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Abstract

Sustained or repeated exposure to sedating drugs, such as alcohol, triggers homeostatic adaptations in the brain that lead
to the development of drug tolerance and dependence. These adaptations involve long-term changes in the transcription
of drug-responsive genes as well as an epigenetic restructuring of chromosomal regions that is thought to signal and
maintain the altered transcriptional state. Alcohol-induced epigenetic changes have been shown to be important in the
long-term adaptation that leads to alcohol tolerance and dependence endophenotypes. A major constraint impeding
progress is that alcohol produces a surfeit of changes in gene expression, most of which may not make any meaningful
contribution to the ethanol response under study. Here we used a novel genomic epigenetic approach to find genes
relevant for functional alcohol tolerance by exploiting the commonalities of two chemically distinct alcohols. In Drosophila
melanogaster, ethanol and benzyl alcohol induce mutual cross-tolerance, indicating that they share a common mechanism
for producing tolerance. We surveyed the genome-wide changes in histone acetylation that occur in response to these
drugs. Each drug induces modifications in a large number of genes. The genes that respond similarly to either treatment,
however, represent a subgroup enriched for genes important for the common tolerance response. Genes were functionally
tested for behavioral tolerance to the sedative effects of ethanol and benzyl alcohol using mutant and inducible RNAi
stocks. We identified a network of genes that are essential for the development of tolerance to sedation by alcohol.
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Introduction

Drug tolerance and dependence are two key components in the

development of drug addiction. These drug responses are believed

to arise from common homeostatic adaptations in the brain that

oppose the effects of the drug [1,2]. Tolerance in particular is a

reduction in drug sensitivity in response to prior drug exposure.

While this adaptation ameliorates the effects of intoxication, it

often outlives the intoxicated state to produce symptoms of

withdrawal. Not only are these symptoms indicative of physiolog-

ical dependence but also both tolerance and withdrawal appear to

act in a feed-forward kindling-like manner to deepen the addicted

state [3]. Therefore, understanding the mechanisms that underlie

tolerance to alcohol is of central importance for understanding

alcoholism.

Modulation of gene expression has emerged as an important

mechanism in the development of brain adaptations that produce

drug-induced changes in behavior [4]. In particular, epigenetic

histone modifications have become central to our understanding of

drug abuse. They serve as a molecular memory of previous drug

experiences that leads to altered responsivity during future drug

exposures. Drug-induced changes in histone acetylation, for

example, have been shown to be a major component in the

long-term adaptation that leads to tolerance to alcohols in both

Drosophila and mammals [5,6]. Therefore, a genomic survey of

histone acetylation may be instrumental in identifying genes whose

coordinate regulation mediates drug-induced adaptations.

While high-throughput expression studies have proven success-

ful for the discovery of differences in gene expression that define

cell types, the same methods have been less successful in the

identification of genes that underlie drug-induced changes in

behavior [7]. We believe that the major constraint impeding

progress is that genes important for a specific drug response are

obscured by the overwhelming abundance of changes in gene

expression observed in response to drug exposure. Most of these

changes may not produce any meaningful contribution to the

behavior under study. This limitation has led the field to focus

largely on meta-analysis of genomic data, but even extensive meta-

analysis can result in an unwieldy number of gene candidates [8].

To circumvent this problem, we used a novel genomics-based

epigenetic approach to specifically identify genes that underlie

functional tolerance to alcohol sedation in Drosophila. This

approach is based on the observation that some chemically distinct

alcohols produce mutual cross-tolerance in a mechanistically

related manner. We reasoned that the genes that show related

patterns of histone acetylation in response to both drugs are likely

to be involved in producing the common behavioral response,

while genes that are unimportant for the shared behavior are

unlikely to display similar histone acetylation profiles in response

to these chemically distinct drugs.
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In Drosophila, tolerance to ethanol and to the solvent anesthetic

benzyl alcohol has been shown to develop after a single exposure

to the either drug [9–11]. Furthermore, both drugs were shown to

induce cross-tolerance to each other, indicating that they share a

common mechanism for the development of tolerance [12]. Using

genetic analysis, we have previously demonstrated that the

mechanism of tolerance to these drugs involves a drug-induced

upregulation of the BK-type Ca2+-activated K+ channel encoded

by the slo gene. We showed that in the nervous system, the

Drosophila slo gene responds to solvent intoxication with a

programmed transcriptional response whose progression is medi-

ated by a dynamic increase in histone H4 acetylation [5,13]. In

turn, increased slo gene expression acts as a neural excitant that,

upon subsequent exposure, counters the sedating effect of the drug

to produce tolerance. However, after drug clearance, the persistent

increase in channel activity reduces the animal’s seizure threshold,

giving rise to a withdrawal phenotype [14,15].

In order to identify new genes that are co-regulated with slo and,

like slo, participate in the neuroadaptations behind the develop-

ment of drug tolerance, we conducted genome-wide surveys of

histone acetylation changes produced in response to either ethanol

or benzyl alcohol. A subset of the genes with similar responses to

both drugs was evaluated by mutant analysis to functionally test

their role in producing alcohol tolerance. Here we report the

identification of a highly correlated network of genes with direct

roles in the modulation of neural activity that are essential for the

development of tolerance to sedation by alcohol.

Results

Alcohol-induced changes in histone acetylation
To measure histone acetylation across the fly genome, we

performed genomic surveys of histone H4 acetylation (H4Ac)

using the chromatin-immunoprecipitation assay (ChIP–chip).

Anti-H4Ac immunoprecipitated chromatin and the corresponding

‘‘input’’ chromatin were hybridized to NimbleGen two-color

Drosophila DNA tiling arrays. A representative snapshot of the

acetylation profile of a 30 Kb region of chromosome 3R

(3R:1,406,00..1,436,000) obtained from an untreated control

sample is shown in Figure 1. Genes in this region are shown in

figure 1A while the respective acetylation profile across the same

region is shown in figure 1B. Peaks demarcate highly acetylated

regions. In most cases, acetylation peaks overlapped the

transcriptional start site of annotated genes, sometimes covering

the entire coding region of genes. The histone H4 acetylation

‘‘landscape’’ closely resembled the histone H4 acetylation patterns

reported by the modENCODE project, even though we used adult

heads instead of whole flies. The veracity of the ChIP–chip data

was further confirmed by real-time PCR for 10 unique loci across

the fly genome from three independent control chromatin samples

(Supporting Figure S1). We chose to survey histone acetylation as

a way to monitor gene activation rather than directly measuring

changes in mRNA abundance because we wanted to have a strong

focus of transcriptional regulation. Changes in mRNA abundance

are often produced by the specific regulation of message stability.

However, changes in histone acetylation are the direct products of

transcription co-factors such as histone acetyl-transferases (HATs)

or histone deacetylases (HDACs) that often associate with

transcription factors to initiate or prevent transcription. Hence

histone acetylation more directly reflects transcription activation

state.

To specifically identify drug-induced changes in H4Ac, we

hybridized anti-H4Ac immunoprecipitated chromatin from the

heads of drug-treated and mock-treated flies in a single two-color

Drosophila DNA tiling array. With this approach, changes in the

magnitude of H4 acetylation between the control and drug-treated

animals generate difference peaks. Figures 1C and 1D show the

difference peaks generated by benzyl alcohol or ethanol,

respectively, for the same region of chromosome 3R. Statistically

significant peaks in the difference plots, from two biological

replicates, were identified by statistical comparison to a random-

ized sample using a FDR cutoff ,0.05 (Supporting Figure S2).

