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Objectives: The aim of this study was to seek potential natural compounds that can resist COVID-19 using com-
puter virtual screening technology through molecular docking of severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) 3CL hydrolytic enzyme (3CLpro) and angiotensin-converting enzyme 2 (ACE2).
Methods: Molecular docking was achieved by using the Autodock Vina software. The natural phytocompounds act-
ing on 3CLpro and ACE2 were then selected from the Traditional Chinese Medicine Systems Pharmacology Database
and Analysis Platform. This was followed by speculation on themechanism of action of phytocompounds.
Results: Six potential natural anti�COVID-19 phytocompounds were selected and were evaluated for absorption,
distribution, metabolism and excretion (ADME) and Lipinski rules. The content of the six phytocompounds in var-
ious fruits and vegetables was determined via a literature search. Red wine, Chinese hawthorn, and blackberry
were recommended as supplements because they contained antiviral phytocompounds.
Conclusion: Red wine, Chinese hawthorn, and blackberry show promise for resisting COVID-19 and are thus
recommended as supplements to prevent the infection of COVID-19 during its outbreak period.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

The coronavirus (CoV) is an infectious disease caused by a
newly discovered coronavirus, characterized by rapid and exten-
sive spread, strong infectivity, and general susceptibility of the
population. Currently, there is no specific drug to treat or cure it.
The new coronavirus was officially designated as severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2; formerly known
as 2019-ncov) by the International Commission on the Classifica-
tion of Viruses on February 11, 2020. On the same day, the World
Health Organization named the disease caused by this virus as
COVID-19. Coronaviruses are a large family of viruses that cause ill-
ness ranging from the common cold to more severe diseases such
as Middle East respiratory syndrome (MERS-CoV) and severe acute
respiratory syndrome (SARS-CoV). At present, the homology
between SARS-CoV-2 and bat Sars-like coronavirus (bat-sl-
covzc45) is >85%. The s-protein expressed by SARS-CoV-2 binds to
angiotensin-converting enzyme 2 (ACE2) in the human body,
infecting cells, invading the body, and causing diseases [1]. The
human coronavirus 229E (HCoV-229E) replicase gene encodes two
overlapping polyproteins pp1a and pp1ab that mediate all the
functions required for viral replication and transcription. Expres-
sion of the C-proximal portion of pp1ab requires (�1) ribosomal
frameshifting. The functional polypeptides are released from the
polyproteins by extensive proteolytic processing, and that is pri-
marily achieved by 3C-like proteinase (3CLpro) [2]. On January 26,
2020, a research team from Shanghai University of Science and
Technology obtained a high-resolution crystal structure of 2019-
nCoV coronavirus 3CL hydrolase (Mpro), which is considered an
effective target of the COVID-19 virus [3]. These studies have
brought hope to the search for effective drugs to prevent and con-
trol the COVID-19, and may help us to develop a more effective
way to fight COVID-19.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.nut.2020.111049&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Yuehualing@126.com
https://doi.org/10.1016/j.nut.2020.111049
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.nut.2020.111049
http://www.ScienceDirect.com
http://www.nutritionjrnl.com


2 J. Xu et al. / Nutrition 82 (2021) 111049
Scientists have been focusing on searching antiviral phytocom-
pounds with low toxicity and high curative effect from natural
plants in recent years. Natural active substances have the character-
istics of novel structure, high activity, and few side effects. Natural
compounds from plant origin currently used in medicine exhibit
chemical diversity, demonstrating their importance in modern drug
discovery efforts. There is a growing trend to explore plants for phar-
macologically active compounds and nutraceutical supplements.

Molecular docking is a method of drug design based on the
characteristics of the receptor and the way the receptor interacts
with the drug molecule. As an emerging research method combin-
ing the physical and chemical principles with scientific calculation
algorithms, molecular docking provides a feasible strategy for
exploring the basis and mechanism of the phytocompounds [4].
This study took SARS-CoV-2 3CLpro and ACE2 as receptors, and
molecular docking of the two was performed to select potential
antiviral active ingredients for the development of effective and
quick-acting chemical components that can resist COVID-19.

Materials and methods

Database and software

Data used in this study were downloaded from Traditional Chinese Medicine
Systems Pharmacology Database and Analysis Platform (TCMSP; http://tcmspw.
com/tcmsp.php), Protein Databank (PDB; https://www.rcsb.org/), Swiss Target
Prediction database (http://www.swisstargetprediction.ch/), STRING online data-
base (https://string-db.org/), and biological information annotation database
DAVID (https:// DAVID. Ncifcrf. Gov/summary. The JSP, Version 6.8). The software
used included AutoDockTools1.5.6 software, AutoDockVina software (http://vina.
scripps.edu/), biological information analysis tools Cytoscape v3.8.1, data analysis
tools R 3.6.2, protein molecules, and visualization software PyMOL.

