR sequences are listed in Supplementary 
Table S15. (B) Heatmaps of CDRH3 sequence identity and Ab-Ligity paratope similarity. The row and column labels correspond to the structures shown in (A). Ab-Ligity 
paratope similarity is calculated on the antibody model and predicted paratope as outlined in the Methods section. Pairs of antibodies with CDRH3 identity of >0.80 would 
have been considered similar by sequence-based metric. For Ab-Ligity, a similarity score of >0.1 suggests that the antibodies bind to highly similar epitopes.
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to predict if antibodies share similar target epitopes, without 
being sequence-similar. This ability coupled with the fast run- 
time of Ab-Ligity makes it suitable for searching through large 
datasets of antibody sequences to find sets of sequence-diverse 
binders to the same epitope.

Materials and methods

Antibody-antigen co-crystal datasets

We selected all paired antibody-antigen complexes from 
SAbDab2 as of January 27, 2020, that were solved by X-ray 
crystallography, had no missing residues in all six CDRs (using 
the North definition; ref. 13), and were co-crystallized with 
a protein antigen of more than 50 residues. To avoid redun-
dancy, we retained only one copy of each antibody. In the case 
of multiple copies, the complex with the best resolution was 
selected. In total, 920 antibody-antigen complexes were 
identified.

We defined epitopes as residues on the antigen with any 
atoms within 4.5 Å of its cognate antibody. We extracted these 
residues using Biopython.33

Antibody modeling and paratope prediction

We numbered antibody sequences using the IMGT scheme29 and 
defined the CDR regions by the North scheme,13 with ANARCI.34 

We then modeled the full set using ABodyBuilder,24 barring it 
from using sequence-identical structures as templates. The 
ABodyBuilder template library was built using all structures avail-
able on January 27, 2020, in SAbDab.2

We used Parapred to predict the paratope residues.23 

Parapred gives a score to each residue in the CDRs, and two 
residues before and after, to indicate how likely it is to partici-
pate in binding. As suggested in the original paper, we selected 
residues with a score of ≥ 0.67 as the predicted paratope 
residues on the models (see Supplementary Materials S3 for 
Parapred prediction performance). The coordinates of these 
predicted paratope residues were obtained from the corre-
sponding model. Models and predicted paratopes were used 
throughout our study for calculating the structural similarity 
between antibodies.

Ab-Ligity calculations

The workflow of Ab-Ligity is illustrated in Figure 3a-e. The 
binding residues are tokenized according to Table 4. This toke-
nization scheme was chosen because it is simple and intuitive, 
and gave similar results to several other more complex choices. 
For each binding site residue, a point is placed representing the 
residue group on the Cα atom of the residue. These points 
collectively represent a paratope on an antibody or an epitope 
on an antigen.

Ab-Ligity uses the hashing function outlined in Ebejer et -
al.19 For a paratope or an epitope, it considers all combinations 

Table 4. Residue groupings for tokenization.

Group Residues

Aliphatic Glycine (G), Alanine (A), Valine (V), Leucine (L), Isoleucine (I), Proline 
(P)

Hydroxyl Serine (S), Threonine (T)
Sulfur Cysteine (C), Methionine (M)
Aromatic Phenylalanine (F), Tyrosine (Y), Tryptophan (W)
Acidic Aspartic acid (D), Glutamic acid (E)
Amine Asparagine (N), Glutamine (Q)
Basic Histidine (H), Lysine (K), Arginine (R)

Figure 3. The Ab-Ligity workflow.  
(A) Binding site residues within 4.5 Å of the binding partner are tokenized as stated in Table 4. (B) All distances between tokenized points are calculated and hashed into 
1.0 Å -wide distance bins for both the paratopes and epitopes. (C) Each pair of tokens is given a unique hash code. (D) A six-character hash code is generated for each 
triplet. (E) The hashes of a binding site are stored in a frequency table.
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of triplets formed from a set of tokenized residues in a binding 
site. In a given triplet, each edge is represented by its vertices’ 
tokens and its length. Each combination of tokens has a unique 
hash code. For instance, Aliphatic-Aliphatic would have a hash 
code of “a”, Aliphatic-Aromatic and Aromatic-Aliphatic both 
have a hash code of “b” and so on. Edge lengths are discretized 
into bins of 1.0 Å in both paratopes and epitopes to reduce 
computational complexity: edges between 1.0 Å and 2.0 Å are 
put in the bin A, between 2.0 Å and 3.0 Å in bin B and so on. 
The final hash code for a given triplet is determined by the 
three vertex hash codes sorted alphabetically, followed by the 
hash codes of the three corresponding length bins. The result-
ing hash table for the target binding site stores the frequency of 
these hash codes from all triplets.

Binding site similarity is calculated by the Tversky index of 
the pairs of hash tables: 

S X;Yð Þ ¼
X \Yj j

X [Yj j þ α X � Yj j þ β Y � Xj j
(1) 

where X and Y are the two hash tables, X \Yj j and X [Yj j are 
the intersection and union, and X � Yj j and Y � Xj j are the 
differences between the two tables, respectively. For this study 
we used α ¼ β ¼ 0:5.

Performance evaluation settings

We calculated the Ab-Ligity paratope similarity based on antibody 
models and their predicted paratopes. The majority of the anti-
bodies that engage the same epitope have highly similar CDRH3 
sequences and would be predicted to bind in the same manner by 
sequence comparison (such as clonotype). To test if Ab-Ligity 
makes accurate predictions for those cases without similar 
CDRH3s, we assessed the performance on both the “full set”, 
and a subset where the CDRH3 identity is ≤ 0.8 
(“CDRH3 ≤ 0.8 set”).

The number of positive and negative cases for these two sets 
are listed in Table 1. The performance at the selected thresh-
olds is reported as precision and recall (see Supplementary 
Materials S2.3).

Selecting an epitope similarity threshold

For each pair of antibody-antigen complexes, we first calculated 
the epitope similarity based on the crystal structures of the anti-
body-antigen complexes. We selected the epitope similarity 
threshold by evaluating pairs of proposed crystal paratope and 
crystal epitope similarity thresholds (see Supplementary Materials 
S2.1) and chose the epitope similarity score that gives the best 
classification performance, i.e., the highest MCC (see 
Supplementary Materials S2.1 and Supplementary Table S1). 
This becomes the ground truth for evaluation. For Ab-Ligity, we 
selected the crystal epitope similarity threshold at 0.1. (See 
Supplementary Materials S5 for the corresponding comparisons 
using InterComp’s definition of similar epitopes.) Manual inspec-
tion of example cases indicated that pairs of epitopes above this 
threshold were highly similar. This threshold is used throughout 
our study to give the binary classification of similar and dissimilar 
epitopes.

Benchmark

We compared our prediction performance and computational 
time with InterComp, a surface comparison tool for protein- 
protein interfaces.22 (See Supplementary Materials S5 for the 
corresponding analysis using InterComp’s definition.) The algo-
rithm run-time was measured on a single 3.40 GHz i7-6700 CPU 
core.
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