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In recent years, miRNAs have been verified to play an irreplaceable role in biological 
processes associated with human disease. Discovering potential disease-related miRNAs 
helps explain the underlying pathogenesis of the disease at the molecular level. Given the 
high cost and labor intensity of biological experiments, computational predictions will be 
an indispensable alternative. Therefore, we design a new model called probability matrix 
factorization (PMFMDA). Specifically, we first integrate miRNA and disease similarity. Next, 
the known association matrix and integrated similarity matrix are utilized to construct 
a probability matrix factorization algorithm to identify potentially relevant miRNAs for 
disease. We find that PMFMDA achieves reliable performance in the frameworks of global 
leave-one-out cross validation (LOOCV) and 5-fold cross validation (AUCs are 0.9237 and 
0.9187, respectively) in the HMDD (V2.0) dataset, significantly outperforming a few state-
of-the-art methods including CMFMDA, IMCMDA, NCPMDA, RLSMDA, and RWRMDA. 
In addition, case studies show that PMFMDA has good predictive performance for new 
associations, and the evidence can be identified by literature mining.

Keywords: diseases, miRNAs, probabilistic matrix factorization, association prediction, receiver operating 
characteristic curve (ROC)

INTRODUCTION
MicroRNAs are short non-coding RNAs. It plays a vital role in the regulation of many important 
biological processes (Bandyopadhyay et al., 2010; Hammond, 2015; Zhang et al., 2017). It has shown 
that human disease is associated with abnormal expression of miRNAs, whose analyses can guide 
the diagnosis, prognosis and treatment of certain diseases (Liang et al., 2019). However, identifying 
new miRNA–disease associations through bio-wet experiments not only has a high error rate, but 
also consumes huge financial resources (Feng et al., 2017). Therefore, in-silicon prediction of disease-
associated miRNAs has become a critical step in prioritizing most confident targets for further 
experimental validation. Due to the growing power of sequencing technology, more and more omics 
data have been published (Yi et al., 2017), which provides a chance to reveal what role miRNAs play 
in physiology and pathology. Typical directions include miRNAs–disease interaction prediction, 
miRNA–miRNA regulatory module discovery, and so on (Chou et al., 2016). Undoubtedly, all these 
studies enrich our understanding of the functional regulation mechanisms of miRNA (Ha et al., 2019).

In recent years, in order to understand the pathogenesis of diseases, more and more computational 
models have been proposed by researchers to infer disease-related miRNAs, among which machine 
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learning-based and network-based methods are most popular 
(Luo et al., 2017a). Network-based methods are based on a 
common assumption that miRNAs associated with diseases 
using similar phenotypes are similar in function, and vice versa. 
For example, Jiang et al. (2010) proposed the priority of disease-
associated miRNAs through human peptide–microRNAome 
networks to identify potential associations. However, this 
method relies too much on known associations to make its 
prediction performance less effective. Subsequently, Chen et al. 
(2012) implemented a random walk with restart (RWRMDA) 
on its network to identify potentially associated miRNAs by 
building a network of similarities between miRNAs. Similarly, 
Shi et al. (2013) conducted random walks through functional 
linkages between miRNA targets and disease genes to explore the 
relationship between human miRNA diseases. Peng et al. (2017) 
constructed a multiple biological network by integrating the two-
way relationship among microRNA, disease and environmental 
factors, and realized the unbalanced random walk algorithm on 
this network to achieve the purpose of prediction. However, these 
methods cannot predict miRNAs associated with isolated diseases. 
Later, Chen and Zhang (2013) used a network of consistent 
reasoning methods to infer unknown miRNAs associated with 
disease. Gu et al. (2016) created a network consistent projection 
algorithm to identify latent associations by integrating similarity 
networks and associated networks. The biggest advantage of 
these methods is that they can predict isolated disease-associated 
miRNAs, but the performance achieved is not very satisfactory.