Molecular docking simulation

We selected 12 541 natural bioactive constituents of plants from the TCMSP
database, and their three-dimensional (3D) structures were downloaded in SDF for-
mat to establish a virtual screening small molecule database. The interactions of two
target proteins with phytocompounds and with currently recommended clinical
chemical drugs were also compared. The 3D structures of the clinical drugs and ACE2
(PDB ID: 1R42) protein were downloaded from PubChem in SDF format and PDB
data (https://www.rcsb.org/) in PDB format, respectively. SARS-CoV-2 is determined
to be a high-resolution crystal structure (PDB ID: 6LU7) of SARS-CoV-2 3CLpro by a
research group from Shanghai University of Science and Technology. PyMOL soft-
ware was used for water removing, hydrogenation, and other operations, and high-
throughputmolecular docking was carried out by Autodock Vina and R.

Absorption, distribution, metabolism and excretion analysis and Lipinski’s rule of five

Pharmacokinetic (PK) analysis of biological or pharmaceutically active com-
pounds was conducted to select drug candidates [5]. Absorption, distribution,
metabolism and excretion (ADME) screening criteria for ligands in this study
Table 1
Binding energy (kJ/mol) of representative phytocompounds and clinically recommended

Molecule Formula MW 3CLpro

Puerarin C21H20O10 432.38 �33.47
Bicuculline C20H17NO6 367.4 �26.78
Luteolin C15H10O6 286.24 �26.78
Quercetin C15H10O7 302.24 �26.36
Isorhamnetin C16H12O7 316.27 �25.95
Irisolidone C17H14O6 314.29 �25.53
Lopinavir C37H48N4O5 628.8 �22.59
Ritonavir C37H48N6O5S2 720.94 �24.69
Remdesivir C27H35N6O8P 602.58 �25.94
Arbidol C22H25BrN2O3S 531.89 �28.03
Chloroquine C18H26ClN3 319.87 �24.3
Ribavirin C37H48N6O5S2 720.96 �25.52
Nitazoxanide C12H9N3O5S 307.28 �23.85

ACE, angiotensin-converting enzyme; DL, drug-likeness; MW, molecular weight; OB, ora
3CL hydrolytic enzyme.
included oral bioavailability (OB) >30% and drug-likeness (DL) >0.18. Values were
obtained from the TCMSP database. Lipinski’s rule of five is also called Pfizer’s rule,
which specifically includes relative molecular weight <500, ClogP <5, number of
hydrogen bond donors <5, number of hydrogen bond receptors <10, number of
keys �10, which are used to evaluate the DL and durability of a phytochemical or
chemical compound. Compounds that conform to Lipinski's rule of five will have
better PK properties and higher bioavailability in the metabolic process in vivo,
and are therefore more likely to be made into oral drugs. In this study, the phyto-
compounds were further chosen from the small molecule database, which was an
efficient way to find compounds with good PK properties and high bioavailability.
Ligands of this particular study were analyzed using http://www.scfbio-iitd.res.in/
software/drugdesign/lipinski.jsp based on Lipinski’s rule of five.
Source seeking and molecular mechanism prediction by literature mining

According to the optimal binding energy (affinity) of phytocompounds with
3CLpro and ACE2, potential anti�COVID-19 phytocompounds were identified
through ADME analysis and Lipinski screening. Based on the goal of this research
to find common and easily available food supplements that can help prevent
COVID-19, literature mining was conducted using PubMed, Web of Science, and
EBSCO to seek the food sources of these potential phytocompounds. The principle
of literature mining is that as many compounds as possible are enriched in the
same food source in the hope that it can prevent viruses to a greater extent, and
the food is widely distributed and easily available.

In this study, SARS and viral pneumonia were used as references to search for
potential targets of anti�COVID-19 phytocompounds. The potential targets of phy-
tocompounds were predicted by the Swiss Target Prediction server. STRING data-
base was employed to the analysis of the relationship between drugs and targets.
Then, the visual analysis was carried out using Cytoscape software. Subsequently,
the potential targets of the selected active components were submitted to the bio-
informatics database DAVID 6.8 for functional annotation of gene ontology (GO)
genes and enrichment analysis of KEGG and REACTOME pathways, to further
investigate the functions of these targets and their role in the signaling pathways,
thereby exploring and predicting the potential molecular mechanism of phyto-
compounds.
Results

Anti�COVID-19 phytocompounds

It is generally believed that the lower the stabilization energy of
ligand binding to the receptor, the greater the possibility of action.
To minimize the probability of false-positive results, the optimal
binding energy of phytocompounds was compared with that of the
currently recommended clinical chemical drugs in this study, and
the binding energy in screening criteria was changed to
��5 kcal/mol (�20 kJ/mol). The partial results are shown in Table 1.
Six potential anti�COVID-19 phytocompounds were chosen.

