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ABSTRACT: Quantum annealing has been used to predict
molecular adsorption on solid surfaces. Evaluation of adsorption,
which takes place in all solid surface reactions, is a crucially important
subject for study in various fields. However, predicting the most stable
coordination by theoretical calculations is challenging for multi-
molecular adsorption because there are numerous candidates. This
report presents a novel method for quick adsorption coordination
searches using the quantum annealing principle without combinatorial
explosion. This method exhibited much faster search and more stable
molecular arrangement findings than conventional methods did,
particularly in a high coverage region. We were able to complete a
configurational prediction of the adsorption of 16 molecules in 2286 s
(including 2154 s for preparation, only required once), whereas
previously it has taken 38 601 s. This approach accelerates the tuning of adsorption behavior, especially in composite materials and
large-scale modeling, which possess more combinations of molecular configurations.
KEYWORDS: Quantum annealing, Multimolecular adsorption, Combinatorial explosion, Coverage

Q uantum annealing has been used mostly in toy models
(knapsack problem, traveling salesman problem) and

logistics, but we were the first to successfully use it to predict
molecular adsorption in chemistry. Molecular adsorption on
solid surfaces is an important phenomenon of catalysis,1 gas
sensors,2,3 separation and purification processes,4 drug
delivery,5 and surface modification.6 Fine control of adsorption
behavior can therefore play an important role for energy
conservation and sustainable societies. Adsorption properties
are influenced not only by extrinsic factors such as temperature
and pressure, but also by intrinsic factors of surface states such
as the electronic state, steric structure, and coverage.
Theoretical calculations are a powerful tool to ascertain both
electronic and structural states and to simulate the adsorption
phenomenon itself at the atomic level. However, because the
number of candidate adsorption configurations corresponding
to combinations of adsorption sites increases exponentially
with the number of molecules, establishing a plausible
molecular configuration for each coverage region by theoretical
calculations has proven to be difficult. Such difficulty is
attributed to combinatorial explosion.
To overcome this difficulty posed by the combinatorial

explosion, quantum annealing (QA), an operation type of
quantum computers, and QA-inspired methods have attracted
attention.7,8 Actually, QA can solve combinatorial optimization
problems known as quadratic unconstrained binary optimiza-

tion (QUBO) much faster and more accurately than classical
computers because, in principle, QA can evaluate all
combinations simultaneously using the quantum tunnelling
effect and the quantum superposition.7,9 It has been used in
problems related to biology,10 machine learning,11 and
materials science.12 Also, information and communication
technology13 have been applied to optimize the combinations.
This feature has inspired us to use this method to elucidate
surface states with adsorption.
As described herein, a QA-based method is reported for the

first time to obtain plausible adsorption coordination within a
realistic time range and irrespective of the number of adsorbed
molecules (see Figure 1). Because the elucidation of its
adsorption properties is useful in a wide variety of fields, this
study was conducted with CO molecules adsorbed onto PdZn
(111) surfaces, which were chosen because PdZn is an
intermetallic compound, a solid surface with less symmetry
than the pure metals used in many earlier adsorption
studies,14,15 and CO is a promising chemical feedstock that
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requires separation, detection, and reaction.3,16 PdZn alloys are
also known as catalysts for CO-based methanol synthesis and
various other reactions.17 Because this method requires only
the results of theoretical calculations for unimolecular and
bimolecular adsorption, the adsorption coordination can be
predicted with far fewer trials (up to about 1014 times) than
those used for conventional searches. Surprisingly, the
adsorption energies can also be predicted accurately.
Furthermore, the method can find more stable adsorption
configurations, which are undiscoverable with feasible conven-
tional methods. These results demonstrate that the annealing
method can break through the trade-off in conventional
searches between search costs and solution accuracy.
Initially, the QUBO problem was interpreted in the context

of molecular adsorption on a surface. The objective function of
QUBO with N variables is given as

