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Abstract

Background: The microbiota of the respiratory tract has an important role in maintaining respiratory health.
However, little is known on the respiratory microbiota in asthmatic patients among Middle Eastern populations. This
study investigated the respiratory microbiota composition and functionality associated with asthma in Emirati
subjects.

Methods: We performed 16S rRNA and ITS2-gene based microbial profiling of 40 expectorated sputum samples
from adult and pediatric Emirati individuals averaging 52 and 7 years of age, respectively with or without asthma.

Results: We report bacterial difference belonging to Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria phyla
between asthmatic and non-asthmatic controls. Similarly, fungal difference belonging to Ascomycota, Basidiomycota
phyla and other unclassified fungi. Differential abundance testing among asthmatic individuals with relation to
Asthma Control Test show a significant depletion of Penicillium aethiopicum and Alternaria spp., among poorly
controlled asthmatics. Moreover, data suggest a significant expansion of Malassezia spp. and other unclassified
fungi in the airways of those receiving steroids and leukotriene receptor antagonists' combination therapy, in
contrast to those receiving steroids alone. Functional profiling from 16S data showed marked differences between
pediatric asthmatic and non-asthmatic controls, with pediatric asthmatic patients showing an increase in amino
acid (p-value <503 x 10~ ), carbohydrate (p-value < 4.76 x 10~ /), and fatty acid degradation (p-value < 6.65x 10"
pathways, whereas non-asthmatic controls are associated with increase in amino acid (p-value < 834x10™),
carbohydrate (p-value < 3.65x 10", and fatty acid (p-value < 2.18 x 10™ °) biosynthesis pathways in concordance
with enterotype composition.

Conclusions: These differences provide an insight into respiratory microbiota composition in Emirati population
and its possible role in the development of asthma early in life. This study provides important information that may
eventually lead to the development of screening biomarkers to predict early asthma development and novel
therapeutic approaches.
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Background

Specialized microbial communities composed of bacteria,
viruses and fungi termed as “respiratory microbiota” in-
habit the human respiratory tract spanning from nostrils
to the alveoli. The respiratory microbiota is highly dy-
namic, constantly evolving and influenced by multiple fac-
tors including host and environment [1, 2]. The
respiratory microbiota is crucial for the maintenance of
respiratory physiology and homeostasis [3]. It plays a sig-
nificant role in the maturation and maintenance of re-
spiratory immune responses and provides resistance to
respiratory pathogen colonization [4]. At the same time, it
has also been implicated in the structural development
and morphogenesis of the respiratory tract [5, 6] as well as
the development of mucosal immunity [7, 8].

The composition of the respiratory microbiota is increas-
ingly being characterized in humans. Bacterial families Dolo-
sigranulum spp., Corynebacterium spp. [9], viral families
Anelloviridae [10, 11], and fungi such as Aspergillus spp.
Penicillium spp., Candida spp., Alternaria spp. [12] populate
the upper respiratory tract. Similarly, the lower respiratory
tract is dominantly colonized by bacteria including Hae-
mophilus spp., Moraxella spp., Streptococcus spp., Staphylo-
coccus spp., Firmicutes and Bacteroidetes, and fungal families
such as Eremothecium, Systenostrema and Malassezia [13—
15]. Characterization of the microbial communities residing
in spatial niches along the respiratory tract is essential to elu-
cidate the complex roles played by the respiratory microbiota
in the pathogenesis of respiratory diseases.

Recent advances in our understanding of the respiratory
microbiota composition and its alteration in diversity or
abundance called “dysbiosis” has been linked to several
chronic respiratory diseases such as asthma, cystic fibrosis,
bronchiectasis, and chronic obstructive pulmonary disease
[4, 16]. Asthma is a healthcare priority with significant so-
cial and economic impact on societies. Studies have linked
nasopharyngeal colonization with Streptococcus spp., Mor-
axella spp., Haemophilus spp. Prevotella spp., and respira-
tory syncytial virus, early in life to the development of
lower respiratory tract infections, consecutive atopic dis-
ease and future asthma [17-19]. In particular, early
asymptomatic Streptococcus colonization strongly corre-
lated with subsequent wheezing and asthma risk. An ap-
parent disturbance in the characteristic composition of
bacterial communities was observed in asthmatic airways
when compared to their healthy counterparts [20, 21].
The bronchial airway microbiota composition and diver-
sity significantly correlated with the degree of bronchial
hyperresponsiveness in suboptimally controlled asthmatics
[22]. Higher abundance of Proteobacteria is frequently ob-
served in asthma patients [20, 22]. Bronchial microbiota
also shows variations across the different endotypes of
asthma [23]. Furthermore, the airway expansion of specific
genera of gram-negative bacteria was noticed to induce
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corticosteroid resistance in asthmatic patients, indicating
that the composition of airway microbiota may influence
corticosteroid responsiveness in asthma [24].