Genes associated with each peak were subsequently identified by

proximity after mapping the peaks to the annotated Drosophila

genome. While each drug produced significant changes in over

1500 gene loci, only a subset of 144 genes (,10%) were found in

common between the two drugs (Figure 1E). We hypothesized that

this intersection will be highly enriched for genes important for

functional tolerance, a shared response to both drugs. To reduce

the complexity of the analysis, only genes that increase acetylation

were examined in this study. A complete list of these genes,

including full gene ontology information, is displayed in the

accompanying supporting material (Supporting Datasets S1 and

S2).

Gene-expression correlation analysis and gene clustering
An attractive hypothesis is that the genes identified here are co-

regulated in an activity-dependent manner and are involved in

common processes in the cell. One way to determine similarities

between groups of genes is to perform gene annotation clustering

analysis, which is based on molecular function or biological

process. However, this analysis does not take into account

correlated transcriptional activity between the genes. To overcome

this limitation, we performed a gene-expression profile analysis to

enhance the gene ontology analysis.

To identify co-regulated groups within the 144 candidate genes,

we first organized them into groups with similar patterns of

expression. Gene-expression profiles produced by exposing

Drosophila melanogaster to various chemicals or subjecting them to

temperature shock were obtained from the ‘‘Transcriptional

Profiling of Compound-based treatments of D. melanogaster using

Illumina poly(A)+ RNA-Seq’’ data set (collected by the Brenton

Author Summary

Alcoholism is a complex condition of compulsive alcohol
use that results in devastating physical and social
consequences. The development of this affliction is
believed to arise in part by homeostatic adaptations in
the brain that lead to the development of alcohol
tolerance and dependence. These adaptations are strongly
influenced by a great number of genetic and environ-
mental conditions. Identifying the relevant factors that
define alcohol tolerance and dependence has been a
major objective of neurobiology research for many
decades. Here we use a novel genomic approach that
exploits the analysis of epigenetic modifications and the
power of Drosophila genetics to identify a network of
genes with a potential role in the neuroadaptations that
lead to alcohol tolerance. Gene-expression profiling and
subsequent gene ontology analysis revealed that the
group of genes identified here is highly enriched with
genes involved in the activity-dependent modulation of
synaptic transmission. Because of the strong conservation
of regulatory gene networks between Drosophila and
mammals, we believe that the network identified here will
serve as a powerful guide for the identification of the
regulatory events that lead to human alcohol tolerance.

Gene Network Orchestrates Alcohol Tolerance
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Graveley laboratory at the University of Connecticut Health

Center to the modENCODE Drosophila Transcriptome project

[16]). This data set contains gene-expression profiles from different

fly populations treated with four different temperature-shock

protocols, eight different heavy-metal diets, exposures to three

different ethanol concentrations, three different caffeine-treatment

protocols, and four different treatments with oxidative stress

agents. Gene-expression profiles of the 144 candidates were

subjected to unsupervised hierarchical clustering based on Pearson

correlation coefficients [17]. We found that the genes segregated

into seven distinct clusters. However, only four of these clusters

were highly correlated (r.0.65). Figure 2 shows the 144 genes

after gene-expression clustering and the members of each highly

correlated gene cluster. The similar response to a variety of

unrelated treatments suggests that these genes are co-regulated.

Because the genes in each cluster share highly correlated gene-

expression patterns, it is expected that genes within each cluster

also share common functional roles. To determine if the genes in

each Gene-Expression Cluster have related function, we gathered

gene ontology information for each gene. We performed gene

annotation clustering within the gene groups shown in Figure 2

using the Database for Annotation, Visualization and Integrated

Discovery (DAVID) tool [18]. A high percentage of genes within

each Gene-Expression Cluster have common molecular functions

and/or participate in a common biological process. The top terms

in each DAVID cluster (Fisher Exact/EASE Score p-value,0.05)

are listed in Table 1. We found Gene-Expression Cluster #1 to be

highly enriched for genes associated with transcription regulation,

chromatin regulation, and small regulatory proteins (phosphory-

lation and GTPase activity) amongst others. Gene-Expression

Cluster #2 is enriched in adenyl nucleotide binding and

microtubule cytoskeleton genes. Gene-Expression Cluster #4 is

highly enriched for genes associated with ion channel activity and

synaptic membrane proteins. Gene-Expression Cluster #3 did not

display significant enrichment for any gene ontology category. Full

gene ontology annotation information for all clusters can be found

in Supporting Dataset S2.

Functional testing of candidate genes
To validate the efficiency of this approach in identifying genes

involved in the development of tolerance to sedation, we chose a

sample of 19 genes to test by mutant and RNAi knockdown

analysis. Gene-Expression Cluster #4 contained the slo gene,

which has previously been shown to play a role in the production

of ethanol tolerance. Based on the hypothesis that the Gene-

Expression Clusters represent co-regulated genes and were

therefore more likely to be involved in the same process, we

focused our analysis on this cluster. In addition, Cluster #4 is

highly enriched for genes associated with ion channel activity and

synaptic membrane proteins and thus has the potential of

modulating neural activity in response to drugs. Eleven candidates

(out of thirteen cluster members) were selected from Gene-

Expression Cluster #4 for mutant analysis. We also examined

eight other candidates (five from Gene-Expression Cluster #1, one

from Gene-Expression Cluster #2, and two that did not fall within

any of the highly correlated clusters). The genes sampled were not

chosen randomly but were selected based on the ease with which

genetic tools could be obtained to test their function, whether or

not the identity of the encoded protein was known, whether the

gene was expressed in the nervous system, and prior information

concerning the function of the gene (e.g. pum is a known activity-

dependent regulator of neural activity [19]). This collection of

Figure 1. Genome-wide, drug-induced changes in H4 acetylation. A) Annotated gene map of a 30 kb representative region of the
Drosophila chromosome 3R. The coding region of depicted genes is shown as connected boxes. Genes in the top row are transcribed from the plus
(+) strand (left to right); genes in the bottom row are transcribed from the minus (2) strand (right to left). B) Histone acetylation profile of chromatin
isolated from wild-type fly heads. Plot shows histone H4 acetylation levels of untreated control flies across the same chromosomal region displayed in
(A). Bars represent the normalized IP/input ratios of fluorescently labeled chromatin signals detected by a single DNA tilling array. C–D) Difference
plot showing the changes in histone H4 acetylation between control flies and benzyl alcohol-treated flies (C) or control flies and ethanol-treated flies
(D) across the same chromosomal region displayed in (A). Bars are log2 values of the normalized IP-treated/IP-control ratios of fluorescently labeled
chromatin signals detected by a single DNA tilling array. The red rectangle highlights a representative example of a statistically significant drug-
induced acetylation spike shared by both drug treatments. The depicted red gene identifies the closest gene loci associated with the drug-induced
acetylation spike. E) Diagrammatic representation of the overlap between the cohorts of genes with significant changes in acetylation induced by
benzyl alcohol, ethanol or both.
doi:10.1371/journal.pgen.1003986.g001
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Figure 2. Clustering analysis by gene-expression patterns of genes identified in this study. Genes were clustered by Pearson correlation
analysis of their mRNA expression patterns induced by 21 different environmental conditions. Shades of blue in heat map denote gene-expression
levels for each condition, normalized for each gene using the sum of squares of all conditions (white is lowest, dark blue highest). After clustering,
genes segregate into seven distinct clusters, four of which are highly correlated (r.0.65). These clusters are denoted by red brackets. Clusters with
low or no correlation (r,0.3) are denoted by gray brackets. In this study, eighteen genes (16 of which fall within the highly correlated clusters, marked
in bold) were tested for their role in behavioral alcohol tolerance. Of these, ten (marked in red) significantly reduced tolerance to alcohol, while eight
(only six shown) had no effect (marked in blue).
doi:10.1371/journal.pgen.1003986.g002

Gene Network Orchestrates Alcohol Tolerance
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genes consisted of four ion channel genes, three ion channel

accessory genes, five transcription modulator genes, two protein

kinase genes, one phosphatase gene, two cell adhesion genes, and

two genes associated with cellular house-keeping (Table 2).

