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Abstract 

Background:  Epidemiological evidence relating obesity to peptic ulcer disease (PUD) has been mixed. Here we 
sought to determine the causality in the association of obesity with PUD risk using the Mendelian randomization (MR) 
approach.

Methods:  This study was based on summary-level data for body mass index (BMI), waist-to-hip ratio (WHR), and PUD 
derived from large genome-wide association studies (GWASs). Single nucleotide polymorphisms significantly associ-
ated with BMI and WHR (P < 5 × 10–8) were leveraged as instrumental variables. Causal estimates were pooled using 
several meta-analysis methods. In addition, multivariable MR was employed to account for covariation between BMI 
and WHR, as well as to explore potential mediators.

Results:  Genetically predicted higher BMI has a causal effect on PUD, with an OR of 1.34 per SD increase in BMI 
(~ 4.8 kg/m2) (P = 9.72 × 10–16). Likewise, there was a 35% higher risk of PUD (P = 2.35 × 10–10) for each SD increase in 
WHR (0.09 ratio). Complementary analyses returned consistent results. Multivariable MR demonstrated that adjust-
ment for WHR largely attenuated the BMI-PUD association. However, the causal association of WHR with PUD risk 
survived adjustment for BMI. Both the associations remained robust upon adjustment for several traditional risk fac-
tors. Replication analyses using different instrumental variants further strengthened the causal inference. Besides, we 
found no evidence for the causal association in the reverse analyses from PUD to BMI/WHR.

Conclusions:  This MR study revealed that obesity (notably abdominal obesity) is causally associated with higher PUD 
risk. Programs aimed at weight loss may represent therapeutic opportunities for PUD.
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Introduction
Peptic ulcer disease (PUD) is a common gastrointesti-
nal disorder that significantly impacts the quality of life 
[1, 2]. Management has become more challenging than 
ever before due to the increasing prevalence of PUD 
not caused by the use of NSAIDs or Helicobacter Pylori 

infection [2]. The identification of modifiable risk factors 
for PUD is clinically important in reducing the burden of 
the disease.

Obesity has been associated with an alteration in gut 
microbiota [3], gut inflammation, and the breakdown of 
the gastrointestinal mucosal epithelial barrier [4]. Epide-
miological studies suggested that obesity may increase 
the incidence of PUD [5–7]. However, evidence of the 
association was contradictory. In another observational 
study, Jeung Hui Pyo et al. reported that obesity was not 
related to PUD [8] upon multiple adjustment. In addi-
tion, observational associations may be biased by reverse 
causation and residual confounders, thus distorting true 
relationships.
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Clarifying the causal link between obesity and PUD 
may offer new avenues for the treatment against PUD. 
Mendelian randomization (MR) has been widely used as 
an epidemiological tool for causality inference in asso-
ciations of exposures with outcomes [9]. With genetic 
variants leveraged as instruments, this technique can 
minimize the biases inherent in observational studies, 
thereby strengthening the causal inference. The present 
study sought to evaluate the potential causal effect of 
total obesity and abdominal obesity on PUD risk by the 
MR approach.

Methods
Study design
First, we performed two-sample MR analyses to assess 
the effect of body mass index (BMI) (total obesity) and 
waist-to-hip ratio (WHR) (abdominal obesity) as expo-
sures on PUD as an outcome trait. Then, we performed 
reverse MR analyses, where PUD was used as exposure 
and obesity characteristics (BMI/WHR) were used as 
outcome. The following three key assumptions should 
be considered when performing MR analysis. First, 
instrumental variables (IVs) are linked to BMI or WHR 
at a genome-wide significance level; Second, IVs are not 
associated with potential confounding factors; Third, IVs 
should lead to PUD exclusively via the selected expo-
sure. The current study did not require specific ethical 
approval or written informed consent.

Data sources and instruments variables (IVs) selection
Summary-level data for PUD was derived from a 
genome-wide association study (GWAS) including up 
to 16,666 cases and 439,661 controls from UK biobank 
(Table  1) [10]. Individuals with gastric ulcer, duodenal 

ulcer, other site peptic ulcer, or astro-jejunal were defined 
as PUD cases [10].

