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Abstract 

Background:  The fecundity of sows is a trait of major economic in pig industry. The molecular regulation of estrus 
cycles can affect the fecundity of female animals. Compared with the other pig breeds, Xiang pig exhibits the special 
estrus behaviors. CircRNAs are thought to involve in regulation of multiple biological processes. However, the poten-
tial roles of circRNAs in ovary regulation on Xiang pig estrus are largely unknown.

Results:  8,937 circRNAs were identified from eight libraries constructed from the ovarian samples of Xiang pig at 
estrus and diestrus stages by  RNA sequencing method. Of which, 1,995 were high confidence circRNAs detected 
at least two junction reads in each ovary sample and seven circRNAs were validated by RT-PCR method. Further-
more, we identified 290 upregulated and 15 downregulated circRNAs in estrus ovaries. These differentially expressed 
circRNAs (DECs) derived from 273 host genes. And 207 miRNAs were identified to be targets sponged by 156 DECs 
with 432 binding sites, containing more than one miRNA binding site in each circRNA. Function enrichment analysis 
revealed that the host genes and the targets of miRNAs sponged by DECs were enriched in several reproduction-
related signaling pathways, such as ovarian steroidogenesis, oocyte maturation, circadian rhythm, estrogen signaling 
pathway, GnRH signaling pathway, circadian entrainment, and oocyte meiosis. The circRNA-miRNA-mRNA networks 
revealed that 153 miRNAs interacting with 122 DECs and 86 miRNAs interacting with 84 DECs were involved in ovar-
ian functions and ovarian circadian entrainment and circadian rhythm respectively. The DEC-miRNA-DEG (differen-
tially expressed gene, DEG) networks associated with reproduction-related signaling pathways contained 22 DECs,18 
miRNAs  and 7 DEGs. 22 DECs were recognized as hub circRNAs during the estrus phase of Xiang pigs.

Conclusions:  The circRNAs that function as miRNA sponges could play a key role in post-transcriptional regulation of 
gene expression during Xiang pig’s estrus cycle.
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Background
Pork is the main meat consumed in human. Indigenous 
pigs contribute important part of pork production. 
Sow fecundity is pivotal in pig industry to ensure pork 

production amount, which is much diverse between pig 
breeds [1]. Ovary function directly influences the fecun-
dity of female animals [2]. During each estrus cycle, the 
ovary undergoes a series of complex biological processes 
in morphological, hormonal, and biochemical changes. 
These biological processes in ovary are involved in the 
transcriptional and post-transcriptional regulation of 
many genes [3]. Previous studies have revealed that non-
coding RNAs, including a variety of lncRNAs, miRNAs, 
and circRNAs are widely involved in post-transcriptional 
regulation of gene expression and various biological pro-
cesses [4].
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CircRNAs are a type of non-coding RNA with a cova-
lently closed loop structure, which are derived from the 
back-spliced exonic or intronic sequences [5]. CircRNAs 
are abundant in the cytoplasm and can be co-expressed 
with the linear transcripts from which they are derived 
[6]. A great number of circRNAs have been identified in a 
variety of eukaryotic organisms by RNA-seq method [5]. 
CircRNAs contain miRNA binding sites and may func-
tion as miRNA sponges, or as transcriptional activators. 
Furthermore, circRNAs have been shown to segregate 
RNA binding proteins [7], and can even become trans-
lated into proteins through cap-independent translation 
initiation. Additionally, many evidences suggest that cir-
cRNAs are involved in a wide range of biological pro-
cesses and function as ceRNA, which can influence the 
expression level of their parental genes [8, 9]. Recently, 
many studies using deep-sequencing approaches have 
reported that circRNAs are differentially expressed in 
ovary between pig breeds [8, 9]. Breed-specific circRNAs 
could be potentially associated to reproduction traits [10, 
11]. 