More recently, machine learning-based models have been 
implemented to improve classification accuracy and prediction 
performance (Gu et al., 2016). For example, Xu et al. (2011) 
designed a support vector machine (SVM) classifier that 
combines four topological features extracted from a miRNA 
target disease network to distinguish between prostate cancer-
associated miRNAs and non-prostate cancer-associated 
miRNAs. To construct a negative sample, they randomly paired 
the miRNA with the disease and then removed the pair present 
in the positive sample set. It is clear that negative samples 
constructed in this way are prone to false positives. Chen and Yan 
(2014) introduced a normalized least square method to identify 
the association between potential miRNAs–diseases (RLSMDA), 
which does not require negative samples. In addition, Luo 
et  al. (2017b) developed a Kronecker regularized least squares 
method to predict the potential association of miRNAs–disease 
by combining multiple omics data. Liu et al. (2019) converted 
the miRNAs–disease association prediction problem into a 
complete bipartite graph model, and proposed a prediction 
algorithm based on a restricted Boltzmann machine to improve 
prediction performance. Shen et al. (2017) introduced the 
cooperative matrix decomposition (CMFMDA) algorithm in the 
recommendation system to infer potential associations. Finally, 
Chen et al. (2018) introduced an induction matrix-completed 
algorithm to identify unknown associations. However, these 
methods do not perform well in predicting associations related 
to new diseases or miRNAs, and the prediction accuracy is not 
as satisfactory as associations with known diseases or miRNAs.

In order to achieve better predictive performance, we construct 
a new model called probability matrix factorization (PMFMDA) 

to predict unknown miRNAs–disease associations in this study. 
PMFMDA makes full use of miRNA disease association, miRNA 
similarity and disease similarity. To evaluate the effectiveness 
of PMFMDA, we test it using frameworks of global 5-fold CV 
and global LOOCV. In addition, a validation method called 
CVd is developed to estimate the performance in predicting 
novel diseases or miRNAs. Outperforming other state-of-the-
arts methods, PMFMDA achieve reliable performance in the 
frameworks of global LOOCV and 5-fold CV (AUCs of 0.9237 
and 0.9187, respectively) in the HMDD (V2.0) dataset (Li et al., 
2014). To further demonstrate the superiority of PMFMDA, we 
conduct an analysis of three common diseases. According to the 
analysis of the test results, we can find that there are 20, 19 and 17 
of 20 candidate miRNAs that are confirmed to be associated with 
esophageal neoplasms, breast neoplasms and lung neoplasms by 
dbDEMC and miRCancer, respectively.

MATeRIALs AND MeThODs
The general workflow of PMFMDA is shown in Figure 1. We 
first use matrix Y to represent 5,430 experimentally validated 
associations after preprocessing the HMDD V2.0 database (Li 
et al., 2014). Specifically, Y is a 495 × 383 matrix with row denoting 
miRNAs and column denoting diseases; Yi,j = 1 if the ith miRNA is 
associated with the jth disease and 0 otherwise. We then calculate the 
disease similarity Sd and miRNA similarity Sm. Finally, a probability 
matrix factorization (PMF) model is proposed by integrating Y, Sd 
and Sm, the solution of which will recover unknown miRNAs–
disease associations based on known ones.

Disease semantic similarity
The hierarchical directed acyclic graphs (DAGs), usually are 
obtained from the MeSH database, and are widely used to 
calculate the similarity between diseases (Gu et al., 2016). 
Specifically, for a disease d, let DAGd = (d, Td, Ed) represents its 
directed acyclic graph, where Td denotes the set of the ancestors 
of d, and Ed represents the set of links in the MeSH tree. So, the 
semantic contribution of disease t to disease d is defined as:

 D t
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Where Δ is a predefined sematic contribution factor, the value 
of Δ in this study is set to 0.5. Therefore, we can calculate the 
semantic similarity of between diseases by formula (2).
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miRNAs Functional similarity
For the similarity between miRNAs, most studies use functional 
similarity measurements (Wang et al., 2010). Specifically, for 
any two miRNAs ri and rj, let DTi = {di1,di2,…,dik} and DTj = 
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{dj1,dj2,…,djl} be their associated disease sets, respectively. Similar 
to Wang et al. we first use S d DT D d dd DT ii

( ,  ) ( , )= ∈
max  to represent 

the similarity between a disease d and DT. Then the similarity 
between ri and rj is defined as
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The Gaussian Interaction Profile Kernel 
similarity For Diseases and miRNAs
In the similarity measurement algorithm, Gaussian interaction 
profile kernel similarity is also a good measurement algorithm, 
which is widely used in various fields (Lu et al., 2019). Let VP(di) 
be the vector associated with the disease di in Y, i.e. the ith column 
of Y. Then, the Gaussian interaction kernel similarity between 
disease di and dj is calculated as:

 KD d d VP d VP di j d i j(  , ) ( || ( ) ( )|| )= − −exp γ 2  (4)

where γd is the adjustment parameter of the kernel bandwidth. 
The parameter γd update rule is as follows:

 γ γd d i
nd
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1

2  (5)

where γ d
'  is usually set to 1.