Primary analyses were performed using genome-wide 
significant (P < 5 × 10–8) single nucleotide polymor-
phisms (SNPs) identified from the largest GWAS that 
combined data from UK biobank and the Genetic Inves-
tigation of Anthropometric Traits (GIANT) consortium, 
including up to 694,649 individuals of European descent 
(Table 1) [11]. We set a cut-off for minor allele frequency 
to > 1%, leaving 85,044 and 39,427 SNPs for BMI and 
WHR (unadjusted for BMI), respectively. To obtain valid 
IVs, these SNPs were then pruned at r2 < 0.001 across a 
window size of 10000  kb (based on the 1000 Genomes 
Project population [12]) to avoid bias of linkage disequi-
librium. For those SNPs not available in the outcome 
dataset, proxies (r2 > 0.8) were found by searching the 
publicly available website (http://​snipa.​helmh​oltz-​muenc​
hen.​de/​snipa3/) (Additional file 1: Table S1). Finally, 531 
and 343 SNPs were included for BMI and WHR, respec-
tively (Additional file  1: Table  S2 and 3). In addition, 
we calculated F-statistics to assess whether there was a 
weak IV bias ( F = R

2 N−2

1−R2
 ). R2 refers to the percentage 

of the variation explained by SNPs and is calculated as 
described by Shim et al. [13]; N represents the total sam-
ple size [14].

However, there was a sample overlap (UK Biobank 
mainly) in the participants included in the primary anal-
yses (Table  1). To test the robustness of the results, we 
then retrieved summary-level data for BMI and WHR 
from other GWASs where only individuals of the GIANT 
consortium were included (339,224 samples for BMI 
and 224,459 samples for WHR), so that there would be 
no sample overlap with the outcome data (Table 1) [15, 
16]. These SNPs underwent similar quality-control steps, 

Table 1  Detailed information on data sources

PUD peptic ulcer disease; BMI body mass index; WHR waist-to-hip ratio; H.P. Helicobacter Pylori; T2D type 2 diabetes mellitus; LDL-C low-density lipoprotein 
cholesterol; HDL-C high-density lipoprotein cholesterol; TC total cholesterol; TG triglyceride; GIANT Genetic Investigation of ANthropometric Traits; DIAGRAM DIAbetes 
Genetics Replication and Meta-analysis; GLGC global lipids genetics consortium; GSCAN GWAS & Sequencing Consortium of Alcohol and Nicotine use

Phenotype Study or consortium Ancestry Sample size Cases Adjustment

PUD UKBiobank European 456,327 16,666 Sex, age and 20 ancestry principal components

BMI UKBiobank + GIANT European 806,834 – Age, age-squared, sex and principal components 1–5

WHR UKBiobank + GIANT European 697,734 – Age, age-squared, sex and principal components 1–5

H.P. infection UKBiobank European 462,933 1,329 Age, sex, 10 genetic principal components, and genotyping batch

T2D DIAGRAM European 149,821 34,840 Study-specific covariates, including indicators of population 
structure

LDL-C, HDL-C, TC, TG GLGC European 188,578 – Age, age2, and sex

Smoking, alcohol use GSCAN European 1,232,091 – Age, sex, age × sex interaction, and the first ten genetic principle 
components

BMI GIANT European 339,224 – Age, age squared, and any necessary study-specific covariates (e.g. 
genotype-derived principal components)

WHR GIANT European 224,459 – Age, age2, and other study-specific covariates

http://snipa.helmholtz-muenchen.de/snipa3/
http://snipa.helmholtz-muenchen.de/snipa3/
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leaving 78 SNPs and 29 SNPs for BMI and WHR, respec-
tively. Considering 2 SNPs for BMI not available in the 
outcome datasets with no suitable proxies found, both 
SNPs were excluded from the study. Here, we provided 
the characteristics of the remaining 76 SNPs and 29 SNPs 
in Additional file 1: Table S4 and S5, with R2 and F-statis-
tics calculated as well.