Xiang pig is a miniature indigenous pig breed origi-
nated from the southeast in Guizhou province of 
China, and the meat were the dominant dietary intake 

sources for the mountain resident populations. It is 
featured by small size, early sexual maturity, lower lit-
ter size, excellent meat quality, and not clear exhibition 
of estrus behaviors [2]. The exhibition of estrus behav-
iors in Xiang gilts or sows was not very clearer than 
in Meishan or other European pigs [10, 11]. The differ-
ence on estrus expression between pig breeds could be 
affected by genes and could be improved by selection 
[12]. However, the potential roles of circRNAs in ovary 
regulation on Xiang pig estrus are largely unknown. 
The investigation of circRNAs in Xiang pig ovary may 
provide a valuable opportunity to understand the 
molecular basis of pig reproduction.  To obtain more 
knowledge on the roles of circRNAs in Xiang pig ovary 
during estrus cycle, we performed a genome-wide 
analysis of transcripts of ovary tissues from Xiang pig 
sows at diestrus and estrus phases using RNA sequenc-
ing method. We investigated the expression profiles of 
circRNAs in ovarian tissues and identified differentially 
expressed circRNAs (DECs) (Fig. 1). Our results suggest 
that circRNAs probably participate in the regulation of 
gene expression in pig’s estrus cycle and reproduction.

Fig. 1  The flow chart of present research
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Results
Characterization of circRNAs expressed in Xiang pig 
ovaries at estrus and diestrus
To uncover the expression and function of circRNAs in 
porcine ovary, we performed total RNA sequencing in 
adult ovaries of Xiang pig during estrus and diestrus. 
The sequencing of the RNA libraries generated about 
152 million 100-bp paired-end reads and an average of 
124.3 million mapped reads per sample (Additional file 1: 
Table  S1). We used find_circ and CIRI2 for circRNA 
detection and identified circRNAs with a junction reads 
greater than 2, which were detected in at least one sam-
ple of the biological replicates. We detected 4,404 cir-
cRNAs from the diestrus group, 7,680 circRNAs from 
the estrus group. In total, 8,937 unique circRNAs were 
detected from both software in two group samples (Addi-
tional file  2: Table  S2), whereas 3,147 circRNAs were 
co-expressed in ovaries between two stages. The length 
of these circRNAs were shorter than 2 kb, which varied 
from 32 to 1,814 bases in estrus group, 29 to 1,146 bases 
in diestrus group, but mainly enriched between 100–400 
bases (Fig.  2A). The composition and sources of these 
circRNAs between estrus and diestrus samples did not 
present significant difference. The percentages of the cir-
cRNAs that derived from exons, introns, and intergenic 
regions in estrus samples were 91.55%, 4.21%, and 4.6%, 
respectively, while they were 91.62%, 3.43%, and 5.4% 
in diestrus samples, respectively (Fig.  2B). According to 
their parental gene locations, these circRNAs were widely 
distributed on 1–18 autosomes, X chromosome, and 
mitochondria (Fig.  2C). It was found that the numbers 
of circRNAs from Chromosome 1, 6, and 13 were more 
than that from other chromosomes. Most (> 98%) cir-
cRNAs were derived from multiple exons, of which cir-
cRNAs with 2–3 exons accounted for > 87.3% within the 
same parental gene (Fig.  2D). Very few circRNAs were 
composed of more than 5 exons. The most exon compo-
sition (n = 11) was found in circ_2424 (host gene, ASPH). 
Additionally, 42.59% and 51.2% of the parental genes gen-
erated more than one circRNA in ovary samples at estrus 
and diestrus, respectively (Fig.  2E). We found that the 
gene DNA helicase (CHD2) had 28 predicted circRNAs.
Analysis of DECs in Xiang pig ovaries between estrus 
and diestrus
To evaluate the dynamic changes of circRNA expres-
sion in Xiang pig ovaries between estrus and diestrus, 
we focused on circRNAs that were detected at least two 
junction reads in each biological replicate of one specific 
tissue for high confidence. This analysis yielded 1,995 
high confidence circRNAs. We performed differential 
expression analysis on the high confident circRNAs with 
edgeR. Compared with diestrus ovaries, 305 DECs were 
detected from estrus ovaries. Of these, 294 DECs were 

derived from 273 host genes (P < 0.05) with 290 upregu-
lated and 15 downregulated DECs (Fig.  3A, Additional 
file  3: Table  S3). In addition, we clustered the DECs in 
both diestrus and estrus ovaries. As shown in the heat-
map (Fig. 3B), samples at the same stages were clustered 
together, and the expression levels of circRNAs exhibited 
dynamic changed during estrus cycle.