Similarly, we can conclude that the Gaussian kernel similarity 
of miRNAs is as follows:

 KM r r VP r VP ri j m i j , ( )|| ( ) ( )||( ) = − −exp γ 2  (6)
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Where γ m
'  is usually set to 1.

Integrated similarity For Diseases  
and miRNAs
The similarity between disease di and disease dj is constructed by 
combining the two similarities of the disease as follows:
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Similarly, the similarity between miRNAs ri and rj can be 
redefined as:
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FIGURe 1 | The workflow of PMFMDA is used to infer disease-associated unknown miRNAs.
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PMFMDA
Probability Matrix Decomposition (PMF) is a probabilistic linear 
model of Gaussian observation noise and has been widely used 
in data representation (Salakhutdinov and Mnih, 2008). Let 
Y∈Rn×m be the known miRNAs–disease association matrix, Ui 
and Vi represent the D-dimensional miRNA-specific and disease-
specific latent feature vectors, respectively. The conditional 
distribution of the observed associations Y∈Rn×m (likelihood 
term) and the prior distribution of U∈RD×n and V∈RD×m are 
given by:

 P Y U V N Y U Vi
N

j
M

ij i
T

j
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Where N (x | μ,α-1) denotes the Gaussian distribution, Iij = 0 if 
the entry(i,j) in Y is missing, and 1 otherwise.

The optimal model is obtained by maximizing the logarithmic 
a posterior of miRNAs and disease characteristics using fixed 
hyperparameters:
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Where C is a constant. So, using a quadratic regularization term 
to minimize the sum of squares of the error functions instead of 
maximizing the posterior distribution relative to U and V:
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Where λU = αU / α and λv = αV / α are regularization parameters, 
|| ||⋅ Fro

2 denotes the Frobenius norm.
The standard PMF in Equation (10) does not consider the 

effect of similarity between miRNAs and the similarity between 
diseases. Since Ui represents the D-dimensional miRNA-specific 
latent feature vectors, UTU denotes the weighted similarity matrix 
of the miRNAs. Similarly, VTV denotes the weighted similarity 
matrix of the disease. Thus, we propose a new objective function 
by integrating miRNAs similarity and diseases similarity named 
PMFMDA as follows:
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where Sm and Sd have been calculated before.

Optimization
In order to obtain the local optimal solution of Equation 
(15), we use the gradient descent algorithm to solve (Xiao et 
al., 2018). According to the nature of the Frobenius norm, 
the corresponding Lagrange function LE of Equation (15) is 
defined as:
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where Tr() denotes the trace of a matrix, ∅=[φik] and Ψ=[ωjk] are 
Lagrangian multipliers.

The partial derivatives of U and V are as follows:
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Finally, the Karush-Kuhn-Tucker (KKT) conditions ϕikUik =0  
and ω jkVJk =0  according to the gradient descent method. The 
following equations are obtained for Uik and Vjk:
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Therefore, the updating rules for U and V as follows:
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Update U and V according to Equation (19) and Equation 
(20) until the local minimum of the objective function. Finally, 
the predicted miRNAs–disease association matrix is Y′=UTV. 
The ith column of Y′ indicates the association score between 
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disease di and miRNAs, and the larger the score, the more 
relevant it is.

evaluation Methods
In order to test the performance of PMFMDA, we utilize a 5-fold 
CV experiment and global LOOCV on the HMDD database 
and compare it with a few recent methods including CMFMDA, 
IMCMDA, NCPMDA, RLSMDA, and RWRMDA. In the 5-fold 
CV experiment of a single disease d, known miRNAs associated 
with d (column vectors in matrix A∈Rm×n) are randomly divided 
into five subsets of equal size. Associations related to all other 
diseases together with 4 subsets (with respect to d) are taken 
as training samples and the remaining subset is considered as 
testing samples. The process is performed for 5 times until all the 
associations associated with d have been predicted once. Global 
LOOCV was used to evaluate the model’s global prediction ability 
for all miRNAs–disease association simultaneously. Specifically, 
we removed each known association in turn as a testing sample, 
with all remaining associations as training samples. We then 
predicted the removed entry and evaluated the performance. In 
addition, we perform CVd experiment to test the performance of 
PMFMDA in predicting miRNAs associated to a novel disease d. 
In CVd: CV on disease di, we remove all the known associations 
of the disease di (column vectors in matrix Y∈Rm×n) and build 
prediction model (for inferring the deleted associations) using 
the remaining data.