To test the role of the candidate genes in alcohol tolerance,

we used different gene knock-out/knockdown approaches.

When possible, we used available loss-of-function null muta-

tions, but in cases where the homozygous null mutations

compromised viability of the stock, we used either hypomorphic

alleles, null heterozygotes, or a transgene that carries a Gal4-

inducible RNAi of the gene. Expression of the RNAi transgene

was induced by crossing the RNAi stocks with either the

ubiquitous aTub84B-Gal4 driver or, if this combination proved

lethal, the more restricted pan-neural elav-Gal4 driver was used.

These distinct methods perturb gene expression in different

ways and amounts, thereby increasing the chances of obtaining

a viable adult. For the nineteen candidate genes, we used loss-

of-function null alleles in three cases (slo4, so1, nAChRa-30DDAS1),

hypomorphic alleles in two cases (pum13, eag1), and a heterozy-

gous loss-of-function allele in one case (nej3/FM7). In addition,

we used ubiquitously expressed RNAi alleles for six genes

(Act57B, Ack-like, Teh2, Ptp99A, Ten-a, kn) and neurally restricted

RNAi alleles for another six (brp, msn, trr, unc-104, mam, Dscam).

Only one gene candidate was lethal under both RNAi induction

protocols and thus could not be behaviorally tested (para). For

the purpose of convenience, in the remainder of the manuscript

the word mutant will refer to all of the allele types used.

For each mutant stock, the animals were subjected to a two-day

alcohol tolerance assay. In this assay, a population of female flies

was divided into two groups. On the first day, one group

(experimental) was sedated with either benzyl alcohol or ethanol

vapor, whereas the second group was left untreated (control). On

the second day, both groups were sedated with the alcohol vapor

and the time of recovery monitored. If the experimental group

recovered faster than the control group, the strain was said to be

capable of acquiring tolerance. The magnitude of tolerance (i.e.

the change in recovery time between experimental and control

groups) was determined for each strain and statistically compared

to the appropriate wild-type controls. The magnitude of benzyl

alcohol tolerance for each strain is plotted in Figure 3A. Mutations

in eleven of the eighteen genes tested significantly blocked or

reduced tolerance to benzyl alcohol, while for the remaining seven

genes, the mutation did not significantly affect benzyl alcohol

tolerance. To determine if these mutations disrupt ethanol

tolerance, all alleles were subjected to an equivalent two-day

ethanol tolerance assay. Of the eleven alleles that significantly

disrupted benzyl alcohol tolerance, ten also disrupted ethanol

tolerance, and the remaining eight did not affect ethanol tolerance

(Figure 3B). These results reflect a validation rate of approximately

55% success for alcohol tolerance. Most importantly within

Cluster #4, the success rate is even higher —80% behavioral

validation. Moreover, only one of the genes tested affected

tolerance to one of the drugs but not both (the mutation in msn

significantly reduced benzyl alcohol tolerance but failed to affect

Table 1. Gene ontology annotations for highly correlated gene clusters.

Expression Cluster Gene Ontology Term Count (%) Fisher Exact/EASE score

1 (0.72) Transcription regulation 10 (14.9) 8.50E-05

Neuron differentiation 11 (16.4) 1.90E-04

Gamete generation 13 (19.4) 1.28E-03

GTPase regulator activity 6 (9.0) 1.59E-03

Metal ion binding 20 (29.9) 3.73E-03

Microtubule cytoskeleton 7 (10.4) 2.92E-03

Negative regulation of gene expression 7 (10.4) 5.13E-03

ATP-binding 11 (16.4) 4.14E-04

Microtubule motor activity 4 (6.0) 4.63E-03

Ubl conjugation pathway 4 (6.0) 1.14E-02

Ubiquitin-protein ligase activity 4 (6.0) 1.37E-02

Regulation of developmental growth 3 (4.5) 2.61E-02

Vision 3 (4.5) 2.83E-02

Positive regulation of macromolecule biosynthetic
process

3 (6.0) 4.73E-02

2 (0.73) Adenyl nucleotide binding 4 (40.0) 9.17E-03

Microtubule cytoskeleton 3 (30.0) 1.19E-02

3 (0.84) No terms clustered

4 (0.68) Cation channel activity 5 (35.7) 5.58E-06

Integral to plasma membrane 5 (35.7) 3.04E-04

Ion channel complex 4 (28.6) 9.71E-05

Voltage-gated channel 3 (21.4) 9.65E-05

Transmembrane 6 (42.9) 2.43E-03

Significant gene categories for each cluster were identified using DAVID (Pearson correlation coefficient shown in parenthesis next to cluster number). The top term in
each cluster with a Fisher Exact/EASE Score p-value,0.05 are listed in this summary. The ‘Count’ column displays number of genes in each cluster associated with a
particular GO term, percentage of the total number of genes in the cluster is shown in parenthesis.
doi:10.1371/journal.pgen.1003986.t001
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ethanol tolerance significantly). Together, these data confirm our

central hypothesis, that similarities in the histone modification

profiles between benzyl alcohol- and ethanol-sedated flies is a

useful way to identify genes that are involved in the acquisition of

functional tolerance.

During mutant analysis, we confirmed that each iteration of the

treatment protocol produced tolerance by performing the toler-

ance test with the Canton-S (CS) strain—a common wild-type

control used in the community. For each of the RNAi knockdown

experiments, we used the progeny of the cross between the

respective Gal4-driver strain and the w1118 strain as genetic

controls. The w1118 strain carries the same genetic background as

all the RNAi lines tested and therefore represents an appropriate

genetic control for the progeny of the induced lines. The RNAi

transgenic inserts are carried in two different chromosomal sites.

The insertion site of the RNAi transgenes obtained from the TRiP

Transgenic RNAi Project are all inserted into an engineered attP2

site at position 3L:11,063,638 (chromosome 3), while the insertion

site of the RNAi transgene in lines obtained from the Vienna

Drosophila RNAi Center are inserted at position 2L:22,019,296

(chromosome 2). It is possible that insertions at these positions

disrupt expression of a gene important for tolerance. This has been

ruled out by the fact that not all of the RNAi inserts at these

position affect tolerance. Two additional RNAi lines had inserts at

unmapped locations; however, neither of these affected tolerance.

Gene-expression analysis of candidate genes
Changes in histone acetylation are known to be associated with

changes in transcriptional activity of genes. Because the genes

validated here were first identified through alcohol-induced

changes in histone acetylation, one would expect that the

transcriptional activity of these genes would also be modulated

by alcohol exposure. To examine if these genes display alcohol-

induced changes in gene expression, we performed quantitative

RT-PCR analysis of mRNA abundance for a set of the candidate

genes in response to either ethanol or benzyl alcohol. The genes

tested here include eag, brp, Teh2, pum, nej, and para.