The precise understanding of the composition of the re-
spiratory microbiota, the mechanisms by which these mi-
crobes interact with host immunity, and their functional
effects on the pathogenesis, exacerbations, and comorbidi-
ties of chronic respiratory diseases such as asthma is still
unclear and need factual elucidation. Further, we are still
unsure how the structural ligands and metabolites from
these microbes interact with the host and alter the devel-
opment and progression of respiratory diseases. Here, we
investigated the composition, diversity and functionality of
respiratory microbiome in a cohort of pediatric and adult
asthmatic patients using sputum samples. We further,
characterized the alterations in respiratory microbiota
with age especially among the asthmatic population.

Methods

Hospital Ethics and Research Committee, a local re-
search ethics committee at the University Hospital Shar-
jah, UAE approved the study protocol (REC number:
UHS-HERC- 039 -09042018). All subjects participating
in the study supplied informed consent.

In this case control study, we collected 40 spontaneous
expectorated sputum samples from Emirati citizens.
Spontaneous coughed up sputum (expectorated phlegm/
mucous) was the first preference of sample collection
whenever possible in all subjects. The subjects were pro-
vided with a labelled sputum container. They were asked
to take a deep breath, hold for a few seconds, exhale, re-
peat two or three times, and then cough: sputum was
collected after a productive cough. Sputum induction
was sometimes used in subjects especially in children
when sputum could not be expectorated spontaneously.
Sputum induction was performed under close medical
supervision with nebulization and nasopharyngeal suc-
tion. Expectorated sputum was collected in a sterile con-
tainer stored immediately into liquid nitrogen and then
transferred to — 80 °C for further analysis. DNA extrac-
tion, PCR, Sequencing and Sequence processing were
analyzed as described in supplementary document.

Information on the characteristics of the subjects in
this study such as age, gender, body mass index (BMI),
ethnicity, and animal exposure among others has been
provided (Table 1).

We have also assessed asthma symptoms by collecting
a patient-completed Asthma Control Test (ACT) ques-
tionnaire as previously described, scoring < 16 as uncon-
trolled, 16-19 as partially controlled, and 20-25 as
controlled [25]. In summary, participants were residents
of Sharjah, UAE. Asthma patients were defined as those
individuals who had a current diagnosis of asthma, for
example, by being on the outpatient asthma clinics
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Table 1 Demographics and Clinical Characteristics of Study Cohort

Characteristics Adult Asthmatic

Adult Healthy Pediatric Asthmatic Pediatric Healthy

(n=10) (n=10) (n=11) (n=9)
Age, years Mean (SD, range) 63.9 (127, 39) 40 (106, 32) 6.7 (4.1,12) 8(3.1,8)
Ethnicity, “Emirati (%) 100% 100% 100% 100%
Gender (M%, F %) 30:70 20:80 45:55 56:44
BMI (Kg/m?) Mean (SD, range) 31.5(6.7,21) 253 (4.7,17) 216 (7.2, 20.7) 189 (5.2, 13.9)
Animal exposure (yes %) 0% 20% 9% 11%
Asthma Control Test Mean (SD, range) 18 (3.1, 10) N/A 179 (44, 15) N/A
N/A Not Applicable
“Native UAE citizens
registrar. Most of the asthma patients were on inhaled Results

corticosteroids and scoring on average 18 per ACT. Con-
trols were defined as individuals who on questioning did
not report having current or previous asthma, eczema or
hay fever. Use of antibiotics and/or prescribed probiotics
in the past 3 months, any form of smoking, other respira-
tory diseases or infections among the participants were
the exclusion criteria used in this study (Table 1).

Functional profiling from 16S data

Gene family abundances from Kegg Orthology (KO) func-
tional space were computed from 16S OTU data and
GreenGenes taxonomic annotations with Phylogenetic In-
vestigation of Communities by Reconstruction of Unob-
served States 2 (PICRUSt2) [26]. Metabolic Modules were
quantified from the PICRUSt KO abundance matrix with
GOmixer R package [27]. Unsupervised Hierarchical Clus-
tering analysis was carried out using pheatmap (https://
cran.rproject.org/web/packages/pheatmap/pheatmap.pdf)
function and subtree analysis was carried out using cutree
(https://stat.ethz.ch/R-manual/Rpatched/library/stats/html/
cutree.html) functions using in-house R script provided in
supplementary document. Briefly, the cutree function al-
lows the separation of the main tree into subtrees compo-
nents using statistical methods [28]. The bar plots
represent the relative difference between the average path-
way abundance of pediatric asthmatics and healthy subjects
of each pathway displaying ANOVA with p-value <0.05.
This was carried out using in-house R script.

