
Article
Longitudinal characterizat
ion of circulating
neutrophils uncovers phenotypes associated with
severity in hospitalized COVID-19 patients
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In brief

LaSalle et al. utilize bulk transcriptomics

of neutrophils, plasma proteomics, and

high-throughput antibody profiling of a

large cohort of hospitalized COVID-19

patients to explore the relationship

between neutrophil states and disease

severity. They identify granulocytic

myeloid-derived suppressor cell-like

signatures and plasma IgA1-to-IgG1

ratios as predictive of disease severity

and mortality.
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SUMMARY
Mechanisms of neutrophil involvement in severe coronavirus disease 2019 (COVID-19) remain incompletely
understood. Here, we collect longitudinal blood samples from 306 hospitalized COVID-19+ patients and 86
controls and perform bulk RNA sequencing of enriched neutrophils, plasma proteomics, and high-
throughput antibody profiling to investigate relationships between neutrophil states and disease severity.
We identify dynamic switches between six distinct neutrophil subtypes. At days 3 and 7 post-hospitalization,
patients with severe disease display a granulocytic myeloid-derived suppressor cell-like gene expression
signature, while patients with resolving disease show a neutrophil progenitor-like signature. Humoral re-
sponses are identified as potential drivers of neutrophil effector functions, with elevated severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2)-specific immunoglobulin G1 (IgG1)-to-IgA1 ratios in plasma of
severe patients who survived. In vitro experiments confirm that while patient-derived IgG antibodies induce
phagocytosis in healthy donor neutrophils, IgA antibodies predominantly induce neutrophil cell death. Over-
all, our study demonstrates a dysregulatedmyelopoietic response in severe COVID-19 and a potential role for
IgA-dominant responses contributing to mortality.
INTRODUCTION

While our understanding of coronavirus disease 2019 (COVID-19)

continues to grow, severe acute respiratory syndrome coronavi-

rus 2 (SARS-CoV-2) still causes a wide range of disease severity.

Thus far, many studies of SARS-CoV-2 have shown that severe
Cell Repo
This is an open access article under the CC BY-N
COVID-19 patients present with broad immune dysfunction (lym-

phopenia, hyper-inflammation, delayed antibody production,

impaired interferon responses).1–7 Neutrophil hyperactivation

has been described in severe COVID-19 and suggests that a dys-

regulated myeloid compartment underlies severe disease.5,8–13

Finally, others have proposed that emergency myelopoiesis,
rts Medicine 3, 100779, October 18, 2022 ª 2022 The Author(s). 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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which leads to an abundance of immature neutrophils, is a prom-

inent feature of severe COVID-19 associated with poor prog-

nosis.9,14,15 Yet, neutrophils are understudied as analyses

focusing on peripheral blood mononuclear cells (PBMCs) cannot

examine this crucial component of the immune system. The ef-

fects of dysregulated humoral responses on neutrophil responses

are not well understood, as many of their effector functions such

as antibody-dependent neutrophil phagocytosis (ADNP)16,17

(direct pathogen removal) or NETosis (cell death program inwhich

neutrophils release neutrophil extracellular traps [NETs] consisting

of chromatin modified with anti-microbial proteins18,19) are driven

by antibody-Fc receptor interactions.20 Small case studies indi-

cate the importance of NETs in COVID-19-associated myocardial

infarctions and immunothrombosis.21,22 Here, we present a longi-

tudinal study of a large cohort of hospitalized COVID-19 patients

that combines unbiased, bulk transcriptomic analysis of enriched

blood neutrophils with plasma proteomics, cell-free DNA (cfDNA)

measurements, and high-throughput antibody profiling in order to

understand neutrophil dynamics during the immune response to

SARS-CoV-2 infection.

RESULTS

Longitudinal profiling of neutrophils from COVID-19
patients
FromMarch–May 2020, we enrolled 384 patients who presented

to the Massachusetts General Hospital’s emergency depart-

ment (ED) with suspected COVID-19 based on presentation of

acute respiratory distress. Subsequently, 306 tested positive

for COVID-19. We stratified disease acuity into five categories

based on the World Health Organization COVID-19 outcome

scale as previously described:23 A1, death within 28 days; A2,

intubation, mechanical ventilation, and survival to 28 days; A3,

hospitalized requiring supplemental oxygen; A4, hospitalized

without requiring supplemental oxygen; and A5, discharged

without requiring admission within 28 days. We classified A1–

A2 as severe, and A3–A5 as non-severe. Outcomes (acuityMax

[AMax], severityMax) were defined as the most severe disease

level within 28 days of enrollment (Table S1). We took blood

draws on days 0 (n = 374) upon ED admission (likely day 7–8

post-infection), 3 (n = 212), and 7 (n = 143) for all who remained

hospitalized. Few patients received therapies other than supple-

mental oxygen or mechanical ventilation (STARMethods). Dexa-

methasone was not administered to patients for COVID-19 at

this time. We took 8 blood draws from healthy controls. Using

negative selection to enrich for neutrophils, we obtained 781
Figure 1. SARS-CoV-2 infection induces distinct neutrophil profiles

(A) Schematic of cohort and study methodology.

(B) Correlation heatmap of clinical variable correlations with absolute neutrophil

(C) Ordinal correlation between ANC quintile and acuityMax (AMax) for COVID-19+

(D) Comparison of CIBERSORTx total, mature, and immature neutrophil fractions on

(E) Uniform manifold approximation and projection (UMAP) plots of bulk RNA-se

(F) Volcano plot of genes DE between COVID-19+ and COVID-19– patients hos

change)>0.5 (log2(FC)) and p < 10�4

(G and H) Gene set enrichment analysis (GSEA) for (G) signaling pathways and (

(I) Boxplots of CIBERSORTx total, mature, and immature neutrophil percentages

See also Figure S1 and Table S1.
samples from 388 individuals. We performed bulk RNA

sequencing, and after quality control,24 we retained 698 samples

from 370 patients (Table S1). Additionally, we analyzed 1,472

plasma proteins using the Olink platform (published),23 quanti-

fied cfDNA, and performed high-throughput antibody profiling

(partially published)25–27 (Figure 1A; STAR Methods).

COVID-19 induces an interferon response signature in
neutrophils followed by an expansion of immature
neutrophils
Similar to previous studies,28–33 we analyzed ordinal correlations

between clinical absolute neutrophil count (ANC) quintile and

clinical parameters associated with severity. We observed pos-

itive correlations between ANC and creatinine, lactate dehydro-

genase (LDH), C-reactive protein (CRP), and D-dimer, consistent

with the role of neutrophils in inflammation and thrombosis9,34

(Figure 1B; Table S1). Additionally, we found robust ordinal cor-

relations between ANC and acuity (and, accordingly, intubation)

that increased from day 0 to 7 (Figure 1C).

Since enrichment did not result in 100% neutrophil purity

(Figures S1A andS1B), we next determined the cell-type compo-

sition of our bulk RNA sequencing (RNA-seq) samples using

CIBERSORTx.35 We used a published whole-blood single-cell

dataset, which captures relevant cell types including immature

neutrophils,36,37 to deconvolve our bulk data.9 (Figures S1C

and S1D; Table S1; STAR Methods). We found that lower esti-

mated total neutrophil (NeuTotal) content (sum of mature and

immature neutrophils) was associated with lower clinical ANC

(Fisher’s test p = 1.2 3 10�17). Overall, we estimated a mean

of 75%NeuTotal (Figure S1E), concordant with flow cytometry es-

timates in separate healthy controls (Figure S1B). Among

COVID-19 patients, the estimated NeuTotal increased from day

0 to 7 (Figure 1D), driven largely by expansion of immature neu-

trophils.14 Also, intubation status correlated with NeuTotal on

days 3 and 7 (Table S1). Dimensionality reduction revealed

groupings based on disease status and immature neutrophil

fraction (Figure 1E).

Next, to identify genes and programs induced during COVID-

19 infection, we performed differential expression (DE) and gene

set enrichment analysis (GSEA) between COVID-19+ and simi-

larly symptomatic COVID-19– respiratory disease patients on

day 0 (Figures 1F–1H; Table S1). To correct for non-neutrophil

contamination, we added CIBERSORTx cell-type fractions and

an immunoglobulin score as model covariates (Figures S1F–

S1I; STAR Methods). GSEA revealed strong anti-viral signatures

enriched in COVID-19+ samples, such as response to interferon
counts (ANCs) on day 0, 3, or 7 with q < 0.05 in COVID-19+ patients.

patients.

days 0, 3, and 7 for COVID-19+ patients by Kruskal-Wallis test (STARmethods).

q samples that passed quality control.

pitalized with respiratory disease on day 0. Colored circles indicate log2(fold

H) cellular processes from MSigDB for samples on day 0 from (F).

in severe and non-severe patients with Wilcoxon rank-sum p values.
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gamma (IFNg) and IFNa, Toll-like receptor (TLR) signaling, and

cytokine production (Figures 1G and 1H).

Finally, to identify neutrophil expression correlates of COVID-

19 severity, we compared CIBERSORTx cell-type fractions

across severe and non-severe patients (Figure 1I). NeuTotal was

significantly elevated in severe patients across all time points,

consistent with our observation of elevated ANC in severe dis-

ease. On day 0, this difference was driven bymature neutrophils,

whereas on days 3 and 7, it was due to immature neutrophils

(Figure 1I).

Unbiased NMF clustering defines neutrophil states
during SARS-CoV-2 infection
We next sought to identify neutrophil gene expression subtypes

and their associations with disease outcomes using Bayesian

non-negative matrix factorization (NMF) clustering38 (STAR

Methods). We clustered samples with NeuTotal>50% (n = 635,

91% of samples) to reduce artifacts of cell-type contamination

and identified six robust neutrophil subtypes (Figures 2A and

S2A; Table S2). We denote samples with <50% NeuTotal as

Neu-Lo, which were significantly enriched for non-intubated pa-

tients (Table S2).

Two subtypes (NMF3, NMF6) had high expression of IFN-stim-

ulated genes (ISGs). NMF3 markers included Fc and comple-

ment receptors and inflammatory caspases. NMF3 samples

were enriched for patients requiring intubation compared with

all other clusters (Table S2). On the other hand, NMF6 had high

granzyme levels and distinct ISGs. Consistent with these

markers, the estimated T/natural killer (NK) proportion was high-

est in NMF6 (Table S2).

NMF1 and NMF4 were composed of predominantly immature

neutrophils. NMF1 was enriched for neutrophil granule compo-

nents (ELANE, AZU1, DEFA1B, DEFA4), suggestive of a neutro-

phil-progenitor-like state, while NMF4 had a more activated

(CEACAM8, CD24) profile and different neutrophil granule com-

ponents (MPO, CHIT1,MMP8, LYZ). On day 7, NMF4 had higher

D-dimer than NMF1, potentially implicating NMF4 in thrombosis

(Table S2). We performed DE analysis and GSEA on NMF1

versus NMF4 samples, which revealed enrichment of neutrophil

degranulation signatures and reactive oxygen species (ROS)

generation pathways in NMF4 (Figure S2B; Table S2). NMF1

samples were enriched for the electron transport chain pathway

and oxidative phosphorylation, suggesting that pro-neutrophils

may be storing energy for differentiation.39

Finally, NMF2 and NMF5 shared transcriptional similarities

with myeloid-derived suppressor cells (MDSCs). NMF2 dis-

played nuclear factor kB (NF-kB) activation (NFKB2, BCL3)

and MMP25 expression, while NMF5 had a granulocytic
Figure 2. Severe outcomes are associated with transitions between n

(A) Heatmap of marker genes for all patients grouped by subtype using NMF clu

(B) UMAPs of scRNA data from Bonn Cohort 2.9

(C) Network diagram displaying relationships between NMF subtype marker gen

(D) Volcano plot of genes DE between COVID-19+ severe and non-severe patien

(E) Bar plots of proportions of COVID-19+ samples in each NMF cluster. Bar heigh

*q < 0.05, **q < 0.01 by Fisher’s exact test for each time point separately, with fa

(F and G) GSEA for genes DE between COVID-19+ severe and non-severe patie

See also Figures S2 and S3 and Table S2.
MDSC-like gene expression signature (ARG1, CD177,

MCEMP1, S100A12) and interleukin (IL)-1B signaling (IL1R1,

IL1R2, IL1RAP). On day 3, NMF2 and NMF5 had significantly

higher fractions of samples from intubated patients, and NMF2

patients had higher CRP and LDH (Table S2).