As shown in Figure 4, we confirmed that all candidate genes

tested increase mRNA expression in response to both ethanol and

benzyl alcohol. While there are a few individual instances in which

the message upregulation does not reach statistical significance, the

overall effect of alcohol treatment is statistically significant

amongst the six genes (P = 0.0013, by Two-way ANOVA). For

individual cases, the genes eag and para showed significant

upregulation after both ethanol and benzyl alcohol. The genes

brp and Teh2 show a significant upregulation only after ethanol

treatment, while pum showed upregulation only after benzyl

alcohol treatment. Previous studies have shown that slo is slightly

induced by both benzyl alcohol and ethanol sedation [10,12]. The

nej gene may be upregulated by both drugs, albeit the changes

reported here did not reach statistical significance. However, this

might be a consequence of assaying for changes in gene expression

at only the 6 h post-sedation time point. We expect that a time

course analysis following alcohol exposure will be required to

authoritatively assess the transcriptional dynamics of each gene’s

response to alcohol sedation.

Discussion

Because many histone modifications are a direct molecular

consequence of transcription factor/co-factor activity, they repre-

sent a reliable indicator of alterations in gene activity [20].

Patterns of histone modifications can be used to identify genes that

Table 2. Genes tested for drug tolerance using mutant analysis.

# Gene Symbol Molecular function
Flybase allele
name tested Allele class Effect on tolerance

EtOH BA

1 Ack-like Cdc42-like tyrosine kinase Ack-likeKK105138 Tub-Gal4: RNAi 2 2

1 trr Histone methyl-transferase activity trrGD4501 elav-Gal4: RNAi 2 2

1 msn Protein serine/threonine kinase msnKK108948 elav-Gal4: RNAi 2 +

1 pum Translational repressor activity pum13 loss of function/hypomorphic + +

1 nej Histone acetyl-transferase activity nej3/FM7 loss of function/heterozygous null + +

2 unc-104 Microtubule motor activity unc-104HM05162 elav-Gal4: RNAi 2 2

4 nAcRa-30D Nicotinic acetylcholine receptor, a-subunit nAcRa-30DDAS1 loss of function/null 2 2

4 eag Voltage-gated K+ channel, a-subunit eag1 loss of function/hypomorphic + +

4 Teh2 Voltage-gated Na+ channel, b-subunit Teh2KK112449 Tub-Gal4: RNAi + +

4 slo BK-type Ca2+-activated K+ channel, a-subunit slo4 loss of function/null + +

4 Ptp99A Protein tyrosine phosphatase Ptp99AJF01858 Tub-Gal4: RNAi + +

4 mam Transcription co-activator mamJF02881 elav-Gal4: RNAi + +

4 brp Ca2+ channel modulator activity brpJF01932 elav-Gal4: RNAi + +

4 Ten-a Synaptic target recognition Ten-aJF03375 Tub-Gal4: RNAi + +

4 Dscam Cell-surface immunoglobulin DscamJF03307 elav-Gal4: RNAi 2 2

4 kn Transcription factor KnJF02206 Tub-Gal4: RNAi + +

4 para Voltage-gated Na+ channel ParaJF01469 elav-Gal4: RNAi L L

5 so Transcription factor so1 loss of function 2 2

7 Act57B Actin filament subunit Act57BGD6854 Tub-Gal4: RNAi 2 2

(#) Cluster number. (+) Significantly blocked or reduced tolerance. (2) No effect on tolerance. (L) Lethal.
doi:10.1371/journal.pgen.1003986.t002

Gene Network Orchestrates Alcohol Tolerance
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Figure 3. Mutant and RNAi behavioral analysis of benzyl alcohol and ethanol tolerance. A) Mutant alleles or inducible RNAi lines for
eighteen genes were tested for the ability to acquire tolerance to benzyl alcohol. Eleven of these lines significantly block or reduced benzyl alcohol
tolerance as compared to their appropriate controls. B) Mutant alleles or inducible RNAi lines for the same eighteen genes shown in (A) were tested
for the ability to acquire tolerance to ethanol. Ten of these lines significantly block or reduced tolerance as compared to their appropriate controls.
Controls were: wild-type (WT) CS strain for mutants, and the respective heterozygous Gal4-driver transgenic for RNAi lines. * denotes significant
difference in magnitude of tolerance between subjected lines and controls (P,0.05).
doi:10.1371/journal.pgen.1003986.g003

Figure 4. Alcohol-induced upregulation of expression of candidate genes. The relative mRNA levels for candidate genes eag, brp, Teh2,
pum, nej, and para in control animals, benzyl alcohol-sedated animals, and ethanol-sedated animals are shown. Abundance of mRNA for each gene
was determined by quantitative reverse-transcription PCR analysis and expressed relative to the abundance of the Cyp1 gene. Error bars are SEM.
Asterisks denote statistically significant differences from the untreated controls (P,0.05, One-way ANOVA with Dunnett’s post-hoc test). Overall
statistical significance of the effects of alcohol treatment for the whole set of genes was determined by Two-way ANOVA (P = 0.013).
doi:10.1371/journal.pgen.1003986.g004

Gene Network Orchestrates Alcohol Tolerance
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are coordinately regulated and to identify the position of

enhancers that mediate gene induction [21,22]. The histone H4

acetylation changes produced by benzyl alcohol and ethanol are

grossly different, even though these drugs generate mutual cross-

tolerance that has overlapping molecular origins [12]. However,

we reasoned that the intersection between the benzyl alcohol

pattern and the ethanol would be enriched for genes that underlie

common adaptive tolerance response. Because, alcohol tolerance

and dependence are thought to arise from common homeostatic

mechanisms [23], we believe that some (but not all) of the genes

identified here are also likely to have a role in the development of

alcohol dependence.

We identified a cohort of 144 genes whose histone H4

acetylation state increases with either drug. To further organize

the candidates into functionally-related groups we performed

cluster analysis based on the transcriptional responses to a variety

of different treatments. Because the expression of each subgroup is

highly correlated, the genes in a group are likely to be coordinately

regulated. This analysis was combined with Gene Ontology Term

Clustering to generate subgroups enriched for genes that share

both common transcriptional responses and participate in

common biological processes. Of the eighteen genes tested for

tolerance, ten were validated by mutant analysis. Although,

mutant analysis in flies is faster than in mammals, the tolerance

assay is sufficiently time consuming to make an unbiased genetic

screen unattractive. However, this analysis shows that prescreen-

ing with this method reduces the number of candidates to be tested

to a manageable number. We expect that analysis of the remaining

125 genes will continue to identify new tolerance genes, although

as we move deeper into the rank-ordered list the success rate may

decline.

The genes implicated in producing ethanol tolerance have

striking interrelationships linked to specific cellular processes. All

ten validated genes have previously been associated with the

regulation of neural physiology, neural development or synaptic

plasticity, implicating a role for coordinate regulation of neural

activity as a means to achieve long-term adaptations to alcohol.

While it is intuitively obvious that functional tolerance to these

drugs would involve adaptations affecting neural activity, our

screen implicates specific genes. Historically, Drosophila has been

an excellent model system for describing the cascades of

interacting genes [14] that underlie a specific response. However,

the first step in this process is the identification of a collection of

mutations that specifically affect the response being studied. We

believe that we have described an excellent method for enriching

for tolerance genes.