Statistical analysis

Alpha and beta diversity was calculated using Shannon
and Bray-Curtis indices with significance of diversity dif-
ferences was tested with an ANOVA. We excluded
OTUs occurring with a count of less than 3 in at least
10% of the samples. Difference in bacterial microbiota
composition was evaluated using PERMANOVA with
smoking group as the main fixed factor. All statistical
testing were performed in the R software environment.

Sequence curation and metrics

Deep amplicon sequencing, combined with the principles
of statistical ecology can be used to survey microbiome
communities. The advent of massively parallel sequencing
and increased computational power has enabled scientists
to leverage big genomic data to answer biological questions.
Here, we collected spontaneous expectorated sputum sam-
ples from 40 individuals in order to assess their microbiota
composition. We sequenced 16Sv4 amplicons generated
from DNA samples on a MiSeq and the resulting dataset
had 5798 OTUs. An average of 42,657 quality-filtered reads
were generated per sample. As demonstrated in the analyt-
ical flowchart (Fig. S1), sequencing quality for R1 and R2
was determined using FastQC 0.11.5, and visualized (Fig.
S2). Similarly, we also sequenced ITS2 amplicons generated
from DNA samples on the MiSeq. The resulting dataset
had 4024 OTUs. An average of 41,635 quality-filtered reads
were generated per sample. Sequencing quality for R1 and
R2 was determined using FastQC 0.11.5, and visualized
(Fig. S3). Next, we evaluated the taxonomic composition
generated from these high-quality reads and classified them
using Greengenes (v. 13_8) as the reference database for
bacteria, and UNITE (v. 7.1) as the reference database for
fungi. We aggregated OTUs into each taxonomic rank, and
plotted the relative abundance of the most abundant ones.
In the figure legends, the unfilled portion of the bar repre-
sents unclassified and lower-abundance taxa (Fig. S4).

Respiratory microbiota of asthmatic subjects show lower
levels of richness and complexity compared to healthy
subjects

To assess richness of the 40 samples along with the even-
ness of bacterial and fungal populations for different asth-
matic and healthy groups, we calculated alpha diversity
using Shannon index. Next, to evaluate microbiome com-
position similarity across samples, we used abundance-
weighted sample pair-wise differences using the Bray-
Curtis dissimilarity. We observed a significant difference
of bacterial and fungal populations among asthmatic
groups compared to healthy groups (Fig. 1). Further, we
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Fig. 1 Lung microbiota of asthmatic subjects show lower levels of richness and complexity compared to healthy subjects. Evaluation of the
alpha- and beta- diversity in the 40 analyzed samples. Panel showing alpha-diversity (Shannon index) computed and illustrated for each sample.
ANOVA test determined significant differences in the Shannon diversity index based on different groups for bacterial data at p < 0.002 (a) and
fungal data at p < 0.000 (b). To obtain a graphical representation of microbiome composition similarity among samples and beta-diversity, we
summarized OTU abundances into Bray-Curtis dissimilarities and performed a PCoA ordination. Permutational analysis of variance (adonis R
function, or Permanova) determined significant differences in beta-diversity among groups for bacterial data at p < 0.0009 (c) and fungal data at
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conducted a post-hoc pairwise test of different groups
(asthmatic and healthy) and noted a uniformity in the
expectorated sputum fungal composition between
Adult Asthma vs. Pediatric Asthma groups (p.adjusted
>0.129) (Table 2).

Relative abundances of most abundant bacterial and
fungal taxa in asthmatics

In order to identify the important respiratory microbiota
members that significantly differ between asthmatic and
healthy groups as suggested in Fig. 1, we evaluated rela-
tive abundances of the five most abundant genus-level
taxa within the four most abundant Phyla for bacteria
and fungi (Fig. 2). We noted a significant bacterial differ-
ence belonging to Bacteroidetes, Firmicutes, Fusobacteria

Table 2 Beta diversity post-hoc pairwise test of different groups

Pairs R2 p.adjusted

16S (Bacterial) data
Adult Asthma vs Pediatric Asthma 0.342 0.002
Adult Asthma vs Adult Healthy 0.118 0.023
Pediatric Asthma vs Pediatric Healthy 0.362 0.002

ITS2 (Fungal) data
Adult Asthma vs Pediatric Asthma 0.097 0.129
Adult Asthma vs Adult Healthy 0318 0.002
Pediatric Asthma vs Pediatric Healthy 0427 0.002
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and Proteobacteria phyla. Pediatric asthma group showed
abundance in Streptococcus spp., Moraxella spp. among
others. Moreover, we determined depletion of unclassified
fungi in asthmatic groups and irrespective of age (Fig. 2b),
we also noted significant abundance of Malassezia
spp. and Candida spp. among others in asthmatic
groups. A more detailed table summarizing genera
with significant differences in relative abundances of
bacterial and fungal overall diversity and prevalence
among healthy and asthmatic groups, Kruskal-Wallace
P-values as well as Benjamin-Hochberg corrected
values are also reported (Table S1).