CircRNAs validation by RT‑PCR method
To validate the reliability of predicted circRNAs, seven 
circRNAs were randomly chosen from the top 50 of CPM 
value in 1,995 high confidence circRNAs at estrus and 
diestrus phases and verified the region of spliced junc-
tion by RT-PCR method using a pair of divergent prim-
ers. These  circRNAs consisted of 6 exons (circ_1952), 
5 exons (circ_8664, circ_2414), 3 exons (circ_5597, 
circ_4508),  2 exons (circ_8670) and 1 exon (circ_0546) 
respectively. In Fig.  4A–G, the circularized states and 
the determined sequence at the junction of the 7 circR-
NAs were presented. The junction regions of circRNAs 
sequenced by Sanger method were consistent with those 
putative analysis of circRNAs by RNA-seq.

Host gene function analysis of expressed circRNAs
To understand the biological functions of circRNAs, we 
performed GO and KEGG pathway analysis to predict 
the functions of circRNAs in Xiang pig ovaries dur-
ing diestrus and estrus (Additional file 4: Table S4). GO 
analysis indicated that the host genes of circRNAs were 
significantly associated with cellular metabolic process, 
cellular component organization or biogenesis, regula-
tion of catabolic process, biological regulation, bind-
ing and activity, and regulation of transcription by RNA 
polymerase II (P < 0.05) (Fig. 5A). Pathway analysis indi-
cated that the host genes of circRNAs were involved in 
valine, leucine and isoleucine degradation, propanoate 
metabolism, human T-cell leukemia virus 1 infection, 
endocytosis, progesterone-mediated oocyte maturation, 
protein processing in endoplasmic reticulum, Fc epsilon 
RI signaling pathway, mitophagy–animal, and  neurotro-
phin signaling pathway (P < 0.05) (Fig. 5B).

Prediction of miRNA targets potentially sponged by DECs
In this study, we used miRanda v3.3 and RNAhybrid v1.2 
to predict the targeted miRNAs of DECs. We identified 
432 binding sites in 156 DECs to bind with 207 miRNA 
molecules by all two prediction programs (Additional 
file 5: Table S5, Additional file 16: Fig. S1). We found that 
any one of circRNAs could contain 1–5 miRNA-binding 
sites. Accordingly, the same miRNA may bound with 
multiple circRNAs.

Many reports have proposed a ceRNA hypothesis 
that circRNAs can act as endogenous “miRNA sponge”, 
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thereby modulating the expression of miRNA targets 
[7–9]. To acquire more knowledge concerning the bio-
logical role of DECs in ovary function, regulatory tar-
gets of those miRNAs sponged by DECs were predicted 
by miRanda v3.3 and PITA in the present study. A total 
of 9,307 potential targets (Additional file  6: Table  S6) 
for the 207 miRNAs that bound by 156 DECs were pre-
dicted. Pathway analysis showed these predicted targets 
were involved in 292 possible KEGG pathways (P < 0.05) 
(Additional file  7: Table  S7), including diseases (n = 85), 

signal transduction (n = 50), metabolism (n = 34), cell 
cycles, apoptosis, cell communication, and other path-
ways. The top 20 of KEGG enrichment were showed in 
Fig.  6A. Many pathways were associated with ovarian 
functions (Fig.  6B). Significantly, several pathways were 
associated with reproduction, such as oocyte meio-
sis, circadian entrainment, circadian rhythm, ovarian 
steroidogenesis, estrogen signaling pathway, progester-
one-mediated oocyte maturation, and  GnRH signaling 
pathway. Therefore, we further analyzed the interaction 

Fig. 2  Characterization of circRNAs expressed in Xiang pig ovaries at estrus and diestrus. A Amounts of circRNAs with different length. B 
Distribution of circRNAs in genic regions. C Distribution of circRNAs in chromosomes. D Exon numbers contained in circRNAs. E Characteristics of 
host genes producing circRNAs
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between circRNAs, miRNAs, and mRNAs of these path-
ways associated with reproduction in detail (Additional 
file 8: Table S8, Additional files 17, 18, 19, 20, 21, 22, 23: 
Figs. S2–S8). The circRNAs-miRNAs-mRNAs interac-
tive networks involved in these KEGG pathways were 
constructed based on ceRNA mechanism. The resulting 
circRNA-miRNA-mRNA interactive networks provided 
nodes and linkages between circRNAs and their targets. 
Comparison of the circRNA-miRNA-mRNA networks 
between diestrus and estrus groups revealed that 153 
miRNAs interacting with 122 DECs associated with ovar-
ian functions and 86 miRNAs interacting with 84 DECs 
related with ovarian circadian entrainment and circadian 
rhythm (Additional file 9: Table S9).