The molecular docking modes of the six potential anti�COVID-
19 phytocompounds with SARS-CoV-2 3CLpro and ACE2 are shown
in Figure 1.
chemical drugs with SARS-CoV-2 3CLpro and ACE2

ACE2 DL OB (%) Lipinski

�38.07 0.69 24.03 Yes
�41.42 0.88 69.67 Yes
�36.82 0.25 36.16 Yes
�36.40 0.28 46.43 Yes
�35.15 0.31 49.6 Yes
�38.49 0.3 37.78 Yes
�37.24
�36.40
�36.40
�30.54
�27.20
�32.22
�34.73

l bioavailability; SARS-CoV-2 3CLpro, severe acute respiratory syndrome coronavirus
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Fig. 1. Molecular docking patterns of 6 potential anti-COVID-19 phytocompounds with SARS-CoV-2 3CLpro and ACE2. ACE, angiotensin-converting enzyme; SARS-CoV-2
3CLpro, severe acute respiratory syndrome coronavirus 3CL hydrolytic enzyme.
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According to the ADME screening criteria, puerarin was elimi-
nated due to its relatively low OB. The remaining five plant com-
pounds were included in further literature mining to enrich as
many candidate compounds as possible in the same food source.

Bioactive natural constituents from food sources

A large-scale literature search was performed to seek the food
sources of potential bioactive natural constituents. On the basis of the
enrichment results of the preferred plant ingredients (Fig. 2), we
excluded five uncommon foods and finally set the focus of the
research on red wine, Chinese hawthorn, and blackberry enriched
with three phytocompounds (quercetin, luteolin, and isorhamnetin).

Quercetin is a bioflavonoid widely present in red wine, grape-
fruit, onions, apples, and black tea, having antioxidant and anti-
inflammatory activity. A lesser amount of it exists in leafy green
vegetables and beans [6]. Red wine is shown to promote quercetin
absorption and direct its metabolism toward isorhamnetin and
tamarixetin [7]. Several studies have determined luteolin and iso-
rhamnetin in red wine. Additionally, luteolin (0.11�3.99 mg/L),
isorhamnetin (0�0.62 mg/L) and quercetin (0.04�2.65 mg/L) were
detected in 17 kinds of commercial red wine made in China [8].

Quercetin and isorhamnetin are the most abundant flavonoids
in plant-based foods [9]. Maja Mikulic-Petkovsek [10] detected
two antiviral phytocompounds (quercetin and isorhamnetin) in 28
wild and cultivated berries (including Chinese hawthorn and
blackberry) from around the world. Quercetin and isorhamnetin
were found to be always present in all red-skinned species in this
study. Luteolin has been identified in both Chinese hawthorn [11]
and blackberry [12] in recent studies.



Fig. 3. Venn diagram of intersected targets. SARS, sever

Fig. 2. Enrichment results of the preferred plant ingredients.
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Red wine, Chinese hawthorn, and blackberry are enriched with
three of the five anti�COVID-19 phytocompounds, and can be
found in almost every corner of the world, so they are recom-
mended as anti�COVID-19 food supplements.

Network pharmacologic analysis of quercetin, luteolin, and
isorhamnetin

The potential targets of three bioactive natural constituents
(quercetin, luteolin, and isorhamnetin) and the disease targets
were input into the R platform for the identification of the intersec-
tion between the two kinds of targets. The Venn diagram in
Figure 3 shows the overlap of the two kinds of targets.

Quercetin, luteolin, and isorhamnetin are very similar to dis-
ease targets as they are flavonoids. In addition to the two targets
used in this study, there are 41 similar targets acting on both SARS
and viral pneumonia. The topologic analysis of the protein interac-
tion network between the 41 targets is shown in Figure 4.

To illustrate the mechanism underlying the effects of quercetin,
luteolin, and isorhamnetin on COVID-19 more comprehensively
and specifically, we performed GO enrichment analysis of the
e acute respiratory syndrome; VP,Viral Pneumonia.



Fig. 4. Network of overlapping targets.
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intersected targets in the ingredient-disease target network. We
found that 1109 GO terms were significantly enriched in the bio-
logical process, 130 in the molecular function, and 115 in the cellu-
lar component. The smallest P-adjusted value was observed in
response to oxygen-containing compounds, regulation of cell
death, catalytic activity, and protein kinase activity.