Bacterial and fungal differential abundance among
asthmatic individuals with relation to current medications
and asthma control test (ACT)

DESeq2 R package was used to identify differentially
abundant taxa among medications used or ACT group
variables. Differential abundance testing identified four
bacterial OTUs, and two fungal OTUs that were differ-
entially abundant with relation to ACT test result (par-
tially controlled and controlled group vs. uncontrolled
group) (Fig. 3a, ¢). ACT is a self-administered test to
identify those with poorly controlled asthma [25, 29].
Accordingly, we show a significant depletion of Penicil-
lium aethiopicum and Alternaria spp., with poorly con-
trolled subjects (Fig. 3c). Also, we report differences of
nine bacterial OTUs and three fungal OTUs when

treated with steroids and leukotriene receptor antago-
nists (LTRA) in contrast to treatment with steroids alone
(Fig. 3b, d). In particular, we reveal expansion of Malas-
sezia spp. and other unclassified fungi (Fig. 3d) and un-
classified genre belonging to Fusobacteria and Prevotella
(Fig. 3b) in the airways of those receiving steroids and
LTRA combination therapy.

Functional profiling of asthmatic and healthy microbiota
based on PICRUSt2 analyses of 16S data

We used PICRUSt analysis to predict functional contri-
bution of the bacterial microbiota in the samples from
16S OTU abundance data. Functional profiling showed
significant overall differences in metabolic potential be-
tween asthmatics and healthy across age groups, espe-
cially among pediatric age groups (Fig. 4). Four hundred
and ten significantly functional pathways were plotted in
a heatmap showing a distinguished pattern of pathway
enrichment in red or depletion in blue with relation to
asthmatic and healthy groups (Fig. 4b). PICRUSt abun-
dances permutational analysis of variance (adonis R
function, or Permanova) determined significant differ-
ences in beta-diversity among different groups at p-
value < 0.0001 (Fig. 4a). Moreover, derived from func-
tional inference - PICRUSt2 data, average pathway abun-
dance for pediatric asthmatic and healthy subjects of
each pathway group was calculated using unsupervised
hierarchical clustering followed by cutree to delineate
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Fig. 3 Investigation of bacterial and fungal differential abundance among asthmatic individuals with relation to current medications and asthma
control test (ACT). Differential abundance testing using DESeq?2, R package to identify differentially abundant taxa among drug + ACT variables.
The bar plot reports bacterial genera (a, b) and fungal genera (c, d) with significant abundance with relation to drug and ACT scores at a p-value
< 0.05 and the Log2Fc / Fold Change > 1.5 or < — 1.5 for both bacterial and fungal genera. Controlled and uncontrolled ACT scores as well as
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100000~

~~~~~~

8

the healthy versus asthmatic pediatric patients. Cutree
was used to extract the pediatric asthmatic patients from
the mixed tree based on differentially expressed path-
ways. The region delineated using the cutree was then
used to calculate the relative difference between the
average abundance in healthy and asthmatic pediatric
subjects for each pathway showing significant change be-
tween the pediatric asthma and healthy individuals based
on ANOVA p <0.05 cutoff threshold for each pathway.
We identified ninety pathways, in which pediatric asth-
matic group show significant depletion in metabolic
pathways implicated in amino acid, carbohydrate, and
fatty acid biosynthesis, in contrast to significant enrich-
ment of metabolic pathways involved in amino acid,
carbohydrate, and fatty acid degradation in comparison
to healthy pediatric group (Fig. 4c).

Discussion

In this study, we explored the composition and func-
tional contribution of respiratory microbiota in asth-
matics and their possible role with relation to ACT
scores and asthma medication in adult and pediatric age
groups. First, we observed that respiratory microbiota of
asthmatic subjects showed lower levels of richness and
complexity compared to healthy subjects. Consistent
with our findings, previous reports have suggested a
strong effect for asthma on lung microbiota composition

[30, 31]; however, very little has been reported on the
role of fungal lung microbiota (mycobiota) in asthma.
Here, we conducted a post-hoc pairwise test of different
groups (asthmatic and healthy) and noted an intriguing
uniformity in the expectorated sputum fungal compos-
ition between adult and pediatric asthma groups (p.ad-
justed >0.129) (Table 2). This may suggest an important
role for lung mycobiota in driving these compositional
changes and their contribution to asthma pathogenesis
in early life that persist with age. Indeed, colonization