Our NMF signatures were similar to those identified by single-

cell RNA-seq (scRNA-seq) in COVID-19 and sepsis patients9,40

(Figures 2B, S2C, and S2D). Additionally, we built a network dis-

playing the relationships between our NMF signatures and pub-

lished neutrophil gene signatures in COVID-19,9 cancer,41

sepsis,40 and non-COVID-19 acute respiratory distress syn-

drome (ARDS)42 (Figures 2C and S2E; STAR Methods). Network

branches revealed signature groups of immature, mature,

G-MDSC-like, and ISG neutrophils (STAR Methods). This anal-

ysis suggests that NMF marker genes may represent neutrophil

subtypes in multiple disease contexts.

Transcriptionally distinct neutrophil states are
associated with COVID-19 severity
To identify neutrophil states, genes, and pathways associated

with COVID-19 severity, we performed DE analysis between

severe and non-severe patients for each time point (Figure 2D;

Table S2). To understand the dynamics of neutrophil subtypes,

we first explored how NMF cluster membership varied across

severity and over time (Figures 2E and S2F), and second, we

performed GSEA using neutrophil gene signatures (Figure 2F).

On day 0, COVID-19+ samples were most frequently assigned

to NMF3, but proportionally more samples were from severe

patients. We assessed ISG neutrophil expression over time

in the Schulte-Schrepping data and also found enrichment

early in the course of infection (Figures S2G and H; STAR

Methods). In our cohort on day 3, severe samples were more

evenly distributed across NMF clusters 1 to 5, with NMF2

(NF-kB+) and NMF5 (G-MDSC) significantly enriched for se-

vere samples. In agreement, the signature most enriched in

severe patients by GSEA was NMF5 (G-MDSC) at all time

points (Figure 2F). Additionally, in scRNA data from hospital-

ized COVID-19 patients,36 a subset of whom were treated

with immunosuppressive dexamethasone, we found that

NMF5 was significantly enriched in patients that died and

was significantly lower in dexamethasone-treated patients

7 days post-intensive care unit (ICU) admission (Figures S2I–

S2K; Table S2). Finally, on day 7, NMF4 (immature activated)

was enriched for severe samples. Non-severe samples were

enriched for NMF1 (pro-neutrophil [pro-Neu]) (all days) and

NMF6 (ISG+) (day 0). GSEA also indicated NMF1 (pro-Neu)

as the most enriched neutrophil signature in non-severe sam-

ples. In addition, non-severe samples had higher frequencies
eutrophil states

stering (STAR Methods).

es and published neutrophil signature genes.

ts. Colored points indicate log2(FC) > 0.5 and p < 10�4.

ts indicate percentages of COVID-19+ samples for each time point separately.

lse discovery rate (FDR) correction across all days.

nts.
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of Neu-Lo (days 3 and 7), indicating a resolution of neutrophil

activation.

We next performed gene and pathway-level analyses using

GSEA (Figure 2G; Table S2). Across all 3 days, the pathways

most enriched in severe patients included neutrophil degranula-

tion, hypoxia, tumor necrosis factor a (TNF-a) signaling via NF-

kB, ROS metabolic processes, and neutrophil migration (Fig-

ure 2G). Many of the top genes enriched in severe patients

across days 0, 3, and 7 are involved in IL-1b signaling (IL1R1,

IL1R2) and neutrophil degranulation (ARG1, CD177, MCEMP1).

Major histocompatibility complex (MHC) class II genes were

strongly associated with non-severe disease, as previously

observed for monocytes,40,43 but we cannot rule out MHC

expression in other cell types (Table S2). Of note, the gene

sets ‘‘ARDS Up - Juss’’ and ‘‘ARDS Down - Juss’’ were consis-

tently enriched in severe and non-severe patients, respectively,

and the ‘‘ARDS Up - Juss’’ gene set significantly overlapped

with NMF5 signature genes, suggesting that G-MSDC signa-

tures are associated with both COVID-19 ARDS and non-

COVID-19 ARDS (Figures S3A and S3B). We searched for genes

and pathways with diverging expression patterns over time be-

tween severe and non-severe patients (Figure S3C; Table S2;

STAR Methods). SERPINB2, a gene involved in Th1/Th2 modu-

lation during lentiviral infections,44 increased over time in severe

patients but slightly decreased over time in non-severe patients.

ZBTB16, a glucocorticoid response negative feedback gene,

was more highly expressed on day 0 in severe patients, but its

expression decreased over time, compared with non-severe pa-

tients. On the pathway level, granulocyte chemotaxis remained

high in severe patients but decreased over time in non-severe

patients (GSEA q = 3.3 3 10�3). Furthermore, the TNF-a

signaling via NF-kB metagene score increased with time in se-

vere patients but was constant in non-severe patients (GSEA

q = 3.73 10�15). These pathway results agree with the neutrophil

subtype analysis, highlighting the role of neutrophil activation in

severe COVID-19.

Neutrophil states are among the most powerful
predictors of COVID-19 severity as early as day 0 of
hospitalization
We hypothesized that neutrophil subtype metagene scores

could improve predictive models of COVID-19 severity upon pa-

tient presentation to the ED, as the NMF5 (G-MDSC) signature

correlated with acuity on day 0 (Figure 3A). We built three nested

logistic regression models for predicting severityMax using data

from day 0 (Figure 3B). Model 1 included only patient character-

istics, model 2 added clinical laboratory values, and model 3
Figure 3. Neutrophil metabolism and dysregulated IFN signaling are a

(A) Boxplots of NMF5 metagene score for healthy and COVID-19+ samples grou

(B) Receiver operating characteristic (ROC) curve for performance of logistic

improvement determined by likelihood ratio tests.

(C) ROC curve of performance of a LASSOmodel of COVID-19 severity on day 0 (

(D) Bar plot of inclusion frequency for each variable in the LASSO model.

(E) GSEA for genes DE between COVID-19+ patients with AMax1 (death) or AMax2

(F) GSEA enrichment plots for gene sets with genes ranked by DE in (E).

(G) GSEA enrichment plots for NMF3 and NMF6 gene signatures with genes ran

See also Figure S3 and Table S3.
added these and NMF and ARDS neutrophil gene set scores

(STARMethods; Table S3). Adding neutrophil subtype scores re-

sulted in a marked improvement (area under the curve [AUC]:

0.960, likelihood ratio test [LRT] p = 7.933 10�6), demonstrating

that neutrophil subtypes may significantly improve clinical pre-

dictive models of COVID-19 severity.

We next identified which subset of features was most impor-

tant for predicting severity by performing feature selection with

a least absolute shrinkage and selection operator (LASSO) logis-

tic regression model of COVID-19 severity on day 0 (Figure 3C;

STAR Methods). Across all 100 5-fold repeats of cross-valida-

tion, the two features that were always included in the model

were the highest NMF5:G-MDSC score quintile and the highest

LDH quintile (Figure 3D; Table S3).

Longitudinal analyses reveal diverging pathway
dynamics between survivors and non-survivors
To test whether any neutrophil genes or pathways could predict

survival of the most severe patients upon intubation, we per-

formed DE analysis and GSEA (Figure 3E; Table S3) between

AMax1 (death within 28 days) and AMax2 (intubated, survived)

samples. On day 0, the most enriched pathways in patients

who died were the Juss et al.42 non-COVID-19 ARDS neutrophil

signature (adjusted p value [padj] = 7.7 3 10�26) and neutrophil

degranulation (padj = 1.1 3 10�15). Interestingly, we observed

that several metabolic pathways switched from being enriched

in AMax1 patients at day 0 to being enriched in AMax2 patients

at day 7. On day 0, the IFNa and IFNg response pathways

were enriched in AMax2 patients, but on days 3 and 7, the signa-

turesweremore enriched in AMax1 patients (Figures 3F and S3D).

Prior work has shown that IFN signaling is delayed or dysregu-

lated in COVID-19.3 Another study in macaques demonstrated

age stratification in IFN signaling, with stronger type I IFN re-

sponses in juveniles;45 in contrast, we find higher IFN signaling

in older patients at later time points (Figure S3E), which could

indicate that peak IFN in younger patients occurred pre-hospital-

ization, whereas IFN in older patients is delayed.3

In accordance with the IFN response signatures, we also

observed that enrichment of the NMF3 (PD-L1+ISG+) and

NMF6 (ISG+) signatures switched from patients who survived

on day 0 to patients who died on days 3 and 7 (Figures 3G and

S3F). Interestingly, the metabolic pathways distinguishing

NMF1 (pro-Neu) and NMF4 (immature activated) followed the

opposite trend. Though NMF cluster membership was not asso-

ciated with AMax, GSEA and pathway enrichment suggest that

the metabolic differences underlying the NMF clusters are asso-

ciated with survival (Table S3).
ssociated with severity and acuity

ped by AMax.

regressions predicting COVID-19 severity on day 0. Significance of model

STARMethods) with median AUC curve across cross-validation repeats in red.

(intubation, survival).

ked by DE in (E).
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NETosis is implicated in severe COVID-19 pathology
through transcriptomics, proteomics, and circulating
cfDNA
Several studies have reported associations between SARS-

CoV-2 infection and NETs.46–49 To look for NETosis associations

with outcomes, we defined a NETosis metagene score (STAR

Methods; Figures S3G and S3H).50 We found a significant

enrichment of our score on days 3 and 7 in severe patients (Fig-

ure 4A). Additionally, across NMF clusters, we found higher

scores in the immature clusters NMF1 and NMF4 (Figure 4A).

Many factors promoting NETosis, such as histonemodification,

are post-transcriptional51 andwould not becapturedbyRNA-seq,

while other markers are expressed during neutrophil development

and are not reflective of effector functions in real time. Therefore,

we next searched for protein markers of NETosis in matched

plasma proteomic data.23 Known protein markers of NETosis

were significantly associated with severe disease across all time

points and varied across neutrophil subtypes, including MPO,

CXCL8, TNF, PADI4, HGF, and CD177 (Figure 4A; Table S3).

These results agree with previous proteomic studies, which

have associated MPO,52,53 CXCL8,14 and HGF54,55 with severe

COVID-19. We next performed an ELISA for citrullinated histone

H3 (CitH3), a specificmarker ofNETs, inmatchedplasmasamples

(n = 78 patients, plus n = 6 healthy controls). In agreement with the

NETosis expression data, we found significant elevation of CitH3

on days 3 and 7 in severe patients (Figure 4C). The distribution of

CitH3 across neutrophil subtypes mirrored the transcriptomic re-

sults, except NMF5, which showed higher CitH3 (Figure 4C). The

NETosismetagene score and theCitH3 ELISAmeasurementwere

weakly positively correlated (r = 0.32) as expected, as the tran-

scription of NETosis genes and the initiation of NETosis are

temporally separated (Figure S3I).

We next measured levels of cfDNA in the plasma. Prior cfDNA

methylation studies in COVID-19 have identified neutrophils as a

major sourceofcfDNA.34ConcentrationofcfDNAwassignificantly

associated with COVID-19 status and severity across time points

and correlatedwith ANC, but we did not observe significant differ-

ences between AMax1 and 2 patients (Figures 4D–4F; Table S3).

Furthermore, cfDNA was elevated in NMF4 (immature activated)

versus NMF1 (pro-Neu) samples, suggesting that NMF4 neutro-

phils may release greater amounts of NETs (Figure S3J).

Neutrophil degranulation signatures and
immunosuppressive gene expression are associated
with severity and distinguish neutrophil subtypes
Uncontrolled neutrophil degranulation can cause tissue damage

and pathologic inflammation.56 Therefore, we defined a neutrophil
Figure 4. Transcriptomics, proteomics, and cell-free DNA (cfDNA) anal

severe COVID-19 outcomes

(A) Boxplots of NETosis metagene score over time split by severityMax (top) and

(B) Olink plasma proteomics values over time split by severityMax.

(C) Citrullinated histone H3 in patient plasma. H = healthy (n = 6), n = 32 non-sev

(D–F) cfDNA concentration, arranged by (D) day and severityMax, (E) COVID-19 s

(G) Pathway metagene score for REACTOME_NEUTROPHIL_DEGRANULATION

(H) SomaScan protein expression Z scores.

(I) Expression of ARG1 and CD274.

p values for Wilcoxon rank-sum tests (A [top], B–E, and G–I).

See also Figure S3 and Table S3.
degranulation metagene with the REACTOME_Neutrophil_

Degranulation gene set. As expected, the metagene was highly

enriched in severe patients across all time points, though it was

only enriched in AMax1 versus AMax2 patients on day 0 (Figure 4G;

Table S3). Of note, the neutrophil degranulation metagene score

was highly enriched in the NMF4 (immature activated) subtype

over the NMF1 (pro-Neu) subtype, which may support the possi-

bility that fewer NMF1 neutrophils have granules and that NMF4

neutrophils may be more capable of effector functions

(Table S3). Additionally, metagene scores for neutrophil granules

(azurophilic, specific, tertiary) were enriched in severe patients

at all time points (Table S3).