One gene identified by our unbiased enrichment procedure is

the slowpoke (slo) BK-type K+ channel gene. This represents a key

validating result because this gene has previously been shown to be

important for ethanol and benzyl alcohol tolerance in Drosophila

[2,12] and has also been shown to play a central role in the

development of alcohol tolerance in C. elegans and mammals

[24,25]. The slo gene encodes the pore forming subunit of the BK-

type Ca2+-activated K+ channel, a pre-synaptic channel directly

involved in the regulation of action potential shape and

neurotransmitter release [26–28]. In Drosophila, an alcohol-

induced increase in slo expression has been shown to enhance

neural capacity for repetitive firing, resulting in enhanced

resistance to the sedative effects of alcohol (tolerance), and

increased susceptibility to alcohol withdrawal seizures—a symp-

tom of alcohol dependence [14,15]. The mammalian homolog of

slo is KCNMA1 [29].

A second gene validated as being required for functional

tolerance is the eag K+ channel gene. This is intriguing because the

eag gene genetically interacts with the slo gene. In Drosophila, eag

has been proposed to contribute subunits to ion channels

ostensibly considered to be products of other ion channel genes,

including BK channels [30,31]. This claim is buttressed by the

recent finding that, in C. elegans, the eag and slo homologs

genetically interact [32]. On a related note, heterologous

expression studies in mammalian cells show evidence that abused

drugs such as ethanol and cocaine significantly block channels

produced by the human eag homolog [33,34]. The mammalian

homologs of eag are members of the ERG/KCNH family of

delayed rectifier voltage gated K+ channel genes [35].

The pum and Teh2 genes encode proteins that interact with the

para voltage-gated Na+ channel, which also appears in our list. The

gene pumilio (pum) encodes an RNA-binding protein that regulates

translation and mRNA stability by binding to the 39-UTR of

mRNAs [36–38]. In addition to roles in germline development

and embryogenesis, pum has been directly linked to the activity

dependent regulation of neuronal excitability, pre-synaptic mor-

phology, and long-term memory [19,39,40]. In neurons, the Pum

protein regulates the translation of para mRNA in an activity-

dependent manner [41] and therefore is a prime candidate for

modulation of ethanol response that contributes to tolerance.

Furthermore, a previous mutant screen had identified pum among

a collection of learning and memory mutants as being involved in

the development of rapid tolerance to alcohol [42].

The Teh2 gene encodes a member of a structurally conserved

family of ion channel b-subunits. Teh2 has been functionally

shown to act as b-subunit of the Para voltage-gated Na+ channel

whose presence alters channel activity [43]. We have not yet

properly evaluated whether the mutations in para itself would

interfere with tolerance. The temperature sensitive parats1 allele

does not block tolerance at permissive temperatures [44,45], but

animals carrying this temperature-sensitive mutation are essen-

tially normal at the permissive temperature and completely

paralyzed at the restrictive temperature. Unfortunately, induction

of para RNAi with both Gal4 drivers used in this study resulted in

lethality (para is an essential gene). Nevertheless, the identification

of both Teh2 (a Para voltage-gated Na+ channel auxiliary subunit)

and pum (a translational repressor of para mRNA) strongly

implicate Para Na+ channels as playing an important role in

alcohol tolerance. This hypothesis can eventually be tested by

collecting and testing hypomorphic para alleles.

Surprisingly, the Teh2 protein also shows strong topological

homology to the human slo BK channel b subunit, and it has been

postulated (but not yet proven) that it could also act as a b-subunit

for slo BK channels in flies [43]. The expression profile of Teh2 is

very similar to the expression profile of slo [46], suggesting that

both proteins are expressed in the same cells. In mammals, both

NaV and BK channel b-subunits serve as key regulators of their

respective a subunits [47,48]. Furthermore in mammals, modu-

lation of BK channels by b-subunits plays a role in the regulation

of the molecular and behavioral responses to alcohol [49,50].

Further work is required to determine whether Drosophila Teh2

and BK channels interact.

The gene brp encodes a pre-synaptic active zone component

with significant sequence homology to a neural isoform of the

vertebrate ELKS/CAST/ERC family. The Brp protein has been

shown to be a critical player in the assembly of active zones and

the regulation of evoked neurotransmitter release at chemical

synapses [51]. Because of its physical interaction with pre-synaptic

Ca2+ channels, Brp is thought to play an important role in

clustering Ca2+ channels and vesicles to allow efficient transmitter

release and synaptic plasticity [52,53]. Although there are no

previous reports of interactions with drugs of abuse, brp is a key
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candidate for the control of synaptic homeostasis at the pre-

synaptic active zone [54,55].

A number of genes identified in this study encode proteins

involved in synaptic growth and axon guidance. For instance, the

gene Ptp99A, a transmembrane receptor protein tyrosine phos-

phatase [56], is involved in motor neuron axon guidance [57] and

defasciculation of motor neuron axon [58]. The gene Ten-a

encodes a protein with unknown function. However mutant

phenotypes indicate it is important in synaptic target recognition,

attraction and growth [59–61]. Meanwhile, the gene knot/collier

(kn/col) is a sequence-specific DNA binding transcription factor

involved in dendrite morphogenesis [62] and plays roles in the

innate immune response [63]. Interestingly, the innate immune

response has recently been linked with alcohol phenotypes in both

flies and mammals [64,65]. However, the mechanisms by which

immune factors contribute to behavioral changes associated with

alcohol exposure remain unclear. Based on the gene-expression

similarities with the myriad of synaptic genes found here, the gene

kn could link the neuroimmune response to alcohol-induced

behavioral changes.

In addition to synaptic and neurogenic factors, two other

transcription modulators were identified. The gene nej, which

encodes the Drosophila homolog of the mammalian transcrip-

tional co-activator CREB-binding protein (CBP) [66], was also

found in this study. CBP is recruited to DNA sites by a number

of transcription factors, including CREB and cFos, and acts as a

histone acetyl-transferase (HAT), and thus, it is associated with

activation of gene expression [67–69]. While most studies of

Drosophila CBP have focused on its role during development

[69–71], a significant contribution of CBP to the regulation of

pre-synaptic function has also been reported [72]. Furthermore,

several lines of evidence indicate that through its interactions

with CREB, CBP plays a critical role in the activity-dependent

regulation of neural excitability and synaptic plasticity [73,74].

In Drosophila, CREB has already been shown to be involved in

producing tolerance through the regulation of slo transcription

[13], and in this role CREB probably employs CBP. In

mammals, CBP has been shown to modulate both ethanol

and cocaine associated behaviors through the acetylation of

histones [6,75,76].

Finally, the gene mastermind (mam) is a transcription factor co-

activator that has been involved in nervous system development

[77–79]. In mammals, Mam has been shown to directly associate

with the histone acetyl transferase CBP/p300 with which it

mediates chromatin-specific transcription. Furthermore, Mam

induces phosphorylation and localization of CBP/p300 proteins

to nuclear foci [80]. We have now implicated both mam and nej

(which encodes CBP) in mediating tolerance to alcohol and believe

that this same transcriptional regulating complex may be a central

regulator of other neuroadaptations to alcohol.