W c
i j

N

ij i j
, 1

= +
= (1)

where W, σi, and c, respectively, represent the coefficient
matrix (QUBO matrix) with a Wij = Wji, binary variable, and a
constant value. Hereinafter, σi stands for 0 or 1, respectively,
signifying conditions without or with adsorption on the ith
adsorption site. In this situation, because σi2 = σi, eq 1 is
divisible into a term of diagonal components and a term of
nondiagonal components as
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Nondiagonal components are considered only in the upper
triangular part because the QUBO matrix is symmetric. The
annealing process finds σ = [σ1, σ2, . . ., σN] to minimize .
Definitions σ and as adsorption sites and adsorption energy
are enabled to explore the most stable molecular arrangement
by annealing because the search for the most stable adsorption
configuration is synonymous with the search for a molecular
arrangement with the lowest adsorption energy. To represent

as the adsorption energy, suitable QUBO matrix
construction is required. Here, the constant value c was set
as 0 because the adsorption energy is 0 when adsorption does
not occur anywhere (i.e., both σi and σj are 0). Because the
second term in eq 2 is the first degree of σi, it denotes the sum
of the contributions of each adsorption site to the adsorption
energy. Considering unimolecular adsorption on the kth

adsorption site, the first term in eq 2 becomes 0 because at
least either σi or σj is 0, and eq 2 is written as

W W W
i

N

ii i kk k kk
1

= = =
= (3)

From eq 3, the diagonal components of the QUBO matrix
can be set to unimolecular adsorption energies on each site.
Additionally, the first term in eq 2 denotes the sum of the
contributions of interaction between two adsorption sites to
adsorption energy such as dipole−dipole interaction,15 because
it is the second degree of σi. Considering bimolecular
adsorption on the kth and lth adsorption sites, eq 2 is written
as

2W W W 2W W Wkl k l kk ll l kl kk llk= + + = + + (4)

From eq 4 and from the discussion presented above, the
nondiagonal components of the QUBO matrix can be set from
the adsorption energies of single and double molecules. Based
on these considerations, one can construct the QUBO matrix
uniquely using the energies of these adsorptions because the
numbers of adsorptions of one and two molecules are,
respectively, equal to the numbers of the upper triangular
parts of the diagonal and nondiagonal components of the
matrix. Conversely, the QUBO matrix can derive the exact
adsorption energies of unimolecular and bimolecular adsorp-
tion.
For this study, the adsorption/desorption behavior of CO

molecules moving only perpendicularly to the PdZn (111)
surface is investigated; Figure 2 presents a schematic

representation of the model considered in this study. Herein,
N is 96 based on the results of the enumeration of adsorption
sites. The adsorption energies for unimolecular and bimo-
lecular adsorption were also calculated (Table S1 and Figure
S1). These findings suggest that the bridge sites between Pd
atoms are the most stable adsorption sites, even with increasing
coverage. The calculated adsorption energies were used to
construct a QUBO matrix satisfying eqs 3 and 4.
Then, the QUBO problem was solved under a constraint

condition by annealing. First, annealing was performed using
an equality constraint: the sum of σi is equal to the number of
CO molecules M (Figures S2 and S3). Results indicated that
CO adsorption leads to an energy increase in the system at the
high-coverage region. Actually, molecular desorption takes
place when adsorption is energetically unfavorable. Con-
sequently, geometry optimization was conducted for the model

Figure 1. Schematic illustration of the searching method on the
multimolecular adsorption configurations.

Figure 2. Surface configurations of PdZn alloy model. (a) Considered
model of a PdZn surface. (b) Type and number of adsorption sites on
PdZn surface. (c) Schematic image of the way to determine the binary
variable matrix.
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of 16 molecules adsorbed onto the predicted adsorption sites
(Figure S4 and Table S2). The optimized structure indicated
that, whereas molecules desorbed, they mutually interacted
because of the high molecular density in the plane of the
calculation cell. This constraint was unable to represent
desorption properly. Therefore, a constraint considering
desorption was researched. We assumed that the desorbed
CO exists in the gas phase with no interaction. The adsorption
energy, with m molecule adsorption and M-m molecule
desorption, is defined as

E M m E E m

M E E

( ) (CO) ( CO/PdZn)

(CO) (PdZn)
ad = × +

{ × + } (5)

This eq 5 is just the eq 7 in the Supporting Information
(Experimental Section) with m molecule adsorption itself.
Therefore, the M molecule adsorption energy with some
desorption is regarded as the adsorption energy with M or less
molecular adsorption. The constraint is given as

M
i

N

i
1= (6)