Since transcriptomics provide no insight into whether neutro-

phils have released their granules, we searched for protein

markers of neutrophil granules using matched SomaScan23

plasma proteomic data. Indeed, we found elevated levels of

ELANE, CTSG, LCN2, and PRTN3 in severe patient plasma at

all time points (Figure 4H). Due to sample collection and tech-

nical constraints, it was not possible to perform neutrophil

degranulation assays. However, transcriptomics and prote-

omics data both demonstrate that degranulation markers are

associated with COVID-19 severity.

Neutrophils have been shown to suppress T cell activation,

with some studies demonstrating T cell suppression only in fully

differentiated neutrophils.57 Therefore, we investigated the asso-

ciations between T cell suppression genes and severity or

neutrophil NMF subtype. ARG1, which suppresses T cells by

depleting L-arginine, was enriched in severe patients (Figure 4I)

and had the highest expression in NMF5 (G-MDSC) and NMF4

(immature activated) (Table S3). CD274, encoding PD-L1, which

suppresses T cells through PD-1, was enriched in severe pa-

tients on days 3 and 7 (Figure 4I) and was highest expressed in

NMF3 (PD-L1+ ISG+) (Table S3). NMF1 (pro-Neu) showed low

expression of both genes, consistent with the finding that pro-

genitor neutrophils do not display MDSC functionality.57 We

note that these are transcriptomic analyses and not functional

assays due to technical constraints of preserving neutrophils,

though the roles of these genes have been validated mechanis-

tically.58–60

Antibody isotype profiles are major drivers of neutrophil
effector functions in COVID-19
Neutrophils enact many effector functions in an Fc receptor-

dependent manner,61 and thus antibodies influence neutrophil

behavior. In total, 53 out of 300 assayed samples from day

0 had detectable viremia62 (Table S1), suggesting that circulating

immune complexes (ICs) and Fc repertoire may influence
yses identify neutrophil effector function signatures associated with

across NMF clusters (bottom).

ere, and n = 46 severe patients.

tatus, and (F) ANC.

.
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whether neutrophils effect NETosis or phagocytosis. We

measured the levels of antibody isotypes and subclasses for

SARS-CoV-2 antigens and non-SARS-CoV-2 viral antigens in

matched longitudinal plasma samples as published27,63

(Table S4). Importantly, our time course corresponds to days

of hospitalization, not days post-infection; thus, timing is not

standardized across patients. We found significantly higher

levels of SARS-CoV-2 spike (S)-specific IgA1 antibodies in se-

vere patients on day 7 (Figure 5A). Though there was no differ-

ence in S-specific IgG1 antibodies (Table S4), we found several

differences in neutrophil Fc receptor expression (including

FCAR) across severity and subtypes that could impact effector

functions (Figures S4A and S4B). In particular, mature neutrophil

subtypes NMF3 and NMF5 displayed higher expression of most

Fc receptors, though NMF4 neutrophils expressed FCAR just as

highly. NMF 4 had higher expression of Fc receptors (FCGR2A,

FCGR3B, and FCAR) and thus potentially more ability to enact

antibody-mediated effector functions, than NMF1 (Figure S4B).

In contrast to severe versus non-severe comparisons, we

found significantly higher IgG1, IgG2, and IgG3 antibodies for a

variety of SARS-CoV-2 antigens in AMax2 versus AMax1 patients

on day 3 (Figure 5B). On day 7, IgG1 antibodies for all five SARS-

CoV-2 antigens were significantly higher in AMax2 patients,

consistent with previous work linking delayed or diminished hu-

moral responses to fatal COVID-19.7 We also observed associa-

tions between S-specific IgA1 antibodies and neutrophil NMF

states, as well as ANC (Table S4).

To test whether antibody profiles impact neutrophil phagocy-

tosis, we performed an ADNP assay using patient antibodies and

donor neutrophils64 (Figure 5C; Table S4; STAR Methods).

Though ADNP was not associated with severity (Table S4), we

did find significantly higher ADNP in AMax2 versus AMax1 patients

on days 3 and 7 (Figure 5D). Decreased phagocytosis could indi-

cate an inability of neutrophils to clear debris from blood.65 To

understand why ADNP levels were divergent, we evaluated dif-

ferences in the antibody repertoires. On day 0, themajority of se-

vere patients had higher S-specific IgA1 titers compared with

S-specific IgG1; however, over time, intubated survivors shifted

toward higher S-specific IgG1, whereas non-survivors main-

tained higher S-specific IgA1 titers (Wilcoxon rank-sum test,

day 0, not significant [NS], day 3 p = 0.0058, day 7 p = 0.0090;
Figure 5. Antibody profiles are major drivers of neutrophil function

(A) Plasma SARS-CoV-2 spike (S) protein-specific IgA1 log10(MFI) values.

(B) Heatmaps displaying the signed (by FC)�log10(p) comparing levels of antigen

SARS-CoV-2 (S, S1, S2, N, and receptor-binding domain [RBD]), human corona

(C) Schematics for functional assays.

(D) Background-corrected antibody-dependent neutrophil phagocytosis (ADNP)

(E) Log10 ratio of S-specific IgG1 to IgA1 MFI.

(F) Boxplots of background-corrected ADNP log10(MFI) values for severe patient

(G) Paired-line plots of ADNP log10(MFI) values showing effects of SARS-CoV-2

(H) Reactive oxygen species luminescence of neutrophils exposed to IgG:S or Ig

time point, with gray indicating no significant difference (n = 12 per condition).

(I) Representative microscopy images of neutrophil morphologies. PC, phase co

each row of images.

(J) Mean percentage of cells undergoing any form of cell death quantified by fluo

(K) SYTOX Green Nucleic Acid Stain log10(RFU) from neutrophils exposed to free

(L) MFI FC values of surface markers of neutrophil degranulation (controls n = 2

p values for Wilcoxon rank-sum tests (A and L).

See also Figure S4 and Table S4.
Figure 5E). We did not observe this trend when comparing se-

vere and non-severe disease (Table S4). We then stratified sam-

ples into two categories: higher S IgG1 titer or higher S IgA1 titer.

Among severe patients on day 7, ADNP was significantly

elevated in the higher S IgG1 group (Figure 5F), and the same

trend was found across all samples (Table S4).

Recent studies have demonstrated that while IgG antibodies

can induce neutrophil phagocytosis, IgA:virus ICs are potent in-

ducers of NETosis.66 Antibody isotypes interact through different

receptors, with IgA binding FcaR and IgG binding FcgR. In addi-

tion, changes in Fc-glycosylation can alter antibody interactions

with FcRs.67–69 Therefore, we sought to determine whether

neutrophil effector functions were differentially impacted by the

plasma IgG/IgA ratio or whether antibodies from severe patients

differentially modulate neutrophil functions. Thus, we separately

purified IgG and IgA fractions from day 7 plasma samples from

severe COVID-19 survivors, non-survivors, and non-severe pa-

tients (n = 12 each) and performed ADNP, ROS generation,

neutrophil cell death, and degranulation assays using healthy

donor (HD) neutrophils (Figure 5C; Table S4).

For the isotype-specific ADNP experiment, we generated

IgG:S (SARS-CoV-2 S) and IgA:S ICs and incubated them each

with HD neutrophils to assess phagocytosis. In all categories

(non-severe, severe survivors, death), only IgG:S ICs robustly

triggered ADNP (Figure 5G; Table S4). Next, we incubated HD

neutrophils with ICs of both isotypes and measured the ROS

production by neutrophils as a function of time (STAR Methods).

Across all three categories, IgG:S induced higher ROS genera-

tion than IgA:S (Figure 5H). Notably, IgG:S ICs from severe sur-

vivors induced significantly higher ROS production than the

non-severe group (Figure S4C). This may be related to distinct

IgG glycosylation patterns in severe COVID-19 patients.70 To

validate our finding, we performed GSEA on neutrophil RNA-

seq samples from severe patients on day 7 comparing patients

with IgA1>IgG1 with patients with IgA1<IgG1. The ROS pathway

was enriched in samples with IgA1<IgG1, consistent with the

ROS release assay (Figure S4D). In addition, we found that

IFNa response and regulation of membrane potential pathways

were enriched in samples with IgA1>IgG1. Changes in mem-

brane potential are associated with components of neutrophil

activation such as chemotaxis and NETosis.71
-specific antibody isotypes between AMax1 and AMax2. Rows indicate antigens:

virus OC43, influenza hemagglutinin (HA), and cytomegalovirus (CMV).

assay.

s on day 7, separated by IgG/IgA ratios.

S-specific IgG or IgA from day 7 plasma samples (n = 12 per condition).

A:S ICs or PBS. Color bars display the �log10(p) between IgG and IgA at each

ntrast; DAPI, DNA stain; NE, neutrophil elastase. Scale bars are indicated for

rescence microscopy (controls n = 2 each, IgG/IgA n = 6 each).

IgG or IgA (n = 12 per condition).

each, IgG/IgA n = 15 each).
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Next, we tested whether free IgA or IgG antibodies from pa-

tient serum could trigger neutrophil cell death and the release

of DNA, thereby potentially causing microvascular thrombosis.

We incubated HD neutrophils with free IgA or IgG antibodies,

and after 3 h, cells were fixed and stained to quantify neutrophil

cell death (apoptosis, necrosis, NETosis) following stimulation.

As a positive control, we used phorbol 12-myristate 13-acetate

(PMA) to induce NETosis (Figure 5I; STAR Methods; Table S4).

This method is not able to distinguish between true NETosis,

‘‘incomplete’’ NETosis,72 and secondary necrosis (apoptosis or

necrosis without being cleared). However, subsequent time-

lapse microscopy experiments of PMA-treated cells revealed

both true NETosis and necrosis (Videos S1 and S2). We found

significantly elevated neutrophil cell death in donor cells treated

with IgA compared with IgG antibodies (Figures 5J and S4E). We

then used a high-throughput method by incubating HD neutro-

phils with free IgA or IgG antibodies in the presence of a live-

cell-impermeable nucleic acid dye (Sytox Green), to quantify

DNA released by neutrophils through all forms of cell death.

We found strikingly higher levels of Sytox Green signal (which

may correspond with NETosis or necrosis as the morphology

resembled that of PMA-treated cells) from healthy neutrophils

incubated with IgA than IgG, regardless of the patient severity

(Figure 5K). This observation on neutrophil cell death and release

of DNA into circulation could contribute to the understanding of

why severe patients with high IgA1/IgG1 ratios in plasma were

less likely to survive intubation.

Finally, we performed a flow cytometry-based neutrophil

degranulation assay, treating neutrophils with free IgA or IgG an-

tibodies from patient serum and staining for several components

of neutrophil granules73 (STAR Methods; Table S4). We found

large fold changes in mean fluorescence intensity (MFI) in IgA-

treated neutrophils over IgG-treated neutrophils for CD11b (gelat-

inase granules), CD45 (secretory vesicles), CD63 (azurophil gran-

ules), and CD66b (specific granules) (Figure 5L), as well as a small

increase in CD14 (secretory vesicles) (Table S4).We found a slight

increase in CD35 (secretory vesicles) in IgG-treated neutrophils

over IgA-treated neutrophils, and we did not observe any differ-

ence in the levels of CD15 (specific granules) (Table S4). Taken

together, these functional assays further illustrate howan elevated

plasma IgA1/IgG1 ratio could contribute to the systemic inflam-

matory consequences of severe COVID-19.

Plasma proteomics identifies neutrophil-driven
secreted proteins and potential ligand-receptor
interactions driving phenotypes
To further understand the role of neutrophils in COVID-19 in rela-

tion to other blood and immune cells, we analyzed the plasma
Figure 6. Alterations in the plasma proteome are associated with neut

(A) Heatmap displaying scaled expression values for subtype-enriched proteins.

(B) DE proteins. Colored points indicate q < 0.05.

(C and D) Scatterplot comparing the log2(FC) values for neutrophil RNA-seq with t

(D) COVID-19+ severe and non-severe patients. Colored points indicate log2(FC)

(E) DE proteins in matched plasma samples between samples with IgA > IgG or

(F) NPX (normalized protein expression) values for selected plasma proteins.

p values for Wilcoxon rank-sum tests.

See also Table S5.
proteome using our Olink dataset for this cohort. We began by

searching for protein markers of neutrophil NMF clusters (Fig-

ure 6A; Table S5). NMF5 (G-MDSC) in particular had strong up-

regulation of markers of severity and neutrophil activation such

as S100A12, HGF, IL-1RL1, IL-1R2, DEFA1/1B, PADI4, and

TGFB1 (Figure 6B). Of note, transforming growth factor b

(TGF-b) has been shown to influence B cells to class switch to

IgA when stimulated with LPS,74 and TGF-b signaling has been

implicated in impaired anti-viral responses in severe COVID-

19,75 illustrating two ways in which NMF5 neutrophils could

potentially contribute to disease severity. NMF4 (immature)

had the highest levels of ACE2, potentially indicating tissue dam-

age, while NMF3 (PD-L1+ ISG+) showed enrichment for IFNL1,

CXCL10, and IFNG.