patterns in infancy seem to be a major determinant of
respiratory disease later in life [4]. Perhaps fungal pres-
ence induces changes in the lung micro-environmental
conditions that subsequently drives this compositional
shift among bacterial communities to compensate. For
example, enrichment of Moraxella species in asthmatic
airways was found to interact negatively with multiple
bacterial communities but positively with fungal com-
munities suggesting complex interactions between the
bacterial and fungal communities that may contribute to
asthma pathogenesis [32] That said, it is important to
note that limited fungal genome database may also ex-
plain the identified similarity between adult and
pediatric groups. For example, recent check (July, 2020)
of the NCBI Genome database https://www.ncbi.nlm.
nih.gov/genome/browse#!/eukaryotes/fungi shown 6570
complete fungal genomes compared with > 252,000
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complete bacterial genomes. Altogether, these obser-
vations are interesting to identify those microbial
populations that are more abundant in asthma and to
further understand their relevance to asthma patho-
genesis and host immune interactions. Next, we iden-
tified significant relative abundances of Bacteroidetes,
Firmicutes, Fusobacteria and Proteobacteria phyla in
asthmatics (Fig. 2). Further and consistent with previ-
ous study, we noted significant abundance of Malas-
sezia spp. and Candida spp. in asthmatic groups [15].

We also showed abundance in Streptococcus spp.,
Moraxella spp. among other fungi in Pediatric
Asthma group, and consistent with a previous study
that links nasopharyngeal colonization with these spe-
cies during early life to the development of lower re-
spiratory tract infections, consecutive atopic disease
and future asthma [17]. Moreover, we unraveled for
the first time a staggering depletion of unclassified
fungi in asthmatic groups and irrespective of age
(Fig. 2b). These fungi, as eukaryotes, probably
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contribute through unique metabolic pathways to mi-
crobial equilibrium and host interactions to protect
against asthma development.

Third, differential abundance testing with relation
to asthmatic medications used or ACT score variables
unveiled a significant depletion of Penicillium aethio-
picum and Alternaria spp., in poorly controlled sub-
jects (low ACT scores) (Fig. 3c). Previous studies
indicated that indoor exposure to Penicillium spp.,
and Alternaria spp., is associated with active asthma
symptoms [33—35]. Further, the richness and compos-
ition of respiratory microbiota of asthmatic patients
were found to be significantly altered by inhaled and
oral corticosteroid use [22, 36, 37]. On the other
hand, the airway microbiome can also influence the
corticosteroid responsiveness in asthma. A study by
Goleva et al,, noted expansion of the pathogenic Hae-
mophilus parainfluenzae in corticosteroid-resistant
asthma, and stimulation of bronchoalveolar lavage
(BAL) macrophages with H. parainfluenzae promoted
the activation of MAPK pathway and subsequent in-
hibition of corticosteroid responses, in contrast to
commensal Prevotella melaninogenica [24]. However,
little is known about the leukotriene receptor antago-
nists (LTRA) correlation with microbiota in asthma.
Here, we report for the first-time differences of nine
bacterial OTUs and three fungal OTUs when treated
with steroids and LTRA in contrast to treatment with
steroids alone (Fig. 3b, d). Interestingly, we demon-
strate expansion of Malassezia spp., unclassified fungi,
and genre belonging to unclassified Fusobacteria and
unclassified Prevotella in the airways of those receiv-
ing steroids and LTRA combination therapy. These
data can be useful to provide screening biomarkers to
predict responsiveness to asthma management.

Lastly, utilizing PICRUSt analysis of the bacterial
microbiota we revealed significant overall differences
in metabolic potential between asthmatics and healthy
across age groups, especially among pediatric age
groups (Fig. 4). These differences provide an insight
into respiratory microbiota fluctuations in Emirati
population and its possible role in asthma pathogen-
esis. Moreover, using unsupervised hierarchical clus-
tering followed by cutree to delineate the healthy
versus asthmatic pediatric patients we identified
ninety pathways, in which pediatric asthmatic group
show significant depletion in metabolic pathways im-
plicated in amino acid, carbohydrate, and fatty acid
biosynthesis, in contrast to significant enrichment of
metabolic pathways involved in amino acid, carbohy-
drate, and fatty acid degradation in comparison to
healthy pediatric group (Fig. 4c). Maintenance of
metabolic homeostasis, such as regulation of glucose
uptake, amino acid acquisition and lipid synthesis are