Ion channels and synaptic proteins work together to fine-tune

cell excitability and synaptic communication. It is expected that

environmental insults that affect neural activity will precipitate

compensatory mechanisms that homeostatically regulate neural

excitability. This may involve the coordinate modulation of a

network of genes. Elucidating the networks of proteins that work

together in regulating neural adaptation to alcohol provides a

powerful way to understand the integrative mechanisms that lead

to addiction. Here we have come a step closer by identifying a

small network of neural genes with the potential of regulating

neural activity in the development of an addiction phenotype:

tolerance.

As a summary, Figure 5 shows a schematic representation of the

genes identified here within a representative neuron. Possible

regulatory interactions between many of these genes become

immediately apparent. At the transcriptional level for instance,

CBP (encoded by the gene nej) has a direct role in histone

acetylation of chromosomal regions through its interactions with

the Transcription factor CREB [67]. The CBP/CREB assembly

has being extensively involved in the transcriptional regulation of

gene targets and is particularly associated with the activity-

dependent regulation of synaptic plasticity [72,73]. Furthermore,

the transcription co-activator Mam, which associates with CBP,

may serve as a modulator of the transcriptional response of target

genes [80]. At the translational level, a direct interaction between

Figure 5. A pre-synaptic network model of alcohol tolerance.
Schematic representation of the cellular location of the proteins
encoded by the cohort of genes identified in this study. Proteins
depicted in blue belong to expression cluster #1, while those in red
belong to cluster #4. Seven of the ten genes identified encode proteins
that reside at the pre-synaptic terminals of neurons. Two encode ion
channel proteins directly involved in the modulation of neural
excitability (Eag and BK), two encode proteins that possess ion-channel
regulator roles (Pum and Teh2), one encodes a pre-synaptic active zone
component that provides support to transmitter release (Brp) and two
encode transmembrane proteins involved in neuronal morphogenesis
(Ptp99A and Ten-a). Three other genes positively identified to affect
tolerance encode transcription modulator proteins. These are the CBP
histone acetyl-transferase encoded by nej, the transcription co-activator
Mam and the innate immune factor Kn. Other synaptic proteins
previously associated with alcohol tolerance, are depicted in black.
These proteins include Synapsins (Syn), Dynamin (Dyn), Syntaxin 1A
(Syx) and the GABAB post-synaptic receptor (GABABR). While all these
genes have known roles in specific synaptic processes, together with
the genes identified here, they have the capacity to orchestrate neural
adaptation in response to alcohol. Proteins and structures in gray are
included to provide context.
doi:10.1371/journal.pgen.1003986.g005
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the translational repressor Pum and the Para voltage-gated Na+

channel has also been reported in neurons [41]. Meanwhile at the

protein level, many known interactions also exist. For example, the

putative ion-channel b subunit Teh2 is known to modulate the

activity the para voltage-gated Na+ channel, and has also been

postulated to interact with the BK channel encoded by slo [43]. In

turn, BK channels can modulate the activity of voltage-gated K+

channels such as Eag and vise-versa [30,81], as well as the release

of neurotransmitter through its interactions with voltage-gated

Ca2+ channels. The active zone component Brp is also thought to

play an important role in the regulation of transmitter release

through its interactions with Ca2+ channels and the synaptic

vesicles complex [52,53]. Altogether, coordinately increasing the

expression of all of these proteins could have a strong effect on

synaptic activity.

A previous genome-wide gene-expression study in flies showed

that two hours after ethanol exposure there are changes in the

expression of a suite of genes encoding chemosensory

receptors, detoxification enzymes, and metabolic enzymes

[82]. Changes in the expression of these genes may represent

sensory and metabolic adaptation to ethanol. However, only

few of these genes were tested for a role in functional tolerance

and examining each of the genes identified by mutant analysis

would be a lengthy endeavor. Instead, the same group

surveyed a large collection of wild-derived inbred lines of

Drosophila for differences in gene expression that correlated

with the magnitude of tolerance induced by a single ethanol

exposure [83]. In this study, the authors linked a module

(cluster) of synaptic genes to the capacity to generate tolerance.

The module included Synapsin, comt (a gene that encodes the

NSF protein that mediates ATP-dependent synaptic vesicle

release), the soluble NSF attachment protein gene Snap, and the

SNAP receptor genes Snap25 and Syx16 (amongst others).

Single gene mutant analysis has identified several additional

synaptic genes as being required for alcohol tolerance. These

genes encode the pre-synaptic proteins Dynamin, Syntaxin 1A,

and Synapsin [44,45,84]; the transmembrane cell adhesion

integrin subunit bPS and aPS3 [85]; the postsynaptic GABAB

receptor [86]; and the post-synaptic scaffolding protein Homer

[87]. However, none of these genes appear in our list of genes

that show similar benzyl alcohol and ethanol-induced histone

acetylation patterns.

While there is very little overlap of our candidate genes with

those described above, there is a strong overlap in biological

function. One possible reason for the lack of overlap is that the

distinct methodologies used offer unique glimpses into the

mechanism of tolerance. For instance, mRNA abundance can

be altered by regulated control of mRNA stability and protein

activity can also be regulated post transcriptionally–both of which

would not be visible in a ChIP-chip assay. The ChIP-chip assay

should visualize changes in chromatin preferentially associated

with transcription. On the other hand, the inbred line approach

might best work for identifying genes that alter the predisposition

for alcohol tolerance but may not flag those genes that change

expression in order to implement the tolerance response. We are

searching for genes that mediate the plastic changes that

implement tolerance. We believe that the coincidence between

benzyl alcohol- and ethanol-induced histone acetylation acts

as a filter that helps enrich for tolerance genes by removing

genomic responses irrelevant to the shared behavioral effects

of the drugs. Combining this with co-expression network

analysis and gene ontology clustering results in a highly

effective enrichment procedure. We are convinced that

together with the genes identified in previous studies, the

genes identified here will help complete the puzzle of a very

complex response.

There is strong conservation of gene regulatory networks between

Drosophila and mammals and a remarkable evolutionary concordance

in the genes that underlie drug tolerance [88,89]. The gene networks

identified here will be immediately useful for the identification of genes

and regulatory events important for tolerance, dependence, or

addiction in mammals. Drosophila still has an important role to play

in that it is an ideal model organism for deciphering how this large

collection of genes interact to produce an ethanol-induced response.

The effectiveness of the technique used here relies primarily on the

combinatorial approach, as the genomic-level ChIP data was of

relatively low power (N = 2/group) and yet the combined approach

was remarkably successful. This approach may be useful for

characterizing other types of complex polygenic responses.

Materials and Methods

Fly stocks
Drosophila stocks were raised on standard cornmeal agar

medium in a 12/12 h light/dark cycle. For all assays, newly

eclosed flies were collected over a two-day interval and studied 3 to

5 days after collection. The wild-type stock Canton S (CS); the

mutants stocks eag1, nej3/FM7, pum13, so1, nAcRa-30DDAS1; the

RNAi lines brpJF01932, paraJF01469, unc-104HM05162, KnJF02206,

Ten-aJF03375, Ptp99AJF01858, DscamJF03307, mamJF02881; and the

Gal4 drivers elav[C155]-Gal4;UAS-Dcr2 and tubP-Gal4; were all

obtained from the Bloomington Drosophila Stock Center at

Indiana University (Bloomington, IN). The UAS-RNAi lines

Act57BGD6854, trrGD4501, Teh2KK112449, Ack-likeKK105138,

msnKK108948 and the isogenic host strain for the RNAi library

w1118, were obtained from the Vienna Drosophila RNAi Center

(VDRC) [90]. For RNAi induction, each RNAi lines was crossed

to the tubP-Gal4 line or the elav[C155]-Gal4;UAS-Dcr2, and the

progeny tested. The wild type stocks used for comparisons were

CS for all the mutant lines, and the progeny of the cross between

w1118 and the respective Gal4 driver line for the RNAi stocks. The

slo4 mutant was obtained from the Atkinson Lab collection.