In the reverse analyses, we extracted 8 independent 
SNPs as IVs for PUD using the above method. SNPs not 
found in the outcome datasets were replaced with their 
proxies if any (Additional file 1: Table S6). Detailed infor-
mation for these SNPs were provided in Additional file 1: 
Table S7.

Mendelian randomization analyses
Inverse-variance weighted (IVW) in the multiplicative 
random-effects model was employed as the main method 
given the presence of heterogeneity among SNPs [17, 18]. 
A series of complementary analyses were conducted: The 
weighted median [19] and MR-Egger [20] provided more 
conservative causal estimates; and the MR-pleiotropy 
residual sum and outlier (MR-PRESSO) methods [21] 
was employed to identify pleiotropic outliers that may 
bias the results. Heterogeneity among IVs was measured 
by the heterogeneity Q test and I2 statistics. Horizontal 
pleiotropy was assessed using the MR-Egger regression 
intercept [22].

Since BMI and WHR are correlated covariates to 
each other, collider bias is likely to affect our results. To 
avoid this problem, we performed the multivariable MR 
method [23] to adjust BMI for WHR, and likewise, to 
adjust WHR for BMI. In addition, we included Helico-
bacter Pylori (H.P.) infection, type 2 diabetes (T2D), dys-
lipidemia, smoking, and alcohol use in multivariable MR 
to determine whether the causal association between adi-
posity and PUD, if any, was mediated by these traditional 
risk factors. Summary statistic for H.P. infection was 
derived from UK Biobank database (http://​www.​neale​
lab.​is/​uk-​bioba​nk, ID: ukb-b-531), T2D from the GWAS 
conducted by DIAGRAM consortium (452,244 individu-
als; 81,412 cases) [24], circulating lipid levels (LDL-C, 
HDL-C, TC, and TG) from the Global Lipids Genetics 
Consortium (188,578 individuals) [25], and smoking and 
alcohol use from the GWAS & Sequencing Consortium 
of Alcohol and Nicotine use (1,232,091 individuals) [26].

We calculated the statistical power using a publicly 
available tool (https://​shiny.​cnsge​nomics.​com/​mRnd/) 
based on a type 1 error of 5% [27]. There was over 80% 
power to detect an OR of 1.09 for the BMI-PUD asso-
ciation, and 1.12 for the WHR-PUD association in the 
primary analyses; an OR of 1.15 for the BMI-PUD asso-
ciation, and 1.25 for the WHR-PUD association in the 
replication analyses. The estimates were considered 

significant at P < 0.025 (0.05/2 exposures). MR analyses 
were performed using packages including TwoSampleMR 
[28], MendelianRandomization [29], and MR-PRESSO 
[21] within software R (version 4.1.0).

Results
All IVs in the present study had F-statistics above the 
threshold of 10, suggesting sufficient IV strength for MR 
analyses. These SNPs were estimated to account for 5.51% 
and 3.43% of the phenotypic variation of BMI and WHR, 
respectively (Additional file  1: Table  S2 and S3). In the 
replication analyses, genetic variants IVs explained 2.32% 
and 0.78% of the variation of BMI and WHR, respectively 
(Additional file 1: Table S4 and S5). The selected SNPs for 
PUD were estimated to account for 2.32% of the variation 
of PUD (Additional file 1: Table S7).

For per SD increase in genetically determined BMI 
(~ 4.8 kg/m2) there was 34% increased odds of PUD (95% 
confidence interval [CI], 25–44%; P = 9.72 × 10–16; Fig. 1 
and Additional file  1: Fig S1). In an analogous analy-
sis, we observed that each 0.09 ratio higher WHR was 
associated with a 35% increase in risk for PUD (95% CI, 
23–49%; P = 2.35 × 10–10; Fig. 1 and Additional file 1: Fig 
S1). The results remained broadly consistent in the com-
plementary analyses such as weighted median and MR-
Egger regression (Fig. 1). There were 3 outliers for WHR 
(rs1680490, rs668871, and rs6861681) identified by the 
MR-PRESSO method. The results did not substantially 
change after correcting for these outliers (Fig. 1). Impor-
tantly, little evidence for heterogeneity and horizontal 
pleiotropy was found (Additional file 1: Table S8).