To further understand the role of the key circRNAs 
in the regulation of gene expression during estrus stage, 
we performed the analysis of DEGs and constructed the 
DEC-miRNA-DEG interactive networks. At gene level, 
we identifieda total of 1,315 genes differentially expressed 
in ovaries between estrus and diestrus phases (Addi-
tional file 10: Table S10, Fig. 7A), of which 924 genes were 
upregulated and 391 genes were downregulated in estrus 
ovaries. Pathway analysis using KOBAS program showed 
DEGs participated in 51 possible KEGG pathways 
(P < 0.05) (Additional file 11: Table S11). Significantly, four 
pathways were associated with reproduction (Fig.  7B), 
such as steroid biosynthesis, cell cycle, ovarian steroi-
dogenesis, and steroid hormone biosynthesis. And then 
we had predicted the 137 DECs-182 miRNAs-571 DEGs 
interactive networks (Additional file  12: Table  S12). We 
found that 175 miRNAs which targeted 531 upregulated 

genes were sponged by 130 upregulated circRNAs and 
12 miRNAs that also targeted 40 downregulated genes 
were competed by 7 downregulated circRNAs. At the 
same time, we further analyzed the interaction between 
DECs, miRNAs, and DEGs of above-mentioned pathways 
associated with reproduction (oocyte meiosis, circadian 
entrainment, circadian rhythm, ovarian steroidogen-
esis, estrogen signaling pathway, progesterone-mediated 
oocyte maturation, and  GnRH signaling pathway). The 
DEC-miRNA-DEG networks associated with reproduc-
tion contained 22 DECs, 18 miRNAs, and 7 DEGs (Fig. 8, 
Additional file 13: Table S13).

Discussion
Ovary is an important reproductive organ of female ani-
mal. They provide fertile oocytes, secrete reproductive 
hormones, and maintain the estrus cycle of female ani-
mals. In each estrus cycle, the ovary undergoes changes 
of proliferation, invasion, differentiation, and apoptosis, 
which involve in the transcriptional regulation of many 
genes. These physiological changes directly affect or 
determine the ovulation, fertilization rate and litter size 
of animals [13]. CircRNAs are a new class of endogenous 
non-coding RNAs that have been found to be widely 
expressed in human and animal cells and function in 
many biological processes [5, 14, 15]. Previous studies 
indicate that circRNAs are involved in regulation and 
may serve as novel regulators of ovarian follicle growth 
and development during porcine reproduction processes 
[10, 16–18]. In this study, we used RNA-seq to investi-
gate the circRNA profiles in ovaries of Xiang pig sows 

Fig. 3  Volcano plot and heatmap analysis of DECs. A Volcano plot of DECs. B Heatmap of DECs Diestrus samples: 175,177,178, and 179; Estrus 
samples:193, 194,195, and 176
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Fig. 4  Diagram of circRNAs generation by a way of back-splicing and the sequence detected by Sanger method. A Circ_1952 was generated from 
exon 2, 3, 4, 5, 6, and 7 of gene FANCL. B Circ_8664 was generated from exon 2, 3, 4, 5, and  6 of gene SUGCT​. C Circ_5597 was produced from exon 
2, 3, and  4 of gene PAN3. D Circ_4508 was produced from exon 4, 5, and  6 of gene ELF2. E Circ_2414 was derived from exon 8, 9, 10, 11, and  12 of 
gene CSPP1. F Circ_0546 was derived from exon 2 of gene IGF1R. G Circ_8670 was generated at least from exon 2 and  5 of gene CDK13
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Fig. 5  Go and KEGG analysis for host genes of circRNAs at estrus and diestrus phases. A Go functional analysis. B KEGG enrichment analysis
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during diestrus and estrus phases. We identified 8,937 
circRNAs in the ovaries from diestrus and estrus groups. 
The circRNAs generated from estrus ovaries were more 
than that from diestrus ovaries. However, there were 
3,147 circRNAs were co-expressed in ovaries between 
two stages. We found that over 91% of circRNAs were 
comprised of exonic sequences, containing one or more 
exons. Furthermore, about 5% of the circRNAs were gen-
erated from intergenic regions. The length of these circR-
NAs mainly enriched between 100 and 400 bases. These 
observations were similar to previous findings in pig ova-
ries [19]. It suggested that the circRNAs might play a key 
role in ovarian functions for Xiang pig.