Drug treatments
Approximately 500 age-matched wild-type CS flies were

collected for exposure to either ethanol, benzyl alcohol, or for

use as the respective untreated controls. For benzyl alcohol, the

insides of a 180 ml glass tube were coated with 500 ul of a 0.4%

benzyl alcohol solution in acetone. The tube was continuously

rotated for 30 minutes at room temperature to evaporate the

acetone, leaving a thin coat of evenly distributed benzyl alcohol.

For the untreated control, a similar acetone-only tube was

prepared. Flies were placed in each tube and exposed until the

benzyl alcohol group was completely sedated (approximately

15 minutes) [10]. Flies were then transferred to fresh-food bottles

for recovery. For ethanol exposure, flies were placed in a

perforated 500 ml plastic bottle chamber. Humidified air saturat-

ed with ethanol vapor was delivered to flies in the chamber using

an ethanol vapor inebriator set to 15 ml air per minute. For the

untreated control, ethanol free humidified air was delivered to the

chamber. Flies were placed in each chamber and exposed until the

ethanol group was completely sedated (approximately 15 minutes)

[11]. Flies were then transferred to fresh-food bottles for recovery.

Chromatin immunoprecipitation and genome-wide
tilling arrays analysis (ChIP-chip)

Chromatin extraction and immunoprecipitation were per-

formed as described previously by [5]. In brief, formaldehyde
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cross-linked chromatin was extracted from 500 fly heads of drug

treated and control flies (mix of males and females), 6 hours after

treatment and fragmented by sonication to ,500 bp length.

Chromatin samples (2 ug) were immunoprecipitated using a 1:200

dilution of ChIP grade antibody against acetylated histone H4 at

lysine 5, 8, 12 and 16 (catalog # 06-866; EMD Millipore, Billerica,

MA). A fraction (1/10) of the chromatin sample was left

unprecipitated for use as input control. DNA from immunopre-

cipitated (ChIP) and input samples was washed, reversed cross-

linked, and purified and subsequently amplified using the

GenomePlex Complete Whole Genome Amplification Kit (Sig-

ma-Aldrich, St. Louis, MO) following the manufacturer’s protocol.

Approximately 1 ug of amplified ChIP and input DNA from each

sample was sent to NimbleGen (Roche NimbleGen, Madison, WI)

for two-color hybridization to Drosophila ChIP-chip 2.1M Whole-

Genome Tiling Arrays. Each array consisted of 2.1 million 50–

75 mer probes, with a 55 bp median probe spacing that cover the

entire Drosophila genome (UCSC Drosophila genome build

DM3). For measurements of control baseline H4 acetylation

profiles, control ChIP and input DNA samples were labeled with

Cy3 and Cy5 fluorescent dye, respectively, and co-hybridized to

the same microarray. ChIP acetylation signals were reported as

normalized Log2 ChIP(control)/Input(control) ratios. For measure-

ments of drug-induced changes in acetylation, the control and

drug-treated ChIP DNA samples were labeled with Cy3 and Cy5

fluorescent dye, respectively, and co-hybridized to the same

microarray. The difference in acetylation signals were reported as

normalized log2 ChIP(drug-treated)/ChIP(control) ratios. Each ChIP-

chip experiment was repeated two times from independent

biological samples. For each experiment, raw signals of corre-

sponding experimental replicates were normalized using the ‘vsn’

package for R [91] and signal ratios from replicates were averaged

using R/Bioconductor (www.R-project.org; www.bioconductor.

org) [92,93] according to an online protocol (http://epigenesys.

eu/images/stories/protocols/pdf/20111025114444_p43.pdf).

Only arrays with normally distributed log-transformed signals were

used, and signal normalization between arrays was performed

against matched samples. Signal ratio peaks with enrichment

score above 50% and a false discovery rate (FDR) of ,0.05 and

mapped to the annotated Drosophila genome (UCSC, build

DM3) using NimbleGen SignalMap software following default

parameters. Peaks were assigned to the nearest gene using a

bidirectional distance cut off of 500 bp beyond the annotated

gene region defined by the 59-most transcriptional start site to

the end of the 39 UTR. This analysis produced approximately

1500 associated genes for each drug. Genes were rank ordered

with respect to peak magnitude. The genes mapped to peaks

produced by benzyl alcohol and ethanol treatment were

compared for common entries using Microsoft Excel for Mac

software (Microsoft, Redmond, WA).

The raw and processed data from the ChIP-chip data described

in this manuscript have been deposited in the public functional

genomics data repository from NCBI: Gene Expression Omnibus

(GEO). Data can be found on the GEO website (http://www.ncbi.

nlm.nih.gov/geo/) using accession number GSE48449. All

essential sample annotation and experimental design information

including sample data relationships have been included in the

repository according to the Minimum Information About a

Microarray Experiment (MIAME) guidelines [94].

Tolerance assays
For all tolerance assays, 5 to 7 day old age-matched female

offspring from each line tested were collected and sorted into

replicate vials under light CO2 anesthesia. To test for benzyl

alcohol tolerance, flies were divided into 2 equal groups: the

control group and the experimental group. Each group consisted

of three vials with 12 flies each. On the first day, flies from each

vial of the experimental group were sedated using a custom build

benzyl alcohol vapor chamber for 15 minute, while the control

group was mock sedated [14]. After sedation, the animals were

returned to food vials for 24 hours allowed to recover. On the

second day, both groups were sedated in tandem using the same

benzyl alcohol vapor chambers. This time, flies were transferred

on to small plastic Petri dishes immediately after sedation and their

recovery period monitored. Flies were said to have recovered from

sedation once they regain postural control. Sedation recovery was

quantified by counting the number of flies recovered from sedation

in each vial at 5-minute intervals. Recovery scores for each vial

were plotted as the percentage of flies recovered from sedation

over time. For ethanol, tolerance was assayed as previously

described [45]. In brief, flies were divided into 2 groups of equal

numbers: the control group and the experimental group. Each

group consisted of six vials with 10 flies each. On the first day, the

experimental group was sedated using an ethanol-saturated air

stream, while the control group was mock sedated. After sedation,

the animals were allowed to recover in a fresh air environment and

then returned to food vials for 24 hours. On the second day,

both groups were sedated in tandem using the same ethanol-

saturated air stream method. Again, after sedation, the ethanol

vapor was replaced with fresh air, and their recovery period

monitored. Flies were said to have recovered from sedation once

they regain postural control. Sedation recovery was quantified

by counting the number of flies recovered from sedation in each

vial at 2-minute intervals. Recovery scores for each vial were

plotted as the percentage of flies recovered from sedation over

time. For both benzyl alcohol and ethanol, tolerance was

determined by comparing the 50% recovery time from sedation

between the control and experimental groups. The 50%

recovery time (and the associated SEM) for each treatment

group was calculated by performing a Richard’s five parameter

non-linear regression curve fit on the respective recovery curves

using GraphPad Prism for Mac software (GraphPad Software,

La Jolla, CA). The relative change in recovery time (magnitude

of tolerance) between the experimental and control groups was

determined by calculating the difference in the 50% recovery

time between the groups and compared to the magnitude of

tolerance of the respective control lines. Statistical significance

was determined using one-way ANOVA followed by Dunnett’s

multiple-comparison post hoc test.