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tightly governed by catabolic and anabolic events that
ultimately dictates cell growth and proliferation, espe-
cially early in life [38]. The compromised balance be-
tween the two, as observed in our study, may
contribute to disease pathogenesis within the lung mi-
lieu. For instance, elevation in multiple catabolic bio-
markers is an indicator of accelerated decline of
muscle strength [39]. A recent report sheds light on
the cross talk between airway microbiota and host
airway cells in signaling anabolic and catabolic re-
modeling of the transplanted lung [40]. Therefore, the
increased anabolic ability among asthmatic group may
ultimately enhance airway remodeling and inflamma-
tion, hallmark features of asthma. For example,
among these pathways, we observed significant deple-
tion of inosine degradation (PWY-5695) (p-value <
3.15x 10"7), adenosine salvage (PWY-6609) (p-value
<5.48 x1077), and pyrimidine salvage (PWY-7196) (p-
value <6.18 x1077) (Fig. 4c) in pediatric asthmatics.
Previous studies reports an important role for these
purine metabolites in modulating lung inflammation
[41, 42]. Here, we observed significant depletion of
the gram-positive Lactobacillus among pediatric asth-
matic groups (P. adj <0.04) (Table S1). Interestingly,
another study suggested that remodeling microbiota
with Lactobacillus prolonged mice survival and re-
duced inflammation in the context of regulatory T
cell dysfunction by restoring levels of inosine [43].
Moreover, other studies observed increased aerobic
glycolysis and lactate production in asthma, which in
turn promotes asthma development by T cell activa-
tion [44, 45]. Here however, we show a significant de-
pletion of glycolysis pathways (ANAGLYCOLYSIS-
PWY, GLYCOLYSIS-E-D, PWY-5484) (p-values <
3.13x1077, <7.89x1077, <1.96x10"7 respectively)
(Fig. 4¢) in pediatric asthmatic group despite the re-
ported increased relative abundance of lactic acid pro-
ducing bacteria in this group, such as Streptococcus
and Enterococcus [46] (P. adj <0.04, <0.05 respectively)
(Table S1). Perhaps other major members of lung micro-
biota, such as Moraxella (% absolute 42.75%, P. adj < 0.00)
(Table S1) in pediatric asthmatic group, in part explains
the observed depletion of glycolysis pathways as previously
reported to primarily drive gluconeogenesis [47]. Overall,
these findings highlight the importance of respiratory
microbiota in determining the airway microenvironment
and thereby, influencing lung function.

Limitations of this study include that we used a
small number of samples, which needs further valid-
ation on a larger cohort across populations with differ-
ent environmental conditions and genetic background.
We also used spontaneous expectorated sampling
method that carry a high risk of cross-contamination
of the lower respiratory tract microbiota with upper
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respiratory tract microbiota. Distinguishing between
the two is difficult due to the anatomical link between
both niches. That said, studies suggested that lung
microbiota mostly resembles the upper respiratory
tract microbiota [13, 48]. Fortunately, our expecto-
rated sputum sampling is consistent with previous
microbiome studies of bronchial sampling with high
proportion of bacteria belonging to Bacteroidetes, Fir-
micutes, Fusobacteria and Proteobacteria phyla [21,
49]. Further, similar to our observation in pediatric
asthmatics, a study noted that bacterial colonization of
neonatal airways at 1 month of age was observed to
predominate with pathogenic Streptococcus pneumo-
niae, Haemophilus influenzae or Moraxella catarrha-
lis, which in turn increased their risk and severity of
wheeze as well as increased the total IgE and blood eo-
sinophil counts by the age of 5 years, leading to their
diagnosis of clinical asthma by age 5 and also implying
their role in the development and progression of
asthma [49]. Whereas another study by Huang et al.,
noted relative abundance of the airway microbiota be-
longing to other phylotypes, including members of
Comamonadaceae, Sphingomonadaceae, Oxalobactera-
ceae bacterial families, correlated with the degree of bron-
chial hyperresponsiveness in patients with sub-optimally
controlled asthma [22].

In conclusion, we identified respiratory bacterial
and fungal species associated with asthmatic patients
and shed more light on the functional impact of re-
spiratory microbiota on asthma pathogenesis in cor-
relation with management indices such as ACT test.
Host and environmental factors dictates the respira-
tory microbiota makeup, which in turn will further
shift the balance toward more inflammatory or pro-
tective role. These inflammatory responses govern the
interplay between respiratory colonization and asthma
development in a bidirectional manner that can be