Multivariable MR demonstrated that the effect of 
BMI on PUD was attenuated upon adjustment for WHR 
(Table  2). Nevertheless, the causal association of WHR 
with PUD persisted after adjusting for BMI (Table  2). 
Besides, both BMI-PUD and WHR-PUD associations 
remained consistent following adjustment for genetically 
determined H.P. infection, T2D, circulating lipid lev-
els, smoking, or alcohol use (Table 2). Furthermore, the 
results were robust under adjustment for all these life-
style factors (Table 2).

In the replication analyses, we used IVs based on sum-
mary-level data for both obesity traits from individuals 
included in the GIANT consortium [15, 16]. IVW analy-
sis showed that genetically-predicted higher BMI (per 
SD) was associated with an 17% increase in risk for PUD 
(95% CI = 5–31; P = 0.006; Fig.  2 and Additional file  2: 
Fig S2). The MR estimate for WHR-PUD association was 
also positive and, notably, of a greater magnitude; Genet-
ically-predicted higher WHR was associated with 35% 
higher risk of PUD (95% CI = 13–61%; P = 0.001; Fig.  2 
and Additional file  2: Fig S2). Complementary analyses 
returned broadly consistent results (Fig. 2 and Additional 

http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
https://shiny.cnsgenomics.com/mRnd/
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file  2: Fig S2). No pleiotropic outliers were detected by 
the MR-PRESSO test. The risk of heterogeneity and hori-
zontal pleiotropy should be low according to multiple 
tests listed in Additional file 1: Table S9.

Reverse MR analyses provided no evidence for the 
causal effect of PUD on BMI or WHR (Fig. 3 and Addi-
tional file 2: Fig S3). The association pattern persisted 
when different datasets for BMI and WHR were used 

(Fig. 3 and Additional file 2: Fig S4). Besides, comple-
mentary analyses yielded broadly consistent results 
(Additional file  1: Table  S10). SNP heterogeneity was 
high for BMI and WHR in the original analyses but not 
in the replication analyses. (Additional file 1: Table S11 
and S12). MR Egger regression indicated a low risk of 
pleiotropy in both the original and replication analyses 
(Additional file 1: Table S11 and S12).

Fig. 1  Associations of genetically determined BMI and WHR with PUD risk. BMI: body mass index; WHR: waist-to-hip ratio; PUD, peptic ulcer disease; 
SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; IVW (mre), multiplicative random-effects inverse-variance weighted; 
MR-Egger, Mendelian Randomization-Egger; MR-PRESSO, MR-Pleiotropy Residual Sum and Outlier. Datasets for BMI and WHR were extracted from 
GWAS conducted by Pulit et al. *Excluding the outliers for WHR (rs1680490, rs668871, and rs6861681)

Table 2  Multivariable Mendelian randomization for the associations between obesity traits and PUD adjusting for potential mediators

BMI Body Mass Index; WHR Waist-to-hip ratio; H.P. Helicobacter Pylori; T2D type 2 diabetes mellitus; LDL-C low-density lipoprotein cholesterol; HDL-C high-density 
lipoprotein cholesterol; TC total cholesterol; TG triglyceride

*Factors including H.P infection, T2D, LDL-C, smoking, and alcohol use. Restricted to LDL-C to avoid collinearity with HDL-C, TC and TG levels

Model BMI WHR

OR (95% CI) P-value OR (95% CI) P-value

Unadjusted model 1.34 (1.25, 1.44) 9.72 × 10–16 1.35 (1.23, 1.49) 2.35 × 10–10

Adjusted for WHR 1.19 (0.99, 1.43) 0.070 – –

Adjusted for BMI – – 1.23 (1.06, 1.41) 0.005

Adjusted for H.P. infection 1.30 (1.18, 1.43) 3.17 × 10–8 1.31 (1.16, 1.48) 8.89 × 10–6