Furthermore, 42.59 ~ 51.2% of the parental genes gen-
erated more than one circRNA in ovary samples at estrus 
and diestrus. The most predicted circRNAs (n = 28) were 
derived from the gene CHD2 (Table S14). Genetic stud-
ies demonstrate that Chromatin remodeling enzymes 
play critical roles in organizing genomic DNA within the 
native chromatin state. CHD2 is a member of the chro-
modomain helicase DNA-binding family of proteins and 
regulates gene expression through chromatin remod-
eling. Chd2-deficient mice have been demonstrated to 
exhibit a general growth delay and perinatal lethality 
[20]. These studies suggest that CHD2 plays an intrin-
sic role in normal mammalian development [21, 22]. In 
our study, we obtained 9 high confidence circRNAs from 
28 predicted circRNAs derived from CHD2, of which 3 

circRNAs were differentially expressed between estrus 
and diestrus ovaries. However, we didn’t predict any 
putative miRNA binding sites for these 3 DECs. These 
indicated these DECs derived from CHD2 do not act as 
miRNA sponges. Their function in ovaries should be fur-
ther studied.

We identified 305 DECs (Additional file  3: Table  S3). 
The identification of these DECs demonstrated that there 
was a larger difference in expression and regulation of 
genes between diestrus and estrus ovaries. At gene level, 
a total of 1,315 genes differentially expressed in ovaries 
between estrus and diestrus phases (Additional file  10: 
Table S10). By comparison with the expression in diestrus 
ovaries, 924 genes were upregulated and 391 genes were 
downregulated in estrus ovaries. Of the 273 host genes 
for 305 DECs, we found that only 20 host genes were dif-
ferentially expressed. These observations suggested that 
gene expression during estrus cycle was regulated at dif-
ferent levels and the expression of circRNAs was highly 
regulated and controlled.

It is generally accepted that the functions of circR-
NAs are related to the functions of their parent genes 
[6]. Previous studies have indicated that many differen-
tially expressed coding and noncoding RNAs are widely 
expressed in the diestrus or estrus stages and several 
genes could affect estrus of animals [23]. In our study, 
we found that eighteen genes, which have known to 
be involved in ovary functions or other reproductive 

Fig. 6  KEGG enrichment analysis for protein-coding target genes of miRNAs sponged by DECs. A The top 20 of KEGG enrichment. B The KEGG 
pathways were related ovarian functions
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processes, produced more than one circRNAs (Addi-
tional file  3: Table  S3). For instance, CPEB1, MAPK9, 
PIK3CA, KDM1A, Dicer1, and FBXL3 contained two 
to three predicted circRNAs, respectively. These genes 
participate in several signaling pathways to regu-
late steroid hormone biosynthesis, ovarian circadian 
rhythm, oocyte development and maturation [24]. 
Several circRNAs (circ_3954, circ_1268, circ_6675, 
circ_6675, circ_4235, and circ_5758) were significantly 
upregulated in estrus ovary compared with diestrus 
ovary. The results illustrated that the circRNAs pro-
duced by these genes might involve in hormone biosyn-
thesis, oocyte maturation and estrus cycle maintenance.

Even now the function of circRNAs is not well under-
stood [25]. Many studies have revealed that some cir-
cRNAs can serve as a miRNA sponge and subsequently 
suppress its activity to regulate gene expression, or 
cross-talk with transcriptional machinery [7, 26].