Parameter Tuning
We cross-validate the training set to tune the parameters of 
PMFMDA. Specifically, the parameters λU,λV,λ1, and λ2 are 
increased from 0.001 to 1 with a step of 0.1 and the ones with 
the best AUC are selected. Since the other methods have also 
been tested on HMDD (V2.0) in published papers, we adopt 
the parameters provided by the authors. Specifically, W=0.9 for 
RLSMDA, λU = λV = 1,λ1 = λ2 = 0.005 for PMFMDA, λ1 = λ2 = 1 

for IMCMDA, λm = λd = 1 for CMFMDA r = 0.9, for RWRMDA 
and NCPMDA is parameter free.

ResULTs

PMFMDA Outperforms Other Popular 
Methods In Predicting Potential 
Associations
We apply PMFMDA, CMFMDA, IMCMDA, NCPMDA, 
RLSMDA, and RWRMDA into the HMDD database. Their 
receiver operating characteristic (ROC) curves and associated 
area under the curve (AUCs) of the global 5-fold CV and LOOCV 
are plotted in Figure 2. As can be seen, the AUCs of PMFMDA, 
CMFMDA, IMCMDA, NCPMDA, RLSMDA, and RWRMDA are 
0.9187, 0.8928, 0.8372, 0.8792, 0.8333, and 0.8168, respectively. 
Furthermore, PMFMDA also achieve the best AUC (0.9237) 
on global LOOCV, indicating that PMFMDA perform best in 
predicting miRNAs–disease associations. However, considering 
the limited number of known miRNAs–disease associations, it 
might be insufficient to evaluate the performance of the methods 
by AUC alone. Thus, we also plotted the precise recall (PR) curve 
and calculated the area under the PR curve (AUPR) based on 
the global 5-fold CV experiment in Figure 3. In a PR-curve, the 
precision refers to the ratio of correctly predicted associations 
to all associations with scores higher than a given threshold; 
by contrast, the recall refers to the ratio of correctly predicted 
associations to all known miRNAs–disease associations. In 
general, the ROC curve and the PR curve show similar trend. 
As shown in Figure 3, the AUPRs of PMFMDA, CMFMDA, 
IMCMDA, NCPMDA, RLSMDA, and RWRMDA are 0.3535, 
0.3428, 0.2509, 0.1176, 0.1234, and 0.1369 respectively, indicating 
that PMFMDA performed best in predicting miRNAs–disease 
associations. At the same time, in order to further prove the 
effectiveness of PMFMDA. We performed 10 times of global 
5-fold CV and achieved an average AUC and AUPR of 0.9187 

FIGURe 2 | The ROC curves for PMFMDA and benchmark algorithms for 5-fold CV and global LOOCV.
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+/− 0.0013, 0.3535+/− 0.0015, respectively. This proves the 
reliability and stability of the PMFMDA algorithm.

PMFMDA Outperforms Other Popular 
Methods In Predicting miRNAs Associated 
With Novel Diseases
Besides global miRNAs–disease predictions, it is also critical to 
check the performance of the above methods on specific diseases. 
CVd is used to measure the ability of an algorithm to predict a new 
disease-associated miRNA. In order to compare the fairness of 
the test, we conduct CV tests on 8 common diseases (Xuan et al., 
2015) and use the area under the accurate recall curve (AUPR) as 
an indicator of predictive performance. The reason is that AUPR 
severely penalizes highly ranked non-interactions, which is 
desirable here because in practice we do not want to recommend 
incorrect predictions (i.e., AUPR metrics severely penalize highly 
ranked false positives). The results for CVd are shown in Table 1. 
We can clearly see that the average AUPR of PMFMDA for the 

eight test diseases was 0.6687, which was significantly higher than 
IMCMDA (0.6377), CMFMDA (0.5091), NCPMDA (0.6121), 
and RLSMDA (0.5761). This also sufficient PMFMDA is also the 
best way to predict miRNAs associated with novel diseases.