Adjusted for T2D 1.34 (1.23, 1.46) 3.03 × 10–12 1.39 (1.24, 1.55) 1.56 × 10–8

Adjusted for LDL-C 1.33 (1.23, 1.44) 8.68 × 10–13 1.31 (1.18, 1.46) 9.15 × 10–7

Adjusted for HDL-C 1.35 (1.23, 1.49) 3.14 × 10–10 1.40 (1.25, 1.57) 1.23 × 10–8

Adjusted for TC 1.33 (1.23, 1.44) 1.53 × 10–13 1.32 (1.19, 1.46) 1.91 × 10–7

Adjusted for TG 1.34 (1.22, 1.46) 1.16 × 10–10 1.38 (1.22, 1.55) 1.56 × 10–7

Adjusted for smoking 1.25 (1.15, 1.35) 2.86 × 10–8 1.27 (1.15, 1.40) 3.70 × 10–6

Adjusted for alcohol use 1.34 (1.25, 1.44) 2.52 × 10–16 1.36 (1.24, 1.49) 1.83 × 10–10

Adjusted for all lifestyle factors* 1.16 (1.03,1.31) 0.013 1.20 (1.03,1.39) 0.022



Page 5 of 8Li et al. BMC Medical Genomics          (2022) 15:209 	

Discussion
This bidirectional MR study demonstrated that geneti-
cally predicted obesity (notably abdominal obesity) was 
causally associated with PUD risk. The results were 
consistent across complementary analyses and survived 
adjustment for several traditional risk factors. Besides, no 
evidence was found to support the causal effect of PUD 
on obesity.

The association between obesity and PUD remain a 
subject of ongoing debate. Generally speaking, PUD is 
divided into gastric ulcers (GU) and duodenal ulcers 
(DU). Our results collaborated with a series of previous 
observational studies. Evidence from a cross-sectional 

study reported a positive association between obesity and 
GU (but not DU) (OR = 4.15; 95% CI, 1.31–13.13) among 
northern Sweden individuals [7]. A retrospective cohort 
study enrolling 32,472 Korean individuals found a pat-
tern of relationships of higher BMI with increased risk 
of GU (OR, 1.32; 95% CI, 1.16–1.49; P < 0.001), but not 
with the risk of DU [8]. Likewise, another large prospec-
tive cohort study with 47,120 U.S. individuals reported an 
increased prevalence of GU in subjects with higher BMI 
upon multivariate adjustment (OR, 1.83; 95% CI, 1.20–
2.78; P < 0.01) [5]. Similarly, the same research group 
showed that BMI was not associated with a greater ten-
dency in suffering from DU [5]. In this study, we provided 

Fig. 2  Replication analyses showing the associations of genetically determined BMI and WHR with PUD risk. BMI: body mass index; WHR: 
waist-to-hip ratio; PUD, peptic ulcer disease; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; IVW (mre), multiplicative 
random-effects inverse-variance weighted; MR-Egger, Mendelian Randomization-Egger; MR-PRESSO, MR-Pleiotropy Residual Sum and Outlier. 
Datasets for BMI and WHR were extracted from GWAS conducted by Locke et al. and Shungin et al., respectively

Fig. 3  Associations of genetically determined PUD with risk of BMI and WHR. BMI: body mass index; WHR: waist-to-hip ratio; PUD, peptic ulcer 
disease; SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval
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evidence supporting the positive association of obesity 
with PUD risk in European populations and demon-
strated a potential causality of this relationship. Consid-
ering that significance was observed only in the BMI-GU 
relationship in previous studies, we speculated that the 
positive results observed in this MR study may be largely 
attributable to the fact that BMI increased the risk of GU, 
but not DU. Future MR study using separate GWAS data-
sets for GU and DU should shed light on this important 
issue.

The multivariable MR study suggested a great attenu-
ation of the association between BMI and PUD after 
adjusting for WHR. Indeed, BMI is considered an impre-
cise obesity classification method since it ignores the 
distribution of adiposity and cannot distinguish between 
lean body mass and fat mass [30, 31]. Therefore, it may be 
a relatively poor tool for exploring associations between 
obesity and diseases. On the other hand, our results 
demonstrated that the association between WHR and 
PUD was not significantly attenuated after adjusting for 
BMI. As previously reported, WHR is an independent 
biological tool for abdominal adiposity and visceral fat 
measurement [32]. The results from the multivariable 
MR specifically demonstrated that the causal association 
between WHR and PUD was independent of BMI. In 
other words, individuals with higher abdominal adiposity 
are more likely to suffer from PUD, even if their BMI is 
relatively low.