Next, we sought to determine which severity-associated pro-

teins in the plasma were expressed by neutrophils by comparing

the DE results between severe and non-severe patients on

RNA and protein levels (Figures 6C and 6D; Table S5; STAR

Methods). We identified several components of neutrophil gran-

ules (CD177, MMP8, MMP9, ARG1, S100A12, TGFA), factors

involved in clotting (F3, SERPINE1), chemoattraction (CXCL8,

IL-4R), and inflammation (FKBP5, FCAR, IL-18R1, CLEC4D) up-

regulated in severe disease in both data types, suggesting that

neutrophils are key contributors to the severity-associated

plasma proteome.

Next, we searched for plasma proteins that were DE between

patients with higher IgG1 or IgA1 titers (Figures 6E and 6F;

Table S5). The top protein associated with higher IgA1 was

IFNL1. While no study, to our knowledge, has linked IFNl

signaling with IgA isotype switching, IFNl signaling is mainly tar-

geted to epithelial cells, and IgA antibodies are typically found at

mucosal surfaces rather than in plasma.76 Higher IgA1 was also

associated with high plasma AGER (also known as RAGE),

consistent with prior work.77 Many other plasma proteins asso-

ciated with COVID-19 severity were enriched in IgA1-high sam-

ples, such as IFNG, CXCL10, and CXCL8, which have been

associated with severity.14,78,79 On the other hand, within severe

samples, IgG-high samples were enriched for FETUB, a protein

involved in fatty acidmetabolism that can suppress inflammation

andwhich has been shown to be depleted in severe COVID-19,80

and CCL17, a Th2 chemokine that may be involved in the activa-

tion of class-switch recombination.81

Finally, we sought to determine whether any other soluble pro-

teins could potentially contribute to neutrophil phenotypes or

severity. We performed a hypothesis-generating ligand-receptor

(L-R) interaction analysis between plasma ligands and receptors

DE between NMF clusters (Figure 7A), and we tested the

relationship between L-R pairs and outcomes, for each time
rophil subtypes and antibody profiles

he log2(FC) of the plasma proteomic data between (C) COVID-19+/� patients or

> 1.25 in mRNA and protein.

IgA < IgG. Colored points indicate q < 0.05.
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point separately (Figures 7B, S5, and S6A; Table S5; STAR

Methods). Among the more severe subtypes, NMF5 (G-MDSC)

had the highest expression of IL1R1 and the highest levels of

the ligands IL-1RN and IL-1B in plasma. These IL-1 family li-

gands show high mRNA expression in neutrophils, suggesting

that the G-MDSC-like phenotype may be driven by a feedback

loop of neutrophil-derived IL-1B. NMF4 (immature activated)

had the highest expression of ITGB1 and ITGAV, which both

interact with many ligands, themajority of which were expressed

highest in native lung cells. In particular, IL1R1 on neutrophils

was associated with both NMF5 and severe disease, and the

F3-TFPI interaction (implicated in coagulation) was associated

with NMF4 and severe disease, consistent with the many other

indicators that NMF4 is involved in NETosis (Figure 7C).

In the less severe-specific subtypes, potential interactions be-

tween NMF1 (pro-Neu) neutrophils and plasma ligands featured

many growth factor signaling pathways, and the majority of

ligands had highest expression in native lung cells. NMF3 (PD-

L1+ ISG+) showed strong upregulation of receptors involved in

migration and activation (CCR1, CXCR2, SELL, CCR3) and their

ligands (CCL8, CCL7, CD34). As expected, the IFNGR2/IFNG

interaction was identified in this cluster. A higher fraction of li-

gands mapped back to monocytes for NMF3 than any other

cluster. CCR3 interactions were identified in both NMF3 and

non-severe disease, and CD74 interactions were associated

with both NMF1 and non-severe disease (Figure 7C).

Similarly, the L-R interaction analysis for DE ligands and re-

ceptors between severe and non-severe patients revealed

several interactions driving severity, including the neutrophil

ligands IL-1RN, MMP9, VEGFA, PLAU, and IL-1B. Of note, we

found at least one potential interaction within the uPA/uPAR sys-

tem in severe patients across all three days. PLAU/uPA, which

was expressed by neutrophils in COVID-19 bronchoalveolar

lavage (BAL) fluid, has been shown to amplify neutrophil NF-kB

responses, which can result in lung injury.82 In addition, we

searched for our circulating neutrophil NMF signatures in the

BAL fluid of patients with severe COVID-19 in an external

cohort.83 We found similar patterns of enrichment between pa-

tients who died and patients who survived, suggesting that our

neutrophil subtypes may be relevant to COVID-19 lung pathol-

ogy (Figures S6B–S6E).

Finally, we built an additional logistic regression model for

predicting severityMax on day 0 of hospitalization following

SARS-CoV-2 infection (model 4), incorporating the top five

plasma proteins associated with NMF5 neutrophils and the top

five neutrophil-expressed severity-associated proteins on day

0 (STAR Methods). The model was able to perfectly predict se-

verityMax and was overfit (Figure S7A). Thus, we again performed

feature selection with a LASSO model (Figure S7B). Again, the

two features that were included by the model every time were

the highest NMF5:G-MDSC score quintile and the highest LDH

quintile, confirming the NMF5 expression score as one of the
Figure 7. Ligand-receptor interactions in plasma are potential drivers

(A) Ligand-receptor (L-R) analysis for DE ligands in plasma and receptors on neu

(B) L-R analysis for DE ligands in plasma and receptors on neutrophils between

(C) Table highlighting overlap between neutrophil NMF subtype L-R interactions

See also Figures S5–S7 and Table S5.
strongest predictors of COVID-19 severity (Figure S7C). Strik-

ingly, several neutrophil-related gene expression and protein

signatures are included in the model more frequently than ALC,

ANC, CRP, pre-existing lung conditions, D-dimer, and other

powerful clinical predictors, suggesting that neutrophil features

have a strong association with severe COVID-19.

DISCUSSION

Here, we present a comprehensive characterization of circu-

lating neutrophils from hospitalized COVID-19 patients. We first

used unbiased NMF clustering to define six neutrophil subtypes

associated with COVID-19 and SARS-CoV-2� respiratory dis-

ease. Our network analysis across diseases demonstrates that

there is a common set of neutrophil states that exists across

sepsis,40 cancer,41 and acute viral infection, each having distinct

associations with severity. Therefore, potential therapeutic inter-

ventions targeting specific states may be applicable across dis-

eases. Future studies will be required to isolate phenotypically

distinct cell populations and assess their regulatory or inflamma-

tory properties. Additionally, our analysis of longitudinal samples

allowed us to distinguish signatures associated with outcome at

initial hospitalization from those that developed over time. We

observed that all patients have IFN-driven neutrophil signatures

upon hospitalization, but this signature decreases over time and

is replaced either by a G-MDSC-like signature in severe patients

or a neutrophil progenitor signature in non-severe patients.

Furthermore, we observed that patients who died maintained

higher levels of IFN on days 3 and 7 of hospitalization, potentially

indicating that the rate of change of the IFN response may be a

biomarker of severe disease. Finally, multimodal analysis inte-

grating transcriptomics and proteomics from matched plasma

revealed a potential feedback loop of neutrophil IL-1B signaling

in severe patients.

Our evolving understanding of the differential impact of IgA

and IgG antibodies on neutrophil effector functions has potential

therapeutic implications. The observation that patients who died

maintained a higher IgA1/IgG1 ratio than patients who were intu-

bated but survived directly implicates humoral responses in fatal

COVID-19. SARS-CoV-2 infection can begin in nasal passages

and trigger a strong mucosal IgA response.84 We hypothesize

that IgA-enriched humoral responses may promote systemic

circulating neutrophil dysregulation with higher rates of neutro-

phil cell death including NETosis. While IgA-induced NETosis

would be beneficial in mucosal linings by preventing viral entry,

it would be ineffective or harmful in other locations, as circulating

neutrophils perform protective phagocytic functions in response

to IgG antibodies. Many studies have shown that NETosis is a

defining feature of severe disease,48,85,86 and we find signatures

of NETosis in plasma and demonstrate that neutrophil cell death

can be induced by IgA antibodies, which may occur in patients

with high IgA1/IgG1 ratios in plasma. Potential therapeutics
of neutrophil phenotype and severity

trophils between NMF clusters for all COVID-19+ samples (STAR Methods).

COVID-19+ severe and non-severe samples on day 0.

and severity interactions.
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have been suggested for use in autoimmune disease to inhibit

NETosis such as PAD4 inhibition or recombinant human

thrombomodulin,87 and similar strategies could be applied in

severe COVID-19. Additionally, clinical trials targeting IL-1B

aimed at decreasing NETosis are underway (ClinicalTrials.gov:

NCT04594356). Lastly, we hypothesize that infusion of convales-

cent plasma enriched for IgG and depleted for IgA may have a

stronger impact on patient recovery than non-enriched plasma.

While manipulation of the antibody landscape could hold

promise for effective interventions, the drivers of humoral re-

sponses in COVID-19 are still poorly understood. In this study,

we identify a strong association between higher IgA1/IgG1 ratios

in plasma and circulating IFNL1, though no study to date con-

nected type III IFN with isotype switching to IgA. Future studies

should aim to determine which plasma cells are responsible for

IgA secretion in response to SARS-CoV-2. A recent study sug-

gested that TNF-a-secreting cells could be responsible for the

loss of germinal centers in the secondary lymphoid organs of se-

vere COVID-19 patients.88 Though neutrophils produce lower

levels of TNF-a than inflammatory macrophages, the robust

enrichment of the TNF-a signaling via NF-kB pathway in neutro-

phils suggest that neutrophils may also play a role in the loss of

germinal centers and weakening of humoral responses in severe

COVID-19. Recent studies in patients treated with TNF-a

blockers for autoimmunity demonstrated clinical benefit, but re-

sults from full-scale clinical trials are still needed.89–91

In summary, our study elucidates how circulating neutrophils

and their interactions with soluble factors may drive COVID-19

severity, providing insight into this crucial and abundant cell

type. We propose a model of SARS-CoV-2 infection in which

antibody profiles drive neutrophils either to aid in disease resolu-

tion through phagocytosis or contribute to tissue damage via

NETosis. Further, we hypothesize that therapies that simulta-

neously aim to modulate the levels of suppressive G-MDSC-

like neutrophils and prevent excessive NETosis in circulation

have the potential to aid with disease resolution in severe

patients.

Limitations of the study
First, we performed bulk RNA-seq due to limitations at sample

collection, so the neutrophil subtype gene signatures reflect a

mixture of neutrophil states. Second, samples were enriched

for neutrophils via negative selection, and high purity of sam-

ples could not be guaranteed. We used estimated cell-type

proportions as covariates in all analyses, but the expression

of contaminating cell-type-specific genes cannot be excluded.