further complicated by asthma medications such as
corticosteroids [4, 22, 24, 37]. Therefore, it is difficult
to predict the potential contribution of the specific
members of the airway microbiota towards asthma
pathogenesis, underscoring the need for more func-
tional studies and uniform sampling processes. We
believe results from this study will further enhance
our understanding of the composition and functional-
ity of respiratory microbiota in asthmatic patients that
can influence the potential manipulation of the
microbiome as a therapeutic strategy for chronic re-
spiratory diseases such as asthma. We hope that fu-
ture work will provide a platform for better
understanding of asthma pathophysiology. Most likely,
these data can be useful to provide screening bio-
markers to predict early asthma development and bet-
ter management.
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Additional file 3: Table S1. Summary of Bacterial and Fungal diversity

and Prevalence Among Healthy and Asthmatic Groups Using Kruskal-
Wallace P-values and Benjamin-Hochberg Corrected Values.

Abbreviations

ACT: Asthma Control Test; ANOVA: Analysis of variance; BMI: Body mass
index; KO: Kegg Orthology; OUT: Operational Taxonomic Unit;

PICRUSt2: Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States 2; PERMANOVA: Permutational analysis of variance

Acknowledgments
Sequencing data provided by microbiome insights, Canada.

Financial/nonfinancial disclosures
None declared.

Authors’ contributions

Conception and design: MTA, MSA, NRD. Acquisition of data: MSA, MAA,
HAS, RKR. Processing of specimens and generation of data: MTA, RAH, RKR,
QH. Analysis and interpretation of data: MTA, RAH, RKR, QH, NRD. Drafting or
revising of manuscript: MTA, RAH, NRD, RKR, MAA, HAS, MSA, QH. Final
approval of manuscript: MTA, RAH, NRD, RKR, MAA, HAS, MSA, QH. MTA has
access to all study data and takes responsibility for the data integrity and
accuracy. All authors have read and approved the manuscript.

Funding

The authors were supported by several UAE funding agencies; MTA funded
by University of Sharjah (Grant code: 1901090253). RAH is funded by the
Sharjah Research Academy (Grant code: MEDOO1), University of Sharjah
(Grant code: 1901090254) and the Al-Jalila Foundation (Grant code:
AJF201741). The funding bodies had no role in the design of the study and
collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials

The data that support the findings of this study are available on request
from the corresponding author. The data are not publicly available due to
privacy or ethical restrictions.



https://doi.org/10.1186/s12879-020-05427-3
https://doi.org/10.1186/s12879-020-05427-3
http://www.mothur.org
http://www.mothur.org

AL Bataineh et al. BMIC Infectious Diseases (2020) 20:697

Ethics approval and consent to participate

Hospital Ethics and Research Committee, a local research ethics committee
at University Hospital Sharjah, UAE approved the study protocol (REC
number: UHS-HERC- 039 -09042018). All subjects participated in the study
supplied informed written consent.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

'Clinical Sciences Department, College of Medicine, University of Sharjah,
Post Code: 27272, Sharjah, United Arab Emirates. 2Sharjah Institute for
Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
*Division of Surgery and Interventional Science, University College London,
London, UK. *University Hospital Sharjah, Sharjah, United Arab Emirates.
>Meakins-Christie Laboratories, McGill University, Montreal, QC, Canada.

Received: 29 April 2020 Accepted: 16 September 2020
Published online: 22 September 2020

References

1. Teo SM, Tang HHF, Mok D, Judd LM, Watts SC, Pham K, Holt BJ, Kusel M,
Serralha M, Troy N, et al. Airway microbiota dynamics uncover a critical
window for interplay of pathogenic Bacteria and allergy in childhood
respiratory disease. Cell Host Microbe. 2018;24(3):341-52 e345.

2. Nguyen LD, Viscogliosi E, Delhaes L. The lung mycobiome: an emerging
field of the human respiratory microbiome. Front Microbiol. 2015;6:89.

3. Mathieu E, Escribano-Vazquez U, Descamps D, Cherbuy C, Langella P,
Riffault S, Remot A, Thomas M. Paradigms of lung microbiota functions in
health and disease, particularly, in asthma. Front Physiol. 2018;9:1168.

4. Man WH, de Steenhuijsen Piters WA, Bogaert D. The microbiota of the
respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol. 2017;
15(5):259-70.

5. Yun'Y, Srinivas G, Kuenzel S, Linnenbrink M, Alnahas S, Bruce KD, Steinhoff
U, Baines JF, Schaible UE. Environmentally determined differences in the
murine lung microbiota and their relation to alveolar architecture. PLoS
One. 2014,9(12):e113466.

6. Wostmann BS. The germfree animal in nutritional studies. Annu Rev Nutr.
1981;1:257-79.

7. Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, Glickman JN, Siebert