Furthermore, in order to further evaluate our approach in 
predicting new diseases. We implement CVd experiments on 
the above 8 diseases. We show the calculation of the number 
of disease-associated miRNAs identified at different ranking 
thresholds in Table 2. For example: We delete all miRNAs 
associated with breast tumors, and then use PMFMDA to predict 
its related miRNAs. we can find that 91 of the top 100 predictions 
are accurately predicted through the test results. This is ample 
indication that our approach can yield high quality predictions 
for isolated disease-associated miRNAs. In order to better 
understand the predicted eight disease-related miRNAs, we 
listed the names and predicted scores of the top 100 candidates 
related to the eight diseases in the Supplementary Table S1.

evaluate Performance on Different Data 
sources
To further test the versatility of PMFMDA. We obtain 60,576 
experimental validation correlation data by preprocessing the 
MNDR (V2.0) dataset (Cui et al., 2018). The data contains 887 
diseases and 3,954 miRNAs. We apply PMFMDA, CMFMDA, 
IMCMDA, NCPMDA, RLSMDA, and RWRMDA on the MNDR 
(V2.0) database. As shown in Table 3, the AUC of PMFMDA was 
0.9885, significantly higher than those of CMFMDA (0.9799), 
IMCMDA (0.9171), NCPMDA (0.9480), RLSMDA (0.9358), 
and RWRMDA (0.9055) with increases of about 0.86, 7.14, 
4.05, 5.27, and 8.3% respectively. The AUPR of PMFMDA was 
0.5174, significantly higher than those of CMFMDA (0.5047), 
IMCMDA (0.3865), NCPMDA (0.2045), RLSMDA (0.2818), and 
RWRMDA (0.1907). In conclusion, PMFDA has been proven to 
be effective in inferring related miRNAs with diseases in terms of 
AUC values and AUPR values.

Parameter sensitivity Analysis
In machine learning, parameter tuning is critical for the 
performance of a model. Thus, we presented in Table 4 several 
sets of parameter settings based on the global 5-fold CV 
experiment on the HMDDV 2.0 dataset. We found that a better 

FIGURe 3 | The PR curves for PMFMDA and benchmark algorithms for 
5-fold CV.

TABLe 1 | Comparison of AUPR values predicted by PMFMDA and benchmark algorithms on novel diseases.

Disease name AURP

PMFMDA IMCMDA CMFMDA NCPMDA RLsMDA

Melanoma 0.7149 0.6757 0.4574 0.6785 0.6940
Breast tumor 0.7895 0.7752 0.6135 0.7866 0.7749
Colorectal tumor 0.6585 0.6333 0.4725 0.5714 0.5315
Glioblastoma 0.5940 0.5076 0.4540 0.4779 0.4028
Heart failure 0.5956 0.6284 0.4510 0.6182 0.5510
Prostatic tumor 0.6578 0.5881 0.5963 0.5873 0.5208
Stomach tumor 0.6981 0.6438 0.5231 0.6269 0.6081
Bladder tumor 0.6409 0.5388 0.5051 0.5505 0.5255
Mean 0.6687 0.6237 0.5091 0.6121 0.5761
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prediction result will be achieved when the value of λ1 and λ2 
are large and the value of λ1 and λ2 are small. This result further 
confirms the effectiveness of seeking an optimal combination of 
parameters in improving performance.

Finally, we explore the effect of the disease similarity and 
miRNA similarity on prediction performance. Specifically, we 
perform global 5-fold CV with parameters λ1 and λ2 setting to 

zero (Figure 4) in the HMDD (V2.0) dataset. We can see that 
the two similarities do contribute to prediction performance. 
In addition, PMFMDA achieve good results even in the model 
without integrating disease and miRNA similarity. However, this 
model is not good in predicting the association of new diseases 
or new miRNAs.