Third, our time course data were collected on days 0, 3, and 7 of

hospitalization, but patients were infected for varying amounts

of time prior to enrollment. Fourth, we only collected longitudi-

nal samples from hospitalized patients, so we were unable to

study pre-hospitalization or non-hospitalized patients. Fifth,

samples at later time points were biased toward sicker patients

with longer hospital stays. Sixth, our findings need to be vali-

dated in external cohorts with similar multimodal data

structures. Seventh, our study provides insights into circulating

factors, yet future studies should focus on longitudinal immu-

nity occurring at mucosal barriers. Eighth, many of our conclu-

sions are drawn from transcriptomics and cannot provide func-
16 Cell Reports Medicine 3, 100779, October 18, 2022
tional information. Though others have demonstrated the

functional activity of specific genes, future studies will investi-

gate their roles in COVID-19. Ninth, our neutrophil cell death as-

says relied on imaging at a fixed endpoint, which did not allow

us to distinguish between NETosis, ‘‘incomplete’’ NETosis, and

secondary necrosis. Future experiments will be needed to

confirm the mode of cell death and the impact on disease res-

olution in vivo. Finally, samples were collected in March–May

2020, and treatments such as dexamethasone or tocilizumab

may affect neutrophils during the course of disease; further-

more, antibody profiles elicited by COVID-19 vaccines may

modulate neutrophil function.
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Antibodies

Mouse Anti-Human IgG1-Fc PE Southern Biotech CAT# 9054-09; RRID: AB_2796628

Mouse Anti-Human IgG2-Fc PE Southern Biotech CAT# 9060-09; RRID: AB_2796635

Mouse Anti-Human IgG3-Fc PE Southern Biotech CAT# 9210-09; RRID: AB_2796701

Mouse Anti-Human IgM-Fc PE Southern Biotech CAT# 9020-09;

RRID: AB_2796577

Mouse Anti-Human IgA1-Fc PE Southern Biotech CAT# 9130-09;

RRID: AB_2796656

Pacific Blue(TM) anti-human CD66b antibody Biolegend CAT# 305112; RRID: AB_2563294

CD3 Pacific Blue Biolegend CAT# 317314; RRID: AB_571909

CD11b APC Biolegend CAT# 301310; RRID: AB_314162

CD14 APC/Cy7 Biolegend CAT# 367108; RRID: AB_2566710

CD15 PE Biolegend CAT# 301905; RRID: AB_314197

CD16 PE Biolegend CAT# 302007; RRID: AB_314207

CD19 FITC Biolegend CAT# 302206; RRID: AB_314236

CD20 FITC Biolegend CAT# 302304; RRID: AB_314252

CD35 PE Biolegend CAT# 332404; RRID: AB_2890765

CD45 Alexa Fluor 700 Biolegend CAT# 368514; RRID: AB_2566374

CD56 PE-Cy5 Biolegend CAT# 318308; RRID: AB_604105

CD63 FITC Biolegend CAT# 353006; RRID: AB_10898319

CD66b APC Biolegend CAT# 305118; RRID: AB_2566607

Human TruStain FcX Biolegend CAT# 422302; RRID: AB_2818986

Rabbit anti-neutrophil elastase Abcam CAT# ab131260

Donkey anti-rabbit IgG (H+L) Alexa Fluor 488 Invitrogen CAT# A21206; RRID: AB_2535792

Biological samples

Patient samples used in this study are

detailed in Table S1

Massachusetts General Hospital N/A

Healthy control blood samples Stemexpress CAT# PBEDT020F

Chemicals, peptides, and recombinant proteins

SARS-CoV-2 receptor binding domain (RBD) Aaron Schmidt, Ragon Institute N/A

SARS-CoV-2 nucleocapsid (N) protein Aalto BioReagents CAT# CK 6404-b

SARS-CoV-2 spike protein (S) Eric Fischer, Dana Farber

Cancer Institute

N/A

SARS-CoV-2 subunit 1 and 2 of the spike

protein (S1 and S2)

Sino Biological CAT#: 40591-V08B1; 40590-V08B

hCoV-OC43 RBD Aaron Schmidt, Ragon Institute N/A

hCoV-OC43 spike protein (S) Sino Biological CAT#: 40607-V08H1

hCoV-HKU1 spike protein (S) Immune Tech CAT#: IT-002-025p

SARS-CoV-1, MERS spike proteins (S) Jason McLellan,

University of Texas

N/A

HA A/Michigan/45/2015 (H1N1) Immune Tech IT-003-00105DTMp

HA A/Singapore/INFIMH-16-0019/2016 (H3N2) Immune Tech IT-003-00434DTMp

HA B/Phuket/3073/2013 Immune Tech IT-003-B11DTMp

SYTOXTM Green Nucleic Acid Stain Invitrogen CAT# S7020

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

EasySepTM Direct Human Neutrophil Isolation Kit STEMCELL technologies CAT# 19666

Qubit dsDNA High Sensitivity Assay Kit Invitrogen CAT# Q32854

High-Sensitivity DNA Bioanalyzer Kit Agilent CAT# 5067-4626

Nextera XT Library Prep kit Illumina CAT# FC-131-1024

LEGEND MAXTM Human Myeloperoxidase

ELISA Kit (BioLegend, Cat#440007)

Biolegend CAT# 440007

Citrullinated Histone H3 (Clone 11D3) ELISA Kit Cayman Chemical CAT# 501620

Deposited data

Neutrophil bulk RNAseq analyzed data This paper GEO: GSE212041 https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE212041

Olink COVID-19 plasma proteomic data Olink https://info.olink.com/mgh-covid-study-

overview-page; https://doi.org/10.5281/

zenodo.7076472

Somalogic COVID-19 plasma proteomic data Filbin et al. 202123 Mendeley Data: https://doi.org/10.17632/nf853r8xsj;

https://dx.doi.org/10.5281/zenodo.7076472

COVID-19 Neutrophil scRNA-Seq data Schulte-Schrepping et al. 20209 EGA: EGAS00001004571

Sepsis Neutrophil scRNA-seq data Reyes et al. 202140 https://singlecell.broadinstitute.org/single_cell/

study/SCP1492/

Dexamethasone COVID-19 Neutrophil

scRNA-seq data

Sinha et al. 202136 GEO: GSE157789

BAL scRNA-Seq data Bost et al. 20205 GEO: GSE145926 and GSE149443

ARDS Neutrophil RNA-Seq Juss et al. 201642 GEO: GSE76293

Human Protein Atlas Blood cell RNA-Seq Uhlen et al. 201992 https://www.proteinatlas.org/download/

rna_blood_cell.tsv.zip

Lung cancer single-cell neutrophil RNA-seq data Zilionis et al. 201941 GEO: GSE127465

BAL Neutrophil scRNA-seq data Wendisch et al. 202183 EGA: EGAS00001004928 and EGAS00001005634

Oligonucleotides

RT primer (DNA oligo) IDT 50–AAGCAGTGGTATCAACGCAGAGTACT30VN-30

TSO primer (RNA oligo with LNA) Qiagen 50-AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-30

ISPCR (DNA oligo) IDT 50-AAGCAGTGGTATCAACGCAGAGT-30

Software and algorithms

Code and Data from this manuscript This manuscript https://doi.org/10.5281/zenodo.7030528;

https://doi.org/10.5281/zenodo.7076472

IntelliCyt ForeCyt (v8.1) Sartorius https://intellicyt.com/products/software/

FlowJo (v10.7.1) FlowJo, LLC https://www.flowjo.com/solutions/flowjo

Prism 9.2.0 (283) GraphPad https://www.graphpad.com/scientific-

software/prism/

GTEx-TOPMed RNA-Seq pipeline Broad Institute https://github.com/broadinstitute/gtex-pipeline/

STAR v2.5.3a Dobin et al. 201393 https://github.com/alexdobin/STAR/releases/

tag/2.5.3a

RSEM v1.3.0 Li et al. 201194 https://github.com/deweylab/RSEM/releases/

tag/v1.3.0

RNA-SeQC 2 Graubert et al. 202124 https://github.com/getzlab/rnaseqc

CIBERSORTx Newman et al. 201935 https://cibersortx.stanford.edu

DESeq2 v1.30.1 Love et al. 201495 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

Fgsea Korotkevich et al. 201696 http://bioconductor.org/packages/release/

bioc/html/fgsea.html

Seurat v4.0.4 Hao and Hao et al. 202197 https://cran.r-project.org/web/packages/

Seurat/index.html

(Continued on next page)
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FluoSpheresTM NeutrAvidinTM-Labeled

Microspheres, 1.0 mm, yellow-green

fluorescent (505/515), 1% solids

Invitrogen CAT# F8776

MagPlex microspheres Luminex corporation CAT# MC12001-01

CaptureSelect IgA Affinity Matrix ThermoScientific CAT# 1942880005

Protein A/G Agarose ThermoFisher CAT# 20424

Luminol Sigma-Aldrich CAT# 123072
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Moshe

Sade-Feldman (msade-feldman@mgh.harvard.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The raw RNA sequencing data reported in this study cannot be deposited in a public repository because these data were collected at

the beginning of the COVID-19 pandemic, and as such, a waiver of informed consent was approved by the Massachusetts General

Hospital governing institutional review board, in compliance with the Code of Federal Regulation (45CFR 46, 2018 Common Rule). To

protect the identity of individual subjects, public posting of raw sequencing data from the patients has not been approved; therefore,

raw data is not provided. However, the read count matrix and TPM matrix used in this study are available in GEO under accession

number GSE212041 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE212041). All code required to run the analyses in

this manuscript is deposited in Zenodo (https://doi.org/10.5281/zenodo.7030528) based on the associated Github repository

(https://github.com/lasalletj/COVID_Neutrophils). Any additional information required to reanalyze the data reported in this work pa-

per is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

MGH patients cohort description
Between March to May 2020 during the peak of the COVID-19 pandemic, we enrolled a total of 384 patients 18 years or older who

presented in Massachusetts General Hospital Emergency Department (ED) with acute respiratory distress and clinical concern for

COVID-19. The study was approved by the Mass General Brigham Institutional Review Board under protocol 2017P001681, with

an approval for a waiver of informed consent in compliance with the 45CFR 46, 2018 Common rule. Out of the 384 patients enrolled

in this study, 306 tested positive for SARS-CoV-2 (COVID-19+), while 78 patients that were admitted to the ED with similar symptoms

tested negative (COVID-19–) andwere used as controls in this study. Additionally, we collected blood samples from 8 healthy donors.

For each patient, medical history and clinical data were collected and are presented in Table S1 and as previously described.23

Samples were collected at three different time points: Day 0 upon admission to the ED (n = 374 samples); Day 3 (n = 212 samples)

and Day 7 (n = 143 samples) for COVID-19+ hospitalized patients. In addition, in some cases up to day 28 post-admission to the ED, a

fourth blood sample was collected upon a major change in clinical status, and was termed an event driven sample (n = 44 samples).

Acuity categories were classified into five classes (A1-A5) using theWHO ordinal outcomes scale as recently described in Filbin et al.

2021,23 with the following classifications: A1 and A2were classified as severe disease, with A1 defined as deathwithin 28 days (n = 40

patients and 96 samples), and A2 for patients that survived within 28 days but required mechanical ventilation and/or intubation (n =

67 patients and 222 samples). Groups A3-A5 were defined as non-severe, with A3 classified as patients that required supplemental

oxygen (n = 133 patients and 298 samples), A4 hospitalized but no need for supplemental oxygen (n = 41 patients and 45 samples),

and A5 classified as patients that were discharged from ED in the first 24 h and did not return to the hospital within 28 days (n = 23

patients and 23 samples; Table S1). Primary disease severity outcomes following SARS-CoV-2 infection for each patient (AcuityMax

or SeverityMax) were defined as the most severe disease level with 28 days of enrollment.

In total, the gender of 52.9% of patients was male. Of all 306 COVID-19+ patients enrolled, the following percentages of patients

had past medical history: 15.7% heart disease, 36.3% diabetes, 47.7% hypertension, 30.7% hyperlipidemia, 21.6% chronic lung

disease, 13.4% kidney disease, 8.2% immunocompromised. Of COVID-19+ patients, 1.9% were enrolled in trials of remdesivir

versus placebo and 7.1% were enrolled in trials of anti-interleukin-6 (IL-6) receptor monoclonal antibody versus placebo. Overall,
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the primary outcomes described in this manuscript are not reporting any clinical trial results but rather the clinical status and out-

comes resulting from the SARS-CoV-2 viral infection and hospitalization. Since this study included the enrollment of patients with

an approval for a waiver of informed consent, demographic information, and other clinical parameters described in this study

(e.g., blood counts, LDH, CRP etc.) are limited and reported in quintiles.

METHOD DETAILS

Neutrophil isolation and lysis
Blood samples were collected in EDTA vacutainer tubes and transported to the laboratory. Neutrophils were isolated from whole

blood via negative selection using the EasySep Direct Human Neutrophil Isolation Kit (STEMCELL Technologies, Cat# 19666). All

described procedures in this section were done at room temperature. Between 0.25 and 0.5 mL whole blood was lysed with ACK

Lysis Buffer (ThermoFisher Scientific, Cat# A1049201) in a 15 mL conical tube and white blood cells were pelleted at 300 xg for

5 min. Following aspiration of the lysed red blood cells and resuspension of the pellet in 250 mL 1 mM EDTA in PBS, 50 mL each

of the RapidSpheres and Isolation Cocktail were added to the cell suspension. Following a 5 min incubation, sample volumes

were completed to 4 mL with 1 mM EDTA in PBS, mixed gently, and placed on an EasyEightsTM EasySepTM Magnet (STEMCELL

Technologies, Cat# 18103) for 5 min. Next, supernatants were transferred to new 15 mL conical tubes, 25 mL RapidSpheres were

added, and the samples were gently mixed and incubated for 5 min. Samples were then placed on the magnet, and after 5 min in-

cubation supernatants were transferred to new tubes, and were placed immediately on the magnet for a second incubation before

the supernatants containing the enriched neutrophil populations were collected, pelleted, and resuspended in 1 mM EDTA in PBS.

Cells were counted on a TC20TM Automated Cell Counter (Bio-Rad Laboratories, Inc., Cat# 1450102) with trypan blue staining for

dead cell exclusion. Neutrophils were then lysed in TCL Buffer (QIAGEN, Cat# 1031576) with 1% 2-Mercaptoethanol at a concen-

tration of 1000 cells/mL, flash-frozen on dry ice, and then stored at �80�C until use.