The enrichment analysis of KEGG and REACTOME pathways
was carried out to elucidate the critical pathways of the potential



Fig. 5. Overlapping potential pathways selected. AGE-RAGE, advanced glycation end products-receptor for advanced glycation end products; TNF, tumor necrosis factor.
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targets for quercetin and isorhamnetin in resisting COVID-19. It
was observed that 130 pathways were significantly enriched in
KEGG and 172 in REACTOME. After removing the duplicates, the
results were compared with the super pathways of SARS and viral
pneumonia. Twelve overlapping potential pathways were ulti-
mately selected (Fig. 5).

Discussion

In this study, six phytocompounds from natural plants with low
binding energy to receptors were first selected through molecular
docking. Red wine, Chinese hawthorn, and blackberry are recom-
mended as anti�COVID-19 supplements because they contain two
or three active phytocompounds (ie, quercetin, luteolin, and iso-
rhamnetin), as indicated by extensive literature search. Reports
have suggested that flavonoids, as a large class of natural com-
pounds, might be useful for the prevention of a number of diseases,
partly due to their anti-inflammatory properties [13]. Quercetin,
luteolin, and isorhamnetin were shown to have antioxidant and
anti-inflammatory effects in previous studies [6,14,15]. The results
of a recent study showed that quercetin supplementation reduced
all pathologic changes in mice with rhinovirus-induced chronic
obstructive pulmonary disease (COPD) and might prevent pulmo-
nary disease progression in COPD [16]. Another experiment con-
firmed that quercetin could enhance ligand-induced senescent
idiopathic pulmonary fibrosis fibroblast apoptosis and reduce lung
fibrosis in vivo [17]. Luteolin has been shown to improve experi-
mental pulmonary fibrosis in vivo and in vitro [18] and attenuate
acute lung injury in experimental mouse models [19,20]. Isorham-
netin protects mice from acute lung injury by suppressing
inflammation [21] and prevents bleomycin-induced pulmonary
fibrosis by inhibiting endoplasmic reticulum stress and epithelial-
mesenchymal transformation [22].

To further check the anti�COVID-19 mechanism of three active
phytocompounds, the network pharmacology tool was used to
analyze the targets of the phytocompounds, the cell signal trans-
duction pathways that might be involved in the regulation, and the
potential pharmacologic mechanism. SARS and viral pneumonia
were used as reference diseases. Almost half of the targets of each
phytocompound intersected with the targets of SARS and viral
pneumonia. The results of network pharmacologic analysis indi-
cated that the targets of the three plant compounds might provide
resistance against COVID-19 through 12 overlapping pathways, 3
of which (the small-cell lung cancer pathway, non-small-cell lung
cancer, and tuberculosis) acted directly on the lungs. Because of
the mechanisms of immune resistance and tissue resilience, the
innate immune system pathway plays an important role in wors-
ened pneumonia in a subset of patients [23]. An earlier study con-
firmed that flavonoids inhibited cell proliferation and induced
apoptosis and autophagy through downregulation of PI3Kg-medi-
ated PI3K-Akt signaling pathway [24]. It has been found in many
studies that drugs can suppress the inflammatory response
through the PI3K-Akt signaling pathway [25�28] Tumor necrosis
factor drives its own release as well as that of other proinflamma-
tory cytokines (e.g., interleukin [IL]-1b and IL-6) [29,30] and par-
ticipates in the systemic inflammatory response. It is one of the
cytokines that contribute to the acute phase response. A study
revealed that spatial heterogeneity of the T–cell receptor reper-
toire reflected the mutational landscape in lung cancer [31], and
T–cell-targeted immunotherapy has been increasingly applied to
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the treatment of non-small-cell lung cancer [32]. The enrichment
of these pathways from network pharmacology confirmed the
hypothesis that quercetin, luteolin, and isorhamnetin were natural
and effective anti�COVID-19 supplements.

Given the predictability of the virtual screening results, further
in vitro and in vivo experiments are needed to verify the results of
this study if possible, so as to provide the experimental basis for
the development of natural anti�COVID-19 supplements. Unfortu-
nately, many experiments could not be carried out due to the cur-
rent epidemic, so this research was largely based on previous
studies and theoretical analysis. Additionally, due to the human
metabolism, it is difficult to achieve the concentration of active
ingredients in food that is present in clinical drugs, and the preven-
tive effect of food may be relatively weak.

Conclusion

Red wine, Chinese hawthorn, and blackberry are rich dietary
sources of polyphenols with reported health benefits. They are rec-
ommended as preventive supplements because they contain three
anti�COVID-19 phytocompounds (i.e., quercetin, luteolin, and iso-
rhamnetin). The analysis of the anti�COVID-19 mechanism of
these three compounds by internet pharmacology tools identifies
several key pathways, which theoretically confirms the hypothesis
that berries are a natural anti�COVID-19 supplement.
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