Case studies
Another aspect of PMFMDA’s strong predictive power is in 
case studies. Here, all the associations included in the HMDD 
(V2.0) database are used as training for the model, and the 
unincorporated associations are considered candidates for 
verification. In addition, miRCancer (Xie et al., 2013) and 
dbDEMC (Yang et al., 2010) were used to verify the correctness 
of the predictions. In this work, we mainly study three diseases 
including esophageal tumors, breast tumors, and lung tumors, 
and perform detailed analyses of the top 10 candidates predicted 
by PMFMDA in each disease (see Table 5).

Esophageal tumors are a disease with high morbidity and high 
mortality in the digestive system (Kano et al., 2010; He et al., 2012). 
Early diagnosis plays a crucial role in its treatment (Azmi, 2012). 
In this study, we use PMFMDA to identify potential miRNAs 
associated with esophageal tumors. The top 10 miRNAs to be all 
confirmed by the database were associated with esophageal tumors 
(see Table 5).

Breast neoplasm is the malignant tumor that is prone to occur 
in women, it is a systemic malignant disease, for which many 
related genes have been discovered (Venkatadri et al., 2016). 
MicroRNA (miRNA), as a kind of small RNA, can specifically 
bind to the 3′ untranslated region of its target mRNA, causing 
translational inhibition or degradation of target mRNA, 
and playing an oncogene in the process of cell growth and 
differentiation (Miller et al., 2008). Thus, MiRNAs present a new 
way for the study of pathogenic genes in breast neoplasms. As 
we can see from Table 5, 9 of the top 10 predictions have been 
confirmed by the relevant databases.

TABLe 2 | PMFMDA predicts the correct numbers of different ranking thresholds 
for 8 common diseases.

Cancer No. of known 
associated miRNAs

Ranking threshold

20 40 60 80 100

Breast neoplasms 202 20 38 54 74 91

Colorectal neoplasms 147 17 30 45 58 70
Glioblastoma 96 17 30 36 43 53
Heart failure 120 17 28 39 51 58
Melanoma 141 19 35 51 63 77
Prostatic neoplasms 118 17 32 43 56 65
Stomach neoplasms 173 15 32 49 63 79
Urinary bladder neoplasms 92 18 31 42 51 55

TABLe 3 | The performance of PMFMDA and the baseline methods based on 
5-fold CV on the MNDRV2.0 dataset.

PMFMDA CMFMDA IMCMDA NCPMDA RLsMDA RWRMDA
AUC 0.9885 0.9799 0.9171 0.9480 0.9358 0.9055
AUPR 0.5174 0.5047 0.3865 0.2045 0.2818 0.1907

TABLe 4 | Parameter tuning for PMFMDA based on 5-fold CV.

AUC λU = λV = 1 λU = λV = 0.1 λU = λV = 0.01

λ1 = λ2 = 1 0.7905 0.7728 0.7588
λ1 = λ2 = 0.1 0.9040 0.8507 0.8381
λ1 = λ2 = 0.01 0.9185 0.9032 0.8692

TABLe 5 | PMFMDA infers the top 10 miRNA candidates for the three selected diseases.

Cancer Number of miRNAs 
identified by the literature

Top 10

Rank miRNAs evidence Rank miRNAs evidence
Esophageal neoplasms 1 mir-17 dbDEMC 6 mir-1 dbDEMC

2 mir-18a dbDEMC 7 mir-200b dbDEMC
10 3 mir-221 dbDEMC 8 mir-222 dbDEMC

4 mir-16 dbDEMC 9 mir-29a dbDEMC
5 mir-19b dbDEMC 10 mir-133b dbDEMC

Breast neoplasms 1 mir-142 miRCancer 6 mir-138 dbDEMC
2 mir-150 dbDEMC, miRCancer 7 mir-15b dbDEMC

9 3 mir-106a dbDEMC 8 mir-192 dbDEMC
4 mir-99a dbDEMC, miRCancer 9 mir-378a Unconfirmed
5 mir-130a dbDEMC 10 mir-196b dbDEMC

lung neoplasms 1 mir-16 dbDEMC 6 mir-99a dbDEMC
2 hsa-mir-15a dbDEMC 7 mir-429 dbDEMC, miRCancer

9 3 hsa-mir-106b dbDEMC 8 mir-302b dbDEMC, miRCancer
4 mir-195 dbDEMC, miRCancer 9 mir-130a dbDEMC
5 mir-141 dbDEMC 10 mir-296 Unconfirmed

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1234

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


PMFMDA: Predict Disease Associated MiRNAs Xu et al.