Neutrophil purity flow cytometry
Blood samples from healthy donors were collected in EDTA vacutainer tubes. 500mL of whole blood underwent lysis with ACK Lysis

Buffer (ThermoFisher Scientific, Cat# A1049201) and was set aside, and 500mL of blood was taken through the neutrophil isolation

protocol described above. Cells fromboth conditions were then stained for 30min at RTwith a panel of the following antibodies: CD3,

CD14, CD16, CD19, CD20, CD56, CD66b and Human TruStain FcX. Sample acquisition was performed using a Sony MA900 instru-

ment in flow cytometry mode. Data was analyzed in FlowJo and major cell lineages were quantified based on the percentage of live

cells.

Patient matched plasma isolation
Following the aliquoting of 0.25–0.5 mL whole blood for neutrophil isolation, remaining blood volumes were diluted 1:2 with room

temperature RPMI. Each diluted sample was then added carefully to a SepMate tube (STEMCELL Technologies, Cat# 85450 or

85,415) that had been prefilled with 15 mL Ficoll (VWR, Cat# 21008-918). Samples were spun at 1200 xg for 20 min at 20�C with

maximum acceleration and the brake on. After centrifugation, the plasma layer was transferred into a clean conical tube and spun

at 1000 xg for 5 min at 4�C to pellet any remaining cell debris. Without disturbing the pellet, each sample was aliquoted into

1.5 mL Cryovials (VWR, Cat# 66008-710) and frozen at �80�C until analysis.

Cell-free DNA (cfDNA) quantification
cfDNA was quantified using the Qubit dsDNA High Sensitivity Assay Kit (Invitrogen, Cat# Q32854). 98 mL of DNA dye was aliquoted

into each well of a 96-well black clear bottom plate (Corning, Cat# 3904). Plasma samples which had been pre-aliquoted into 96-well

Eppendorf PCR plates were thawed at RT, vortexed, and spun down briefly. 2 uL of plasma sample was added to each well of the

assay plate. Fluorescence was quantified on a Cytation 5 Microplate reader at 523 nm.

Smart-Seq2 cDNA preparation
cDNAwas prepared frombulk populations of 2x104 neutrophils per sample via the Smart-Seq2 protocol98 with somemodifications to

the reverse transcription step as previously described.99 20 mL (at a concentration of 1000 cells/mL) of neutrophil lysates were thawed

on ice and plated into 96-well plates prior to centrifugation at 1500 rpm for 30 s. RNAwas purified with Agencourt RNAClean XP SPRI

beads (Beckman Coulter, Cat# A63987) and then the samples were resuspended in 4 mL of Mix-1 [Per 1 sample: 1 ml (10 mM) RT

primer (DNA oligo) 50–AAGCAGTGGTATCAACGCAGAGTACT30VN-30; 1 ml (10 mM) dNTPs; 1ml (10%, 4 U/ml) recombinant RNase in-

hibitor; 1 ml nuclease-free water], denatured at 72 �C for 3 min and placed immediately on ice for 1 min before 7 mL of Mix-2 [Per 1

sample: 0.75 ml nuclease-free water; 2 ml 5X RT buffer (Thermo Fisher Scientific, Cat# EP0753); 2 ml (5 M) betaine; 0.9 ml (100 mM)

MgCl2; 1 ml (10 mM) TSO primer (RNA oligo with LNA) 50-AAGCAGTGGTATCAACGCAGAGTACATrGrG+G-30; 0.25 ml (40 U/ml) recom-

binant RNase inhibitor; 0.1 ml (200 U/ml) Maxima H Minus Reverse Transcriptase] was added. Reverse transcription reactions were

performed at 50�C for 90 min, followed by 5 min incubation at 85�C. Then, 14 mL of Mix-3 [Per 1 sample: 1 ml nuclease-free water;

0.5 ml (10 mM) ISPCR primer (DNA oligo) 50-AAGCAGTGGTATCAACGCAGAGT-30; 12.5 ml 2X KAPA HiFi HotStart ReadyMix] was

added to each well and the whole-transcriptome amplification step was performed at 98�C for 3 min, followed by 16 cycles of
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[98�C for 15 s, 67�C for 20 s, and 72�C for 6 min], and final extension at 72C for 5 min cDNA was purified using AgencourtAMPureXP

SPRI beads (BeckmanCoulter, Cat# A63881) as described,99 to remove all primer residue. Quality control was performed on samples

prior to library construction and included: (1) concentration measurements via the Qubit dsDNA high sensitivity assay kit (Invitrogen,

Cat# Q32854) on the Cytation 5Microplate Reader (BioTek); (2) cDNA size distribution using the High-Sensitivity DNA Bioanalyzer Kit

(Agilent, Cat# 5067-4626).

Library construction and sequencing
Libraries were generated using the Nextera XT Library Prep kit (Illumina, Cat# FC-131-1024) with custom indexing adapters99 in a

384-well PCR plate, followed by a cleanup step to remove residual primer dimers. Pooled libraries containing 384 samples were

then sequenced on a NovaSeq S4 (Illumina) using paired-end 150-base reads. Additionally, 16 samples were sequenced on a

NextSeq 500 sequencer (Illumina), using paired-end 38-base reads. This approach insured an appropriate coverage for all samples

analyzed in this study.

Citrullinated histone H3 ELISA
Citrullinated Histone H3 ELISA was quantified in patient plasma using the Citrullinated Histone H3 (clone 11D3) ELISA kit (Cayman

Chemical, 501620) according to manufacturer specifications. Plasma samples (which were previously diluted 1:2 with RPMI) were

diluted 1:2 with Assay Buffer. Sample acquisition was performed using the Cytation 5 Microplate Reader (BioTek) at 450nm. The

standard curve was fitted with a 4-parameter logistic curve-fitting algorithm using the dr4pl package in R.

Antibody subclass and isotype measurements
SARS-CoV-2 and eCoV-specific antibody subclass/isotype levels were assessed using a 384-well based customized multiplexed

Luminex assay, as previously described.25 SARS-CoV-2 receptor binding domain (RBD) (kindly provided by Aaron Schmidt, Ragon

Institute), SARS-CoV-2 nucleocapsid (N) protein (Aalto BioReagents), and SARS-CoV-2 spike protein (S) (kindly provided by Eric

Fischer, Dana Farber), SARS-CoV-2 subunit 1 and 2 of the spike protein (S1 and S2) (Sino Biological), as well as human eCoV anti-

gens: hCoV-OC43 RBD (kindly provided by Aaron Schmidt, Ragon Institute), hCoV-OC43 spike protein (S) (Sino Biological), hCoV-

HKU1 spike protein (S) (Immune Tech), SARS-CoV-1, MERS spike proteins (S) (kindly provided by Jason McLellan, University

of Texas) were used to profile specific humoral immune response. A mix of HA A/Michigan/45/2015 (H1N1), HA A/Singapore/

INFIMH-16-0019/2016 (H3N2), HA B/Phuket/3073/2013 (Immune Tech) was used as a control. Antigens were coupled to magnetic

Luminex beads (Luminex Corp) by carbodiimide-NHS ester-coupling (Thermo Fisher). Antigen-coupled microspheres were washed

and incubated with plasma samples at an appropriate sample dilution (1:500 for IgG1 and 1:100 for all other readouts) for 2 h at 37�C
in 384-well plates (Greiner Bio-One). Unbound antibodies were washed away, and antigen-bound antibodies were detected by using

a PE-coupled detection antibody for each subclass and isotype (IgG1, IgG2, IgG3, IgG4, IgA1, and IgM; Southern Biotech). After 1h

incubation, plates were washed, and flow cytometry was performed with an IQue (Intellicyt), and analysis was performed on IntelliCyt

ForeCyt (v8.1). PE median fluorescence intensity (MFI) is reported as a readout for antigen-specific antibody titers.

Antibody-dependent neutrophil phagocytosis (ADNP) assay
ADNP was conducted as previously described.64 SARS-CoV-2 Spike proteins were biotinylated using EDC (Thermo Fisher) and

Sulfo-NHS-LC-LC biotin (Thermo Fisher) and coupled to NeutrAvidin beads (Thermo Fisher, Cat# F8775). To form immune com-

plexes, antigen-coupled beads were incubated for 2 h at 37�C with serum and then washed to remove unbound antibodies. The im-

mune complexes were incubated for 1 hwith RBC-lysed whole blood. Following the incubation, neutrophils were stained for CD66b+

(Biolegend, Cat# 305112) and fixed in 4% PFA.

Flow cytometry was performed to identify the percentage of cells that had phagocytosed beads as well as the number of beads

that had been phagocytosed (phagocytosis score = % positive cells 3 Median Fluorescent Intensity of positive cells/10000). Flow

cytometry was performed with an IQue (Intellicyt) or LSRII(BD), and analysis was performed using IntelliCyt ForeCyt (v8.1) or

FlowJo V10.7.1.

SARS-CoV-2 spike specific IgG and IgA isolation
IgA were purified from human plasma samples using CaptureSelect IgA Affinity Matrix (Thermo Fisher Scientific, Cat# 1942880005),

and flowthrough was used to purify the IgG with Protein A/G Agarose (Thermo Fisher Scientific, Cat# 20424). For both, the capture

matrices were washed three times with Binding Buffer (0.1 M phosphate, 0.15 M sodium chloride; pH 7.2) and incubated overnight

with 1:5 diluted plasma samples. Antibodies bound to matrices were washed 3x with PBST by centrifugation and eluted with Elution

Buffer (0.1 M glycine, pH 2-3). The antibodies were collected to tubes containing Neutralization Buffer (1 M Tris, pH 8-9) and used for

further analysis. The presence of IgA and IgG was confirmed by ELISA.

Antibody-dependent neutrophil activation and ROS release
A high-binding 96-well plate was coated with SARS-CoV-2 Spike protein (5ug/ml) and blocked with 5% BSA. Isolated antibodies

were added and incubated for 2h at RT; afterward, the plate was washed three times with PBS-Tween. Neutrophils were isolated

from fresh blood using the EasySepTM Direct Human Neutrophil Isolation Kit (STEMCELL Technologies, Cat# 19666) and adjusted
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to the concentration of 106 cells/mL. Luminol (Sigma-Aldrich, Cat# 123072) was diluted in DMSO and added to neutrophils at the final

concentration of 0.2 mg/mL. Cells with luminol were added to each well, and chemiluminescence was read immediately on a plate

reader (for around two hours). ROS release was quantified as chemiluminescence count/second.

Neutrophil cell death imaging assay
Methods were adapted from a previous publication.66

Fibronectin glass slide coating
15-mm round glass coverslips (Electron Microscopy Sciences, Cat# 72228-01) were coated in 5 mg/cm2 of fibronectin (Sigma, Cat#

F1141) diluted in PBS at room temperature for 5 min. The solution was removed and slides were allowed to dry for at least 45 min

before use.

Enhanced neutrophil isolation
Fresh bloodwas collected from healthy donors, moved to a 50mL conical, and diluted 1:2 with room temperature RPMI. Diluted sam-

ples were added to a SepMate tubes (Stemcell Technologies, Cat# 85450) that had been prefilled with 16 mL Ficoll (VWR, Cat#

21008-918). Samples were spun at 1200 xg for 20 min at 20�C with maximum acceleration and the brake on. Plasma and PBMCs

were removed, and the high density layer containing erythrocytes and granulocytes was moved to a 50mL tube. Samples then un-

derwent two rounds of red blood cell lysis using ACK Lysis Buffer (ThermoFisher Scientific, Cat# A1049201) and centrifugation for

5 min at 1500g, RT. Pellets were resuspended in 500mL of 1 mM EDTA in PBS per 10mL of blood, and 250uL aliquots were moved

to 15mL conicals. Negative selection for neutrophils was then performed with the EasySepTM Direct Human Neutrophil Isolation Kit

(STEMCELL Technologies, Cat# 19666) with custom modifications. 75 mL each of the RapidSpheres and Isolation Cocktail were

added to the cell suspension. Following a 5min incubation, sample volumes were completed to 4mLwith 1mMEDTA in PBS, mixed

gently, and placed on an EasyEightsTM EasySepTM Magnet (STEMCELL Technologies, Cat# 18103) for 5 min. Next, supernatants

were transferred to new 15 mL conical tubes, 37.5 mL RapidSpheres were added, and the samples were gently mixed and incubated

for 5min. Samples were then placed on themagnet, and after 5min incubation supernatants were transferred to new tubes, andwere

placed immediately on the magnet for a second incubation before the supernatants containing the enriched neutrophil populations

were collected, pelleted, and resuspended in PBS. Cells were counted on a TC20TM Automated Cell Counter (Bio-Rad Laboratories,

Inc., Cat# 1450102) with trypan blue staining for dead cell exclusion.