We predicted 432 miRNA targeted by 156 of 305 
DECs (Additional file 5: Table S5). Each circRNA con-
tains one or more miRNA binding sites. For example, 
circ_1968 sponged ssc-let-7a, ssc-let-7d-5p, and ssc-
let-7f-5p. Circ_2456 sponged ssc-miR-21-3p. Circ_2141 
contained 9 potential binding sites to 4 different 
miRNAs, including ssc-miR-34a, ssc-miR-133a-5p, 
ssc-miR-138, and ssc-miR-7137-3p. Circ_1268 har-
bored two binding sites with ssc-miR-191. Circ_7558 
functioned as sponges for ssc-miR-132 and ssc-
miR-374b-5p. Previous studies have indicated that 

numerous miRNAs involved in regulating female 
reproductive hormone signaling during estrus [27–30]. 
MiR-191, miR-132, miR-370, and miR-181a were found 
to be associated with follicular development. Fur-
thermore, miR-19b, miR-21, miR-31, miR-106a, and 
miR-224 were associated with follicular granule cell 
development. MiR-133 has been demonstrated to reg-
ulate oocyte meiosis and suppress ovarian cancer cell 
proliferation [31, 32].

To fully understand the biological role of miRNAs 
sponged by DECs in ovary function, we analyzed the 
targets of the miRNAs sponged by DECs. Pathway 
analysis showed that these predicted targets par-
ticipate in a lot of KEGG pathways, including several 
pathways associated with reproduction, such as oocyte 
meiosis, circadian entrainment, circadian rhythm, 
ovarian steroidogenesis, estrogen signaling pathway, 
progesterone-mediated oocyte maturation, GnRH 
signaling pathway. Compare of the circRNA-miRNA-
mRNA networks between diestrus and estrus groups 
revealed that 153 miRNAs interacting with 122 DECs 
associated with ovarian functions, and 86 miRNAs 
interacting with 84 DECs related with ovarian cir-
cadian entrainment and circadian rhythm processes 
(Additional file 9: Table S9).

To further illustrate the role of the circRNAs in the 
regulation of gene expression during estrus stage, we 
constructed the DEC-miRNA-DEG interactive net-
works (Additional file  12: Table  S12). These networks 

Fig. 7  Volcano plot and the KEGG pathways of ovarian functions for DEGs. A Volcano plot of DEGs. B The KEGG pathways of ovarian functions for 
DEGs
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revealed that so much circRNAs were interacted with 
miRNAs and may act as ceRNAs to medicate the 
expression of miRNA targets. Many of the target genes, 
such as PTK2B, RPS6KA3, CCNB3, PLCB1, FOS, and 
HBEGF, were associated with reproduction pathways. 
Thus, we hypothesized that these cirRNAs, miRNAs, 
and mRNAs in the DEC-miRNA-DEG networks could 
play critical roles in estrus regulation. For example, we 
found that thirteen circRNAs (circ_1429, circ_7842, 
circ_8618, circ_4891, circ_7904, circ_2367, circ_3536, 
circ_5076, circ_1401, circ_7986, circ_2720, circ_3338, 
and circ_1081) were interacted with twelve miRNAs 
(ssc-miR-10382, ssc-miR-1224, ssc-miR-149, ssc-miR-
2320-5p, ssc-miR-326, ssc-miR-4339, ssc-miR-664-5p, 
ssc-miR-7138-5p, ssc-miR-7143-5p, ssc-miR-9802-3p, 
ssc-miR-9820-5p, and ssc-miR-9847-3p) as ceRNAs 
to medicate the expression of the related genes such 
as HBEGF, PTK2B, FOS, and ENSSSCG00000006719. 
Previous reports have shown that HBEGF may actively 
control the process of follicle growth and matura-
tion in the zebrafish [33]. PTK2B can encode a cyto-
plasmic protein tyrosine kinase which was reported 

to participate in the development of the final stages of 
follicles and ovary development in Hu sheep [34]. And 
FOS, a critical downstream mediator of PGR and EGF 
signaling, plays an important role in ovulation [35]. In 
our study, the expression of HBEGF, PTK2B, and FOS 
gene were upregulated in estrus ovaries and the expres-
sion patterns were consistent with the thirteen circR-
NAs motioned above. The results showed that the ovary 
needs to express enough proteins, such as HBEGF, 
PTK2B, and FOS  to meet the biological processes of 
follicular development and oocyte maturation during 
estrus cycle. Therefore, in order to remove the trans-
lation inhibition of target mRNA by the miRNAs, the 
cells would increase the expression level of related cir-
cRNAs as a miRNA sponge, thereby inhibiting the post 
transcriptional regulation of target mRNA by miRNAs.