8

The death rate from lung neoplasms is extremely high. About 1.3 
million people die of lung neoplasms every year, accounting for about 
one-third of all neoplasms deaths worldwide (Yu et al., 2015; Sun et al., 
2016). miRNAs have been found as a tumor suppressor gene and lung 
neoplasms. For example, Gu et al. found that miR-99a was significantly 
expressed in lung cancer tissues and lung neoplasm cells. In addition, 
the expression level of miR-99a is correlated with clinicopathological 
factors, the clinical stage and lymph node metastasis of lung cancer 
patients. We use PMFMDA to predict potential related miRNAs in 
lung tumors. As shown in Table 5, we can find that only one of the top 
10 related miRNAs predicted is unconfirmed.

For a clear view, we show the top 20 miRNAs associated 
networks predicting three tumors in Figure 5. It is worth 
noting that some miRNA candidates are usually associated 
with several diseases. For example, mir-15b and mir-130a are 
associated with both Prostatic lung and Breast Neoplasms. Has-
mir-16 is associated with both Esophageal Neoplasms and lung 
Neoplasms.

DIsCUssION
It is known that miRNAs often play an irreplaceable role in 
biological processes related to human diseases (Shen et al., 2017). 

FIGURe 4 | Performance evaluation of PMFMDA in two situations for 5-fold 
cross validation. (1) PMFMDA with similarity information; (2) PMFMDA without 
similarity information.

FIGURe 5 | The network of the top 20 predicted associations for the three selected diseases via PMFMDA.
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Accurately inferring disease-related potential miRNAs is helpful 
for us to investigate the pathogenesis of the disease and find a more 
effective treatment. In this study, we construct a mathematical 
model based on probability matrix factorization (PMFMDA) to 
identifying potential miRNAs–disease associations. PMFMDA 
outperform a few state-of-the-art models in the HMDD V2.0 
database due to a few factors. First, PMFMDA not only uses 
known correlation data, but also integrates the similarities 
between miRNAs and between diseases. This has enabled 
PMFMDA to achieve good results in predicting isolated disease-
associated miRNAs since theoretically similar miRNAs may 
associate with similar diseases. Second, the model is a semi-
supervised model, which does not rely on negative samples. 
Thus, it is better than most machine learning algorithms with 
strong requirement for good negative samples. Finally, in 
the model solving process, we use the alternating gradient 
descent algorithm to find the optimal solution to ensure the 
reliability of disease feature vectors and miRNA feature vectors. 
In terms of experiment, PMFMDA achieves the highest AUC 
(0.9187, 0.9237, respectively) in 5-fold CV and global LOOCV, 
demonstrates its most reliable prediction performances. At the 
same time, we also perform CVd experiments to measure the 
ability of PMFMDA to predict miRNAs associated with novel 
diseases. We conduct CV testing on 8 common diseases, which 
have at least 80 associations are verified (Xuan et al., 2015). 
PMFMDA achieves the highest average AUPRs of 0.6687. 
Finally, to make the more comprehensive test of PMFMDA, we 
use the three most common diseases in humans for research. 
The number of other database validations in the top 20 predicted 
miRNAs for esophageal tumors, breast tumors, and lung tumors 
are found to be 20, 19, and 17, respectively. In conclusion, 
PMFMDA has achieved good results in predicting the potential 
association of miRNA disease and predicting new disease-
associated miRNAs and can be used as a very useful supplement 
to existing prediction models.

Although quite satisfactory results have been achieved from 
PMFMDA, there are still some limitations to this approach. 
Firstly, we only use semantic similarity and the Gaussian kernel 
similarity to construct disease similarity network. It may be 

helpful to improve the predictive performance of PMFMDA 
by integrating disease or miRNA similarity from multiple data 
sources such sequence similarity. Secondly, the public data sets 
used in this study may have noise and outliers. A preprocessing 
step for de-noising and dimension reduction in raw input data 
might be useful. Thirdly, in the process of solving PMFMDA, 
the gradient descent method often obtains the local optimal 
solution, and how to further optimize its solution helps to 
improve the prediction performance of PMFMDA. Finally, as 
more and more miRNAs and disease associations are confirmed, 
collecting more validated data will help us to conduct more 
in-depth research.
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