Cell death induction
15-mm fibronectin-coated glass coverslips were plated in individual wells of a 12-well plate. 400,000 neutrophils were added to each

slide in RPMI+L-glu and allowed to settle for 1 h at 37�C. Media was gently removed and replaced with desired treatment (PBS,

100nM Phorbol 12-myristate 13-acetate (PMA, Sigma, Cat# P1585), or free IgG or IgA antibodies isolated from patient plasma). Cells

were then incubated for 3 h at 37�C and 5% CO2.

Slide preparation
Media was gently removed from the slides and replaced with 4% paraformaldehyde (PFA) for 1 h. PFA was removed and slides were

gently washed with PBS three times. Cells were then permeabilized with 0.5% Triton X-100 in PBS with 0.1% Tween (PBS-T) for

30 min. Fixed and permeabilized cells were then blocked for 30 min at RT in 10% FBS in PBS-T. Blocking buffer was removed

and cells were incubated with primary rabbit anti-neutrophil elastase antibody (Abcam, Cat# ab131260) at a 1:100 dilution for 1 h

at RT. Coverslips were then washed three times with PBS. Cells were then incubated with Alexa Fluor 488-conjugated donkey

anti-rabbit antibody at a dilution of 1:1000 in PBS for 1 h at RT, protected from light. Coverslips were washed three times with

PBS. Cells were incubated with Hoescht 33342 trihydrochloride trihydrate at 1ug/mL for 5 min at RT, protected from light. Coverslips

were washed three times with PBS. Coverslips were then mounted onto glass slides in EverBrite Mounting Medium (BIOTIUM, Cat#

23001) and edges were sealed with clear nail polish.

Imaging and quantification
Cells were imaged with phase contrast and fluorescence microscopy using the Leica THUNDER Imager. Five random fields per con-

dition were imaged at 20x magnification. We counted potential NETs based on mixing of decondensed chromatin and neutrophil

elastase, whereas potentially apoptotic cells could be identified by membrane blebbing with phase contrast, and potential necrotic

cells had distinct condensed nuclei with loss of segmentation and membrane swelling (Figure 5I).

Neutrophil PMA-treatment time-lapse microscopy
Fresh healthy donor neutrophils were isolated as described above using the enhanced neutrophil isolation protocol. Wells of an

8-well chambered coverslip (ibidi, Cat# 80807) were coated with 0.01% poly-L-lysine for 10 min, aspirated, washed twice with

PBS, dried for 2 h, and rinsed once more. 75,000 neutrophils were plated in 200mL per well in RPMI+L-glu with 100nM SYTOX green

and 20mg/mL Hoechst 33342. Cells were placed in the Leica THUNDER Imager chamber and allowed to settle for 15 min. Cells were
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imaged once per minute for 45 min at 20x magnification with phase contrast, 3 fields per well. PMA (or an equivalent volume of PBS)

was added to each well for a final concentration of 100nM, and cells were imaged every minute for 300 min.

Sytox green cell death assay
Methods were adapted from a previous publication.46 All reagents used in this section were allowed to equilibrate to RT before use.

Poly-L-lysine plate coating: 96-well black clear bottom plates (Corning, Cat# 3904) were coated in 40mL of a 1:10 dilution of 0.01%

poly-L-lysine (Sigma-Aldrich, Cat# P4707-50ML) in sterile water. Plates were incubated at 37�C for one hour and subsequently

washed twice with sterile water, and were allowed to dry for at least two hours before use.

Enhanced neutrophil isolation: Enhanced neutrophil isolation was performed using the same protocol as the neutrophil cell death

imaging assay.

Neutrophil cell death induction and quantification: Using the highly-enriched neutrophil samples, 50,000 cells were plated in each

well of the poly-L-lysine-coated 96-well black clear bottom plates. Plates were then incubated for 20 min at 37�C and 5% CO2 to

allow neutrophils to adhere. Supernatant was then gently removed and immediately replaced with 32mL RPMI + L-glu with 625nM

SYTOXTM Green Nucleic Acid Stain (Invitrogen, Cat# S7020). 8mL of patient-isolated antibody was then added to each well for a total

of 40mL per well with a final 1:5 dilution of free antibody and 500nM SYTOXGreen. Plates were then incubated for 4 h at 37�C and 5%

CO2. Cells were gently removed from the incubator and fluorescence was quantified on a Cytation 5Microplate reader at 485nm and

523nmusing the area scan setting from the bottom of the plate. Absorbance at 485nmwas subtracted from the absorbance at 523nm

to obtain corrected RFU values.

Neutrophil degranulation assay
400,000 neutrophils isolated from healthy donors using the enhanced neutrophil isolation protocol described above were plated per

well of a 96-well U-bottom plate (Nunc, Cat# 168136). Cells were treated with the desired condition (10mg/mL LPS (Sigma, Cat#

L4391), PBS, or free patient-derived IgA or IgG antibodies at an average concentration of 0.2 mg/mL) in duplicate for 12 h at

37�C and 5% CO2. Cells were then stained with two separate panels of cell surface markers of neutrophil degranulation which

are translocated to the surface following exocytosis of granule contents. Panel 1: CD11b-APC (Clone ICRF44), CD14-APC/Cy7

(Clone 63D3), CD15-PE (Clone HI98). Panel 2: CD35-PE (Clone 9H3), CD45-Alexa Fluor 700 (Clone 2D1), CD63-FITC (Clone

H5C6), CD66b-APC (Clone G10F5). Flow cytometry was performed using a Sony MA900 instrument. Neutrophils were gated in

FlowJo based on forward (FSC) and side (SSC) scatter profiles, and MFI was averaged between duplicates.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq alignment
A custom FASTA was generated from theHomo sapiens (human) genome assembly GRCh38 (hg38) following exclusion of ALT, HLA,

and Decoy contigs according to documentation in the Broad Institute GTEx-TOPMed RNA-seq pipeline (https://github.com/

broadinstitute/gtex-pipeline/), with an appended SARS-CoV2 genome. GENCODE v35 with the appended SARS-CoV2 GTF was

used for annotation. Raw FASTQ files were aligned to the custom genome FASTA in the Terra platform with the Broad Institute

GTEx pipeline using STAR v2.5.3a, and expression quantification based on a collapsed annotation was performed using RSEM

v1.3.0.

Quality control
RNA-SeQC 224 (https://github.com/getzlab/rnaseqc) was used to calculate quality control metrics for each sample. Samples were

excluded if they did not meet the following criteria: 1) percentage of mitochondrial reads less than 20%, 2) greater than 10,000 genes

detected with at least 5 unambiguous reads, 3) median exon CV less than 1, 4) exon CV MAD less than 0.75, 5) exonic rate greater

than 25%, 6) median 30 bias less than 90%. This filtration kept 698 out of 781 samples (89.4%) (Table S1). Genes were included in the

analysis if they were expressed at a level of 0.1 TPM in at least 20% of samples and if there were at least 6 counts in 20% of samples.

In total, 20283 genes passed the filtration criteria.

Neutrophil fraction estimation and contamination control
CIBERSORTx35 was used to estimate the proportions of mature neutrophils, immature neutrophils, T/NK cells, B cells, plasmablasts,

and monocytes in each sample. To generate the signature matrix for deconvolution, we utilized the single-cell RNA-seq data of

PBMCs and neutrophils from whole blood from Cohort 2 of the Schulte-Schrepping et al dataset.9 Using the designations provided

in the public data, we created pseudobulks for each cell type per patient by summing the counts of a given cell type, andwe excluded

pseudobulked cell type samples from individual patients if the cell type had less than 5000 counts. To generate the CIBERSORTx

signature matrix, we set limits of 50–100 marker genes per cell type, and filtered for only hematopoietic genes. Following the gen-

eration of a signature matrix, we ran CIBERSORTx in ‘‘Impute Cell Fractions’’ in ‘‘relative’’ run mode to estimate the proportions

of each cell type. In agreement with studies demonstrating lymphopenia in severe COVID-19,100 we found higher fractions of

T/NK cells in non-severe patients across all time points (Table S1).
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Given the levels of immunoglobulin genes from contaminating plasma cells, we created an immunoglobulin score for each sample

to use as a covariate for regression (Figures S1F and S1I). To select genes, we chose the top 115 immunoglobulin genes which were

differentially expressed in Day 0 COVID+ vs. COVID- patients (DESeq2, no covariates) and assigned each sample a score according

to a previously described method.101 Briefly, the score was defined as the average log2(TPM+1) expression of the immunoglobulin

gene set, minus the average log2(TPM+1) expression of a control gene set. The control gene set was selected by sorting the entire list

of genes by aggregate counts across all samples, breaking the list into 25 bins, and for each gene in the immunoglobulin gene set,

selecting 100 genes at random from the same expression bin. Using this method, the control gene set has a comparable distribution

of expression levels relative to the immunoglobulin gene set and accounts for the varying complexity between samples.

Dimensionality reduction and visualization
PCA and UMAP were performed in R using prcomp() and umap() with default parameters. All box plots display median with first and

third quartiles (hinges); whiskers extend from the hinges to the smallest or largest value within 1.5 * IQR (interquartile range) of the

hinge.

Differential expression analysis
Differential expression analyses were performed using the DESeq2 package in R.95 For each analysis i, we excluded genes with less

than 5 counts in xi samples. To determine xi, we generated a curve plotting the required number of samples havingR5 counts as the

independent variable and the number of genes satisfying this condition as the dependent variable. We then selected the inflection

point of this curve to be xi.

Gene set enrichment analysis
We performed gene set enrichment analysis using the fgsea package in R using the following pathway sets from MSigDB Release

v7.2: H, C5 GO BP. We also performed a search of MSigDB using the keyword ‘‘neutrophil’’ and added the following pathways:

BIOCARTA_NEUTROPHIL_PATHWAY, GO_AZUROPHIL_GRANULE, GO_AZUROPHIL_GRANULE_LUMEN, GO_AZUROPHIL_

GRANULE_MEMBRANE, GO_FICOLIN_1_RICH_GRANULE, GO_NEGATIVE_REGULATION_OF_NEUTROPHIL_ACTIVATION,

GO_NEGATIVE_REGULATION_OF_NEUTROPHIL_MIGRATION, GO_NEUTROPHIL_CHEMOTAXIS, GO_NEUTROPHIL_

EXTRAVASATION, GO_NEUTROPHIL_MIGRATION,GO_POSITIVE_REGULATION_OF_NEUTROPHIL_MIGRATION,GO_REGULATION_

OF_NEUTROPHIL_ACTIVATION, GO_REGULATION_OF_NEUTROPHIL_CHEMOTAXIS, GO_REGULATION_OF_NEUTROPHIL_

DEGRANULATION, GO_REGULATION_OF_NEUTROPHIL_EXTRAVASATION, GO_REGULATION_OF_NEUTROPHIL_MEDIATED_

CYTOTOXICITY, GO_REGULATION_OF_NEUTROPHIL_MIGRATION, GO_SPECIFIC_GRANULE, GO_SPECIFIC_GRANULE_

LUMEN, GO_SPECIFIC_GRNAULE_MEMBRANE, GO_TERTIARY_GRANULE, HP_ABNORMAL_NEUTROPHIL_COUNT, HP_

ABNORMALITY_OF_NEUTROPHIL_MORPHOLOGY, HP_ABNORMALITY_OF_NEUTROPHIL_PHYSIOLOGY, HP_ABNORMALITY_

OF_NEUTROPHILS, HP_IMPAIRED_NEUTROPHIL_BACTERICIDAL_ACTIVITY, MARTINELLI_IMMATURE_NEUTROPHIL_DN,

MARTINELLI_IMMATURE_NEUTROPHIL_UP, NICK_RESPONSE_TO_PROC_TREATMENT_DN, NICK_REPSONSE_TO_PROC_

TREATMENT_UP, REACTOME_NEUTROPHIL_DEGRANULATION.

In addition to these pathways, we added gene sets corresponding to various neutrophil states and signatures: genes up- or down-

regulated more than threefold in blood neutrophils from ARDS patients,42 single-cell neutrophil clusters in blood or lung tissue of pa-

tients with lung cancer,41 single-cell neutrophil clusters from blood of patients with sepsis,40 and single-cell neutrophil clusters from

COVID-19 patients and healthy controls.9 For single-cell cluster markers, if there were more than 100marker genes per cluster, gene

sets were selected as the top 100 genes ranked by p value for enrichment in a given cluster. In addition, we included the NMF cluster

gene markers from this study as neutrophil state gene sets. The GMT file containing all genes per pathway used in this analysis is

available on Zenodo (https://doi.org/10.5281/zenodo.7076472), and the lists are included in Table S1.