Although some circRNAs function as miRNA 
sponges, 149 of 305 (48.85%) Xiang pig circRNAs iden-
tified in this study have no putative miRNA binding 
site. Several studies have suggested that most circRNAs 
do not act as miRNA sponges and they have functions 
including regulation of host gene transcription, protein 
binding, and translation [7–9].

Fig. 8  The DEC-miRNA-DEG networks associated with reproduction pathways



Page 11 of 14Niu et al. Porcine Health Management            (2022) 8:29 	

Conclusions
In conclusion, our results demonstrated that ovaries 
generated abundant circRNAs during estrus, of which 
numerous circRNAs were differentially expressed 
between diestrus and estrus phases. We predicted 432 
miRNA targets by 156 DECs. Each circRNA can contain 
one or more miRNA binding sites. Function enrichment 
analysis revealed that their host genes and the targets 
of miRNAs sponged by DECs were enriched in several 
reproduction-related signaling pathways, such as ovarian 
steroidogenesis, oocyte maturation, circadian rhythm, 
estrogen signaling pathway, GnRH signaling pathway. 
The DEC-miRNA-DEG networks associated with repro-
duction-related signaling pathways contained notes of 
22 DECs, 18 miRNAs, and 7 DEGs. 22 DECs were recog-
nized as hub circRNAs during the estrus phase of Xiang 
pigs. These results suggest that circRNAs probably  par-
ticipate in the regulation of gene expression in pig’s estrus 
cycle and reproduction.

Materials and methods
Sample preparation
Xiang pig sows after weaning were obtained from the 
Guizhou Dachang pig breeding company, Guizhou, 
China. The animal preparation and estrus detection were 
referred to the methods of Tang et  al. (2018) and Ran 
et al. (2021) [2, 36]. Four animals from each group were 
regarded as biological replicates. The animals from post-
weaning sows were monitored twice daily for behavioral 
estrus. On Day 10 and on Day 20 after estrus, the sows 
were considered in the diestrus and estrus phase, respec-
tively. The ovarian samples were collected with surgery at 
10  days before expected estrus and the day of the third 
estrus when the sows exhibited strong performance 
of reddening and swelling of the vulva. All samples 
were immediately frozen in liquid nitrogen and stored 
at − 80℃ until RNA extraction.
Library construction and RNA sequencing
The total RNA samples were isolated from ovarian tis-
sues at diestrus and estrus stages using TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA) according to the man-
ufacturer’s instructions. The quantity and integrity of 
the total RNAs were analyzed using a NanoDrop 2000 
(Thermo Fisher Scientific Inc., Waltham, MA, USA) and 
an Agilent 2100 Size Bio-analyzer system (Agilent Tech-
nologies, CA, USA). The values of RNA integrity num-
ber (RIN) > 7.0 were used for RNA-seq analysis. About 
5  μg total RNAs per sample were used for sequencing 
library preparation using a NEBNext® Ultra™ Directional 
RNA Library Prep Kit for Illumina® (NEB, Ipswich, MA, 
USA). The ribosomal RNAs were removed from the total 
RNA using a Ribo-Zero™ GoldKits (Epicentre, Madi-
son, WI, USA). The remaining RNA was fragmented 

and reverse-transcribed according to the description of 
TruSeq RNA LT/HT sample preparation kit (Illumina, 
USA). After the quality of the cDNA libraries were quali-
fied by Bioanalyzer 2200 evaluation (Agilent, Santa Clara, 
CA), sequencing was conducted on an Illumina HiSeq 
2500 instrument (Illumina, San Diego, CA, USA).