The left side of eq 6 (i.e., the sum of σi) is 0 and more
because σi is at least 0. Therefore, the lower limit of the sum of
σi is not specified.
Second, annealing was performed using the inequality

constraint. The results of annealing were compared with
results obtained using other methods, construction heuristics,
and inductive results from unimolecular and bimolecular
adsorption. The procedures of all methods are shown in Figure
S5 and the Experimental Section in the Supporting
Information. No exhaustive search was conducted because
there are 142 880 candidate combinations, even with
trimolecular adsorption (96C3, see Figure 5 to confirm the
number of candidates for other multimolecular adsorption),
and it needs enormous computational costs. The molecular
arrangements obtained by annealing are depicted in Figures 3A

and S6. This result indicates that CO configurations drastically
convert depending on the coverage. Moreover, desorption
behaviors were observed in the high-coverage region. Addi-
tionally, the annealing results were compared with those
obtained using other search methods (Figure 3B). Three and
four molecules adsorption configurations in the inductive
results were the same as those in the construction heuristic,
hence the models of all CO adsorbed onto the on-top sites of
Pd atom were also calculated as “semi-inductive results”. The
molecular arrangements of the other methods are presented in

Figures S7 and S8. All energies were calculated after geometric
optimization of the PdZn surface model located CO on the
predicted adsorption sites. The annealing explored combina-
tions of adsorption sites, most of which are no consideration in
the other methods. The energies of the combination were
equal to or more stable than those via the other methods
because, in principle, annealing can search for all combinations,
including those unexplored by other methods.7,9 This result
implies that no more stable adsorption configurations can be
found without searching for all combinations. It is noteworthy
that desorption occurred in the construction heuristics when
the number of CO was greater than 9 (Figure S9); adsorption
energies appear to decrease despite desorbing because
desorbed CO molecules form multilayer adsorption (Figure
S10).
Finally, the adsorption energies of the theoretically

calculated value and the predicted value from annealing were
compared because the adsorption energies can be predicted
from eq 1 using found σ. Figure 4 presents a comparison of

theoretical calculations and the QUBO formula (eq 1) in
adsorption energies for found σ. The values predicted using the
QUBO matrix were close to the calculated values. This result
indicates that the effect from the positional relation of
adsorbates on adsorption energies is governed mainly by the
one-molecule adsorption strength on each adsorption site and
interactions between the two adsorbed molecules.
The numbers of calculations and the necessary time were

measured to study the benefits of this annealing method in
terms of predicting costs. Theoretical calculations were the
most time-consuming process among these methods (Figure
S5). Figure 5 depicts a comparison of the number of
calculations. Because the annealing method only required
unimolecular and bimolecular adsorption, for trimolecular
adsorption and above, this method was performed in the
smallest trial number among these methods except for
trimolecular of the construction heuristics and with a constant
trial number irrespective of the number of adsorptions.
However, exhaustive searches and construction heuristics
under M molecular adsorption require, respectively, 96CM
and Σm = 1

M 96 − (m − 1) iterations of calculations. Therefore,
the numbers of calculations for exhaustive searches increased
exponentially as the combinatorial explosion and that for
construction heuristics increased almost linearly. Figure 6

Figure 3. Predicted configurations of CO adsorption on PdZn surface
with considering the desorption. (A) Predicted adsorption site for
each number of CO molecule. (B) CO adsorption energy of
adsorption configurations predicted by each method.

Figure 4. CO adsorption energy on the predicted adsorption
configurations using the QUBO matrix and theoretical calculations.
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depicts a comparison of the necessary time (detailed data
available in Table S3). The time consumed for the annealing
method was overwhelmingly favorable, especially in the high-
coverage region (e.g., 16 molecule adsorption takes 132 s in
this work, once the QUBO matrix was constructed, despite
38 601 s in the construction heuristics). In spite of the
decreasing number of trials, the time consumed for
construction heuristics was not saturated because of the
trade-off between the computational cost of the increased
atoms in the system and the number of empty adsorption sites.
These results also indicate that the annealing method is
superior in terms of predictive costs.
In summary, results of this study indicate that the search for

the most stable adsorption configuration can be regarded as a
kind of combinatorial optimization problem: QUBO. The
adsorption configurations were predicted in feasible time
ranges by solving QUBO, in principle searching for all
combinations, because the proposed method requires only
the information in unimolecular and bimolecular adsorption.
The predicted molecular arrangements are more stable than
the molecular configurations obtained via construction
heuristics and inductive results from unimolecular and
bimolecular adsorption, which implies that searching for all
combinations is important to simulate adsorption behavior.
Surprisingly, the adsorption energies predicted using the
proposed method show good agreement with the value of
theoretical calculations. Findings obtained from this study pave
the way toward material designs for optimal adsorption
properties in realistic coverage region, especially for large-
scale modeling and composite materials such as high-entropy
materials.
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