NMF clustering analysis
In order to identify neutrophil subtypes, we performed NMF clustering of bulk RNA-Seq samples with CIBERSORTx estimated

neutrophil fraction >50% (mature neutrophils and immature neutrophils combined) to reduce artifacts of cell type contamination.

We used a previously described Bayesian NMF approach which identified 6 clusters.38,102,103 This method attempts to find a small

number of gene sets, termed metagenes, that capture the greatest amount of variability. None of the NMF-derived signatures map-

ped to healthy control-derived scRNA clusters in external datasets.9,40

Sample pathway scoring
Bulk RNA-seq sampleswere scored for expression of genes in a gene set according to a previously describedmethod used to control

for sample complexity, as we anticipated that cells with higher complexity resulting from contamination from other cell types would

have more genes detected and thus score higher for any gene set.101 Briefly, the score for each sample was defined as the average

expression of the genes in the gene setminus the average expression of genes in a control gene set. To define the control gene set, all

genes were ranked according to average expression across all samples and divided into 25 bins. Next for each gene in the gene set,

100 genes were selected from the same expression bin to create a gene set with comparable expression levels which is 100-fold
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larger. For the NETosis sample pathway score, we used the genes PADI4,MPO, ELANE, TNF,CXCL8,GSDMD, and TLR3. Our score

correlated strongly with a previously-defined NETosis gene signature (Figure S3H).50

Clustering analysis for single-cell blood neutrophils from sepsis patients
The gene expression matrix was imported into R using Seurat 4.0.4. Cells were excluded with fewer than 100 genes. Data were

normalized using the NormalizeData function and expression values were scaled using the ScaleData function in Seurat. 40 PCs

were selected for building the neighborhood graph. Clustering was performed with the Louvain algorithm with a resolution of 0.6

which resulted in 6 clusters. Cluster markers were determined using the FindMarkers function in Seurat, and p value corrections

were performed with the Benjamini-Hochberg method. Additionally, we scored cells for each NMF signature by taking the mean

z-scored expression across signature genes.

Neutrophil state network analysis
Neutrophil state gene signatures were taken from the sameGMT file used for GSEA analysis in Figure 2F. The network was built using

the igraph package in R. Edges were drawn between nodes if the Jaccard index between the two gene signature lists was greater

than 0.05. Edge width was scaled according to the overlap coefficient between the gene sets, and nodes were scaled according to

gene set size and colored according to the number of neighbors in the graph. Roughly six signatures grouped together in a branch of

the network we labeled ‘‘Immature Neutrophils’’, which included NMF1 and NMF4; key genes in this intersection were ribosomal

genes and development of neutrophil granules (NMF1 genes: DEFA4, AZU1, ELANE, CTSG, PRTN3. NMF4 genes: LTF, CAMP,

MMP8, LYZ, CEACAM8). Roughly ten signatures grouped together as G-MDSC-like neutrophils, with genes such as S100A12,

ARG1, CD177, MCEMP1, and GYG1 often shared. Finally, the interferon-stimulated neutrophils had the most distinctive gene

expression patterns, sharing many ISGs including IFIT1, IFIT2, IFIT3, XAF1, OASL, PLSCR1, TNFSF13B, RSAD2, ISG15, DDX58,

and several more. By examining the overlap of the NMF marker genes with these previously-defined neutrophil transcriptional sig-

natures, we confirmed that multiple signatures across studies shared several genes, suggesting that these NMF signatures may

represent neutrophil subtypes in multiple disease contexts.

Schulte-Schrepping single-cell RNA-seq reanalysis for early-late threshold
The single-cell fresh whole blood neutrophil data from Bonn cohort 2, originally analyzed by Schulte-Schrepping et al.,9 was rean-

alyzed for cluster membership according to day using day 11 as the threshold for late disease. For each cluster, we created a running

metric for howmany cells were classified as ‘‘early’’ by calculating the percentage of cells collected fromDay 0 to Day x (Figure S2G).

Sinha dexamethasone analysis
Wedownloaded themerged COVID-19 scRNA data from the Sinha study36 and subsetted the data to the cells labeled as neutrophils.

We then renormalized the data using the Seurat function NormalizeData, identified variable features using the Seurat function

FindVariableFeatures, clustered cells using data from the first 15 principal components using the Louvain algorithm with a resolution

of 0.6, resulting in 12 clusters. We then scored each cell for each of the NMF signatures by taking the mean z-scored expression for

each of the signature genes. Finally, we grouped cells by time point (either 72 h or 7 days) and then compared each NMF signature

score between cells from patients treated with dexamethasone vs. non-dexamethasone-treated patients as well as patients that sur-

vived vs. those that died using the Wilcoxon rank-sum test.

ARDS log fold-change comparisons
Log2(fold-change) (LFC) values in blood neutrophil microarray gene expression between non-COVID-19 ARDS patients and healthy

volunteers was obtained from the study from Juss et al.42 Linear regression on the LFC values in ARDS vs. healthy volunteers and

severe COVID-19 vs. mild COVID-19 was performed using the lm package in R. To generate a ranked list of genes based on the dif-

ferences in LFC values, ARDS LFC valueswere z-scored, andmild vs. severe COVID-19 LFC valueswere z-scored on each individual

day. GSEA was then performed on the lists using the difference in LFC z-score as the ranking metric. Finally, we assessed the over-

representation of each NMF signature gene set in the ARDS Up and Down gene sets by counting the number of overlaps for each

signature and evaluating the significance of each overlap using the hypergeometric test.

Day:Severity interaction analysis
To identify diverging patterns of gene expression between severity groups with time, we built models using DESeq2 for COVID-19+

samples on Days 0, 3, and 7. The full model included CIBERSORTx estimated cell type fractions, the immunoglobulin score, and the

terms for Day, SeverityMax, and the Day:SeverityMax interaction term, while the reduced model did not include the interaction term,

and we used the likelihood ratio test in DESeq2 to compare these models. Log(fold-change) values and p values were extracted to

generate a ranked list of genes according to signed p values for GSEA.

Logistic regression models to predict severe COVID-19 on day 0
Logistic regressionmodels were built using the glm package in R. In order to ensure the stability and interpretability of the coefficients

in the model, we included only COVID-19+ patients on Day 0 who were not immediately discharged from the ED (AcuityMax1-4) and
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who had complete data for ANC, ALC, D-dimer, CRP, LDH, and BMI measured at Day 0. For patients with AcuityMax 1-4, 7 patients

hadmissing clinical data, and these 7missing patients were not biased towards a particular severity according to Fisher’s exact test.

All parameters used were broken into discrete quintiles unless insufficient samples belonged to one category, in which case factor

levels were combined in order to minimize the standard error of the coefficient estimation. We combined factor levels for age, LDH,

and BMI, leaving 4 factor levels for age and LDH, and 5 factor levels for BMI (BMI was the only category scored from 0 to 5). Models

were built according to three tiers of parameters. Model 1: clinical characteristics (age, gender, ethnicity, heart disease, diabetes,

hypertension, hyperlipidemia, lung disease, kidney disease, immunocompromised status, BMI), Model 2: clinical characteristics

plus clinical laboratory values (ANC, ALC, Creatinine, CRP, D-dimer, LDH), and Model 3: clinical characteristics plus clinical labora-

tory values plus neutrophil gene signature scores (NMF1, NMF2, NMF3, NMF4, NMF5, NMF6, ARDS Up - Juss, ARDS Down - Juss).

ROC curves and AUC values were calculated using the pROC package in R. Significance of model improvement was determined

using the likelihood ratio test using the lrtest package in R.

Feature selection for the best predictors on Day 0 of severity within 28 days among the variables used in Model 3 was performed

using LASSOwith the glmnet package in R with 100 repeats of 5-fold cross validation.23 The LASSO algorithm shrinks all coefficients

and sets coefficients of less important (i.e. highly correlated) variables to zero, simplifying potential application of the model by

decreasing the number of values measured. Model tuning was performed using the caret package in R. We ranked features accord-

ing to the number of cross-validation folds in which they were selected for the LASSOmodel (Figure 3D). Features included in at least

98% of repeats were related to NMF5 score, LDH, IL1RL1 protein, S100A12 protein, age, AREG protein, creatinine, NMF1 score,

ARDS UP score, and FKBP5 protein. Finally, we performed the same analyses using a fourth model (Model 4) which included clinical

characteristics plus clinical laboratory values plus neutrophil gene signature scores plus neutrophil-expressed protein measure-

ments in patient plasma (NMF5: TNC, TNFRSF10C, S100A12, HGF, F9; Severe: AREG, MMP8, IL1RL1, FKBP5, VSIG4).

Plasma proteomic markers of neutrophil subtypes
To identify plasma proteins associated with neutrophil NMF subtypes, we performed a Wilcoxon rank-sum test for all of the 1472

proteins measured in the Olink plasma proteomic assay between samples from NMF clusteri versus all other clusters (including

Neu-Lo). We used the updated Olink proteomics data (https://info.olink.com/broad-covid-study-overview-download) which had

the following modifications: 1) scale correction factors were no longer used, and 2) limits of detection were calculated on a per plate

basis rather than thewhole project. This resulted in the recovery of 43 assayswhichwere not included in the original version; using the

new method, no assays had 100% of samples below the limit of detection. Results for each cluster were filtered for padj > 0.05, first

selecting only positive markers (higher protein levels in clusteri), and next selecting only negativemarkers (lower protein levels in clus-

teri). The strongest positive markers were selected by filtering out all markers which did not satisfy the criteria that 1) the highest

expression of the protein was in the given NMF cluster and 2) the step ratio, defined as the NPX difference between the given

NMF cluster and the second-highest expressing cluster, was at least 0.1. A similar method filtering out markers that did not have

the lowest expression in the given NMF cluster and markers with a step ratio for the second lowest cluster of at least 0.1 was

used for negative markers. Heatmaps of the protein markers per cluster were generated with the pheatmap package in R, with genes

ordered according to p value.

Comparison of differential expression and plasma proteomic data
To compare log2(fold-change) values on the plasma protein level and neutrophil RNA transcriptional level, we performed differential

expression analyses for each. For plasma proteins, we fit linearmodels using the lmpackages in R for each protein using the following

clinical covariates: age, gender, ethnicity, heart disease, diabetes, hypertension, hyperlipidemia, pulmonary condition, kidney dis-

ease, immunocompromised status. For RNA-seq data, we used DESeq2 differential expression analysis in R with the same clinical

covariates as well as the CIBERSORTx estimated cell type fractions. The LFC values were compared for COVID-19+ vs. COVID-19–

samples, as well as severe vs. non-severe samples on Days 0, 3, and 7 separately.

Ligand-receptor interaction analysis
A curated ligand-receptor pair database from FANTOM5 was used to search for interactions between neutrophil receptors and

plasma ligands on either the basis of SeverityMax or neutrophil NMF cluster.104 The database was filtered on ligand-receptor inter-

actions identified as ‘‘literature-supported’’ or ‘‘putative’’, and was further filtered for receptors with non-zero expression in granu-

locytes according to the Human Protein Atlas.92 To identify neutrophil receptors associated with specific NMF clusters, differential

expression was performed using DESeq2 for NMF clusteri versus all other clusters irrespective of Day. Only positive gene markers

were kept with padj < 0.05. Differentially expressed receptors which were not unique to a single NMF cluster were excluded. Similarly,

differential expression of plasma proteins was performed using lm in R comparing NMF clusteri vs all other clusters (including Neu-

Lo), and proteins were kept with padj < 0.05. Thus a list of potential interactions was generated using the database. To determine

whether the neutrophil receptors and plasma proteins were differentially expressed within the same sample rather than the aggre-

gated group, the percentage of samples within a given NMF cluster on a specific day which had higher than mean expression across

all COVID-19+ samples of both neutrophil receptor and plasma protein were calculated. In Figures 7A, 7B, and S5, ligands matching

with multiple receptors were then colored according to the interaction which had the highest percentage of above-mean expression,
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and secondary interactions were indicated with reduced line width. Plasma ligands were then mapped to the inferred cell-of-origin

using single-cell data from bronchoalveolar lavage fluid from COVID-19 patients as previously described.5,23

Wendisch BAL scRNA-seq data analysis
We downloaded the BAL COVID-19 scRNA-seq data from the Wendisch study83 and subsetted the data to the cells labeled as neu-

trophils. We then renormalized the data using the Seurat function NormalizeData, identified variable features using the Seurat func-

tion FindVariableFeatures, and clustered cells using data from the first 15 principal components using the Louvain algorithm with a

resolution of 0.6, resulting in 9 clusters.We then scored each cell for each of the NMF signatures by taking themean z-scored expres-

sion for each of the signature genes. Finally, we compared each NMF signature score between cells from patients that survived vs.

those that died using the Wilcoxon rank-sum test.
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