CircRNA identification
Firstly, the reads were removed that contained low-qual-
ity, adaptor and more than 5% unknown nucleotides via 
Fastp software [37]. The remaining high quality reads 
were then used for subsequent analysis. These reads 
were aligned to the reference genome of Sus scrofa 
(Sscrofa11.1) by employing Bowite2 or BWA [38, 39]. 
Bam files of unmapped reads from Bowite2 and sam files 
of mapped reads from BWA were input to find_circ and 
CIRI2, respectively. The candidates from two softwares 
were intersected to obtain the final circRNAs dataset 
based on chromosome location. The sequence splicing of 
circRNAs and the visualization of ring construction dia-
gram were performed by using CIRI-full and CIRI-vis, 
respectively [40].

Expression analysis of circRNAs and mRNAs
The different expression patterns of circRNAs and 
mRNAs were calculated by edgeR package [41]. The 
reads numbers mapped to each circRNA were counted 
and the average of two softwares find_circ and CIRI2 was 
taken as expression level of each circRNA transcript. It 
was worth noting that the junction reads in a circRNA 
were greater than or equal to 2 in each sample. All CPM 
values of circRNA were added 0.1 for logarithm arith-
metic. CPM = (circRNA read counts * 106) / the sum of 
circRNAs read counts [14]. The protein-coding gene 
expression level was counted by featureCounts software 
[42]. The expression level of mRNA was estimated by 
CPM value. CPM = (Count of reads mapped to a mRNA 
* 106) / Total count of mapped reads from the library 
[43]. The thresholds of DECs and DEGs were |log2 (fold_
change)|≥ 1 and P < 0.05 [16].

Prediction of miRNA targets and circRNA‑miRNA‑mRNA 
network construction
Target miRNAs of DECs were predicted via MiRanda 
v3.3 (http://​www.​micro​rna.​org/​micro​rna/​home.​do) and 
RNAhybrid v1.2 (http://​bibis​erv.​techf​ak.​uni-​biele​feld.​
de/​rnahy​brid). The intersections results from miRanda 
and RNAhybrid was identified as the target miRNAs 
with the minimal free energy of − 10 kcal/mol. MiRNAs 
sequences of pig were originated from miRBase database 
(http://​www.​mirba​se.​org/). The target mRNA by miRNA 
were determined as the shared mRNA between results 

http://www.microrna.org/microrna/home.do
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid
http://bibiserv.techfak.uni-bielefeld.de/rnahybrid
http://www.mirbase.org/
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from miRanda and PITA (http://​genie.​weizm​ann.​ac.​il/​
pubs/​mir07/​mir07_​dat-a.​html) with a set of minimal free 
energy to be − 10  kcal/mol. The diagram of circRNA-
miRNA-mRNA regulatory interaction networks was 
depicted via Cytoscape software [44].

Go and KEGG analysis
To analyze function of circRNAs, Go and KEGG analy-
sis were performed by KOBAS online [45], in which 
host genes of circRNAs and target genes of miRNAs 
sponged by DECs were taken as input. The established 
criteria (P < 0.05) was considered to indicate significant 
enrichment.

Validation of circRNAs by Sanger sequencing
Most of identified circRNAs were expressed at low lev-
els with CPM value less than 1,000 especially those DECs 
between the estrus and diestrus phases. To confirm the 
reliability of the predicted circRNAs from RNA sequenc-
ing, seven circRNAs were randomly chosen from those 
circRNAs with CPM value (average CPM > 2500) ranked 
at the top 50. These seven circRNAs included circ_1952, 
circ_8664, circ_5597, circ_4508, circ_2414, circ_0546, 
and circ_8670. The information (eg: CPM, FDR, and so 
on) of those circRNAs was showed in Additional file 15: 
Table S15 in manuscript. The difference of these 7 circR-
NAs levels was not significant between estrus and dies-
trus stages. Moreover, we confirmed the reliability of the 
predicted circRNAs from RNA sequencing by verifying 
the region of spliced junction through RT-PCR method 
using a pair of divergent primers flanking the BSJ. The 
region of BSJ of circRNA is composed of a canonical 
5′ splice site sequence joined to an upstream 3′ splice 
site sequence [46]. The PCR products were analyzed by 
2% agarose gel electrophoresis and further proofed via 
Sanger sequencing (Sango Biotech, Shanghai, China).
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