The pathophysiology of PUD has been associated with 
the use of NSAIDs and Helicobacter Pylori infection. 
However, the underlying mechanisms linking obesity to 
PUD is not yet well-elucidated. Observationally, obesity 
was strongly associated with PUD in non-NSAIDs/aspi-
rin users and Helicobacter Pylori-negative subjects [5]. 
Therefore, the observed causal effect of obesity on PUD is 
likely to be independent of anti-inflammatory drug use or 
Helicobacter Pylori infection. Recent studies have linked 
obesity to mucosal dysfunction [33, 34], which is one of 
the potential mechanisms associated with PUD [35]. In 
our study, we performed multivariable MR analyses to 
explore potential mediators. Obesity has been associated 
with metabolic diseases like T2D [36] and dyslipidemia 
[37], and unhealthy behaviors like smoking [38] and alco-
hol use [39]. However, this MR study demonstrated that 
the association of obesity with PUD risk persisted upon 
adjustment for these risk factors. In addition, obesity-
induced alteration in gut microbiota [3, 4] and gastroin-
testinal inflammation [40] are also likely to mediate the 
causal associations. However, detailed research is insuf-
ficient. Further studies into how obesity is involved in the 
development of PUD are warranted.

There are three issues that can violate the MR 
assumption and lead to biased causal inferences: (1) 

biological mechanism; (2) genetic coinheritance; and 
(3) population effects. Pleiotropy represents one of the 
most important biological mechanisms. In the present 
study, MR-Egger intercept test was carried out to assess 
pleiotropy. As shown in Additional file 1: Table S8, S9, 
S11 and S12, there was no evidence for pleiotropy for 
all associations considered. Secondly, we ruled out the 
effect of non-Mendelian inheritance by performing 
the clumping process with R2 threshold of < 0.001 and 
window size of 10,000  kb. Thereby, the influence of 
genetic coinheritance would be minimal in this study. 
Third, the population stratification is unlikely to bias 
our results since all of the participants involved in these 
original GWASs were of European ancestry.

The MR design that we used is the first strength of 
this study, which can minimize biases such as residual 
confounders and reverse causation. Reverse causation 
describes a scenario where post-event measurement 
of the exposure can be affected by the outcome event. 
For example, one can hardly tell whether event A cause 
higher risk of event B or event B increased incidence of 
event A in the observational studies. The MR approach 
can avoid reverse causation because genetic variants 
were randomly assorted during conception and unlikely 
to be influenced by disease status. Besides, we here per-
formed reverse MR analyses from PUD to obesity and 
no evidence was found for the causal association in this 
direction, which further minimized the influence of 
reverse causation. Second, the present study leveraged 
a high statistical power (above the threshold of 80%) 
enabled by the use of the largest GWAS meta-analy-
ses to date. Third, all the complementary approaches 
returned consistent results, strengthening the causal 
inference. Finally, the analyses were less likely to be 
affected by the bias of population structure since they 
were restricted to individuals of European descent.

However, several limitations deserved consideration. 
First, we did not evaluate the associations between obe-
sity and different subtypes of PUD (GU and DU) due 
to a lack of related GWASs. Second, the potential non-
linear association cannot be assessed since this study 
relies on summary statistics. Third, sample overlap in 
the GWASs of obesity and PUD (UK Biobank mainly) 
are likely to bias the causal estimates and inflate Type 
1 error rates [41] in the primary analysis. However, 
given that all genetic variants that we used were con-
firmed to be strong (F statistics > 10), we did not expect 
substantial bias here [41]. In addition, the results were 
consistent in the replication analyses where no sam-
ple overlap was present between the exposure and 
outcome. Finally, the limitation of participants in this 
study to Europeans might limit the generalizability of 
this study.
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Conclusions
In the present study, we provided genetic evidence 
showing that obesity (notably abdominal obesity) is 
causally associated with increased PUD risk. Programs 
aimed at weight loss may play an important role in pre-
venting PUD.
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