Pearson correlation and gene clustering analysis
Gene-expression data for the 144 genes identified in this study

was obtained from the Drosophila database FlyBase [95]. This

data was collected by the modENCODE project [16] from RNA-

Seq analysis performed on poly(A)+ RNA from Drosophila treated

with various chemicals through feeding or subjected to temper-

ature shock. Total RNA isolation, poly(A)+ RNA purification and

strand-specific library construction were performed in the Brenton

Graveley and Peter Cherbas groups. Libraries were subjected to

paired-end RNA sequencing (2676+ nt) on the GAIIx and HiSeq

platforms (Celniker, Gingeras, and Graveley groups). Fastq files

were generated using pipeline version 1.5. Treatment conditions

are listed in Supporting Table S1.

Gene clustering analysis based on treatment co-expression

profiles was performed by the Cluster 3.0 for Mac OSX program

[96]. For this, gene-expression data was prepared for Cluster by

importing the 21 RNA-Seq expression datasets of the fly

populations exposed to distinct external treatment conditions for
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the 144 genes identified from common acetylation changes.

First, a self-organizing map (SOM) was made using default

parameters (10 clusters) based on Pearson’s correlation (cen-

tered) similarity matrix of each gene-expression profiles. The

resulting SOM file was then used to perform complete-linkage

hierarchical clustering of the normalized gene-expression

profiles. For genes expression normalization Cluster 3.0

multiplies all values in each row of data to a scale factor S to

so that the sum of the squares of the values is in each row is 1.0

(a separate S is computed for each row). Hierarchical clustering

was applied to both rows and columns. For heat-map

visualization, the output file was exported to JavaTreeview

[97]. Pearson’s Correlation coefficients of the gene-expression

data from D. melanogaster exposed to the various conditions for

each pair of the 13 tested genes was performed using GraphPad

Prism for Mac software (GraphPad Software, La Jolla, CA). For

gene ontology annotation search and clustering, significant gene

categories for each cluster were identified using DAVID web-

accessible version 6.7 [18] with default parameters (High, 3,

0.85, 3, 3, 0.5) and official gene symbols as input.

Validation of ChIP-chip data by qPCR
To test the validity of the genome-wide arrays for accurately

reporting significant acetylation peaks we used quantitative real-

time PCR (qPCR) to measure representative acetylation signals

(ChIP/Input) from independent chromatin samples. Primer sets

were designed for 10 unique loci across the genome. These loci

mapped to the promoter region of 8 different genes (Creb2, CrebA,

Cyc, dbi, gpdh, pdf, per and Rdl). Primer sequences are displayed in

Supporting Table S2.

Real-time PCR analysis of ChIP DNA was performed using the

SYBR Green PCR Master Mix (Applied Biosystems/Life tech-

nologies, Carlsbad, CA) in an ABI Prism 7300 Sequence Detection

System (Applied Biosystems, Carlsbad, CA) as described previ-

ously by [5]. ChIP/Input ratios reported for each primer set are

averages and SEM of three chromatin samples (Supporting Figure

S1A). For comparison, signal peaks of the same genomic loci were

extracted from one of the NimbleGen ChIP-chip data sets. For

this, ChIP/Inputs ratio signals from 7 consecutive probes spanning

the center of the region defined by each primer set used in the

qPCR experiment were grouped an the average and SEM signal

calculated (Supporting Figure S1B). Correlation analysis of the

signal ratio profile generated by the ChIP-chip and ChIP-qPCR

data across the 10 unique regions was performed using Pearson’s

correlation coefficient analysis. The ChIP-qPCR and the genome-

wide ChIP-chip signals display a very high correlation coefficient

(r = 0.849, P value = 0.0019).

Gene-expression analysis of candidate genes by qPCR
Total RNA was extracted from heads of groups of 100 flies

(mix of males and females) 6 hours after treatment with either

ethanol or benzyl alcohol, and from untreated controls, using a

single-step RNA isolation protocol [98]. Residual genomic DNA

was digested by incubating the RNA samples at 37uC for 30 min

with RNase free DNase I (Ambion, Austin, TX) and further

purified by acid phenol/chloroform extraction (Ambion, Austin,

TX) and ethanol precipitation. RNA quality was determined by

agarose gel electrophoresis and quantified using a NanoDrop

Spectrophotometer (NanoDrop Technologies, Wilmington, DE).

First-strand cDNA was synthesized from 50 ng of total RNA

using the SuperScript VILO cDNA Synthesis Kit (Invitrogen/

Life technologies, Carlsbad, CA). The cDNAs were amplified by

real-time PCR using the SYBR Green PCR Master Mix

(Applied Biosystems/Life technologies, Carlsbad, CA) in an

ABI Prism 7300 Sequence Detection System (Applied Biosys-

tems, Carlsbad, CA) following the manufacturer’s protocols.

Quantification of the starting mRNA for each gene was

determined relative to the Cyp1 mRNA using the DDCt method.

Primer sequences for the genes tested are displayed in

Supporting Table S3. A total of 8 replicate RT-PCR reactions

were performed from independent RNA samples, and the yields

thereof were expressed as an average. Statistical significance was

calculated using the One-way ANOVA for each gene with

Dunnett’s post-hoc test for comparisons to the untreated

controls. Statistical significance for the effects of alcohol

treatment on gene expression for the group of genes was

determined by Two-way ANOVA.

Supporting Information

Dataset S1 Complete annotated list of genes with increased

acetylation after ethanol and benzyl alcohol exposure (Suppor-

ting_Dataset-S1.xls).

(XLS)

Dataset S2 Complete list of Gene Ontology Terms for each

Gene-Expression Cluster (Supporting_Dataset-S2).

(XLS)

Figure S1 qPCR validation of NimbleGen ChIP-chip data.

Shown are ChIP/Input ratios for 10 different gene loci as

measured by qPCR or a NimbleGen DNA tilling array. A)

Primer sets were designed for 10 unique loci across the genome

mapping to the promoter region of 8 different genes (Creb2,

CrebA, Cyc, dbi, gpdh, pdf, per and Rdl). qPCR analysis of ChIP

DNA was performed as described previously from three

independent control chromatin samples. Error bars are SEM.

B) Signal peaks intensities of the same genomic loci were

extracted from one of the NimbleGen ChIP-chip data sets.

ChIP/Inputs ratio signals from 7 consecutive probes spanning

the center of the region defined by each primer set used in the

qPCR experiment were grouped an the average and SEM signal

calculated. Error bars are SEM. Acetylation profiles for these

unique genomic loci reported by these two methods show very

high correlation as measured by the Pearson’s correlation

coefficient (r = 0.849, P = 0.0019).

(TIF)

Figure S2 FDR plots of drug induced acetylation peaks. Shown

are false discovery rate (FDR) plots of all peaks identified in the

difference arrays of histone acetylation between benzyl alcohol

treated flies and control flies (top) or ethanol treated flies and

controls flies (bottom). Only gene associated with peaks that have

an FDR,0.05 were used in this study (shaded area).

(TIF)

Table S1 Treatment conditions used for co-expression cluster-

ing.

(DOC)

Table S2 Primers used in validation of ChIP-chip data by

qPCR.

(DOC)

Table S3 Primers used in gene-expression analysis of candidate

genes by qPCR.

(DOC)
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