R, Baron RM, Kasper DL, et al. Microbial exposure during early life has
persistent effects on natural killer T cell function. Science. 2012;336(6080):
489-93.

8. Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R, McCoy KD,
Nicod LP, Lloyd CM, Marsland BJ. Lung microbiota promotes tolerance to
allergens in neonates via PD-L1. Nat Med. 2014;20(6):642-7.

9. Pettigrew MM, Laufer AS, Gent JF, Kong Y, Fennie KP, Metlay JP. Upper
respiratory tract microbial communities, acute otitis media pathogens, and
antibiotic use in healthy and sick children. Appl Environ Microbiol. 2012;
78(17):6262-70.

10. Wylie KM, Mihindukulasuriya KA, Sodergren E, Weinstock GM, Storch GA.
Sequence analysis of the human virome in febrile and afebrile children.
PLoS One. 2012;7(6):27735.

11. Wang Y, Zhu N, Li Y, Lu R, Wang H, Liu G, Zou X, Xie Z, Tan W.
Metagenomic analysis of viral genetic diversity in respiratory samples from
children with severe acute respiratory infection in China. Clin Microbiol
Infect. 2016;22(5):458 e451-9.

12. Charlson ES, Diamond JM, Bittinger K, Fitzgerald AS, Yadav A, Haas AR,
Bushman FD, Collman RG. Lung-enriched organisms and aberrant bacterial
and fungal respiratory microbiota after lung transplant. Am J Respir Crit
Care Med. 2012;186(6):536-45.

13. Marsh RL, Kaestli M, Chang AB, Binks MJ, Pope CE, Hoffman LR, Smith-
Vaughan HC. The microbiota in bronchoalveolar lavage from young
children with chronic lung disease includes taxa present in both the
oropharynx and nasopharynx. Microbiome. 2016;4(1):37.

14.  Segal LN, Alekseyenko AV, Clemente JC, Kulkarni R, Wu B, Gao Z, Chen H,
Berger KI, Goldring RM, Rom WN, et al. Enrichment of lung microbiome

20.

21.

22.

23.

24

25.

26.

27.

28.

29.

30.

31

32.

33.

Page 10 of 11

with supraglottic taxa is associated with increased pulmonary inflalmmation.
Microbiome. 2013;1(1):19.

van Woerden HC, Gregory C, Brown R, Marchesi JR, Hoogendoorn B,
Matthews IP. Differences in fungi present in induced sputum samples from
asthma patients and non-atopic controls: a community based case control
study. BMC Infect Dis. 2013;13:69.

Dumas A, Bernard L, Poquet Y, Lugo-Villarino G, Neyrolles O. The role of the
lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell
Microbiol. 2018;20(12):e12966.

Teo SM, Mok D, Pham K, Kusel M, Serralha M, Troy N, Holt BJ, Hales B,
Walker ML, Hollams E, et al. The infant nasopharyngeal microbiome impacts
severity of lower respiratory infection and risk of asthma development. Cell
Host Microbe. 2015;17(5):704-15.

Krishnamoorthy N, Khare A, Oriss TB, Raundhal M, Morse C, Yarlagadda M,
Wenzel SE, Moore ML, Peebles RS Jr, Ray A, et al. Early infection with
respiratory syncytial virus impairs regulatory T cell function and increases
susceptibility to allergic asthma. Nat Med. 2012;18(10):1525-30.

Larsen JM, Musavian HS, Butt TM, Ingvorsen C, Thysen AH, Brix S. Chronic
obstructive pulmonary disease and asthma-associated Proteobacteria, but
not commensal Prevotella spp., promote toll-like receptor 2-independent
lung inflammation and pathology. Immunology. 2015;144(2):333-42.

Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, Davies J, Ervine A,
Poulter L, Pachter L, et al. Disordered microbial communities in asthmatic
airways. PLoS One. 2010;5(1):e8578.

Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. Asthma-associated
differences in microbial composition of induced sputum. J Allergy Clin
Immunol. 2013;131(2):346-52 e341-343.

Huang YJ, Nelson CE, Brodie EL, Desantis TZ, Baek MS, Liu J, Woyke T,
Allgaier M, Bristow J, Wiener-Kronish JP, et al. Airway microbiota and
bronchial hyperresponsiveness in patients with suboptimally controlled
asthma. J Allergy Clin Immunol. 2011;127(2):372-81 e371-373.

Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, Boushey H. The
airway microbiome in patients with severe asthma: associations with
disease features and severity. J Allergy Clin Immunol. 2015;136(4):874-84.
Goleva E, Jackson LP, Harris JK, Robertson CE, Sutherland ER, Hall CF, Good
JT Jr, Gelfand EW, Martin RJ, Leung DY. The effects of airway microbiome
on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med.
2013;188(10):1193-201.

Nathan RA, Sorkness CA, Kosinski M, Schatz M, Li JT, Marcus P, Murray JJ,
Pendergraft TB. Development of the asthma control test: a survey for
assessing asthma control. J Allergy Clin Immunol. 2004;113(1):59-65.
Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA,
Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, et al. Predictive
functional profiling of microbial communities using 165 rRNA marker gene
sequences. Nat Biotechnol. 2013,;31(9):814-21.

Darzi Y, Falony G, Vieira-Silva S, Raes J. Towards biome-specific analysis of
meta-omics data. ISME J. 2016;10(5):1025-8.

Montero P, Vilar JA. TSclust: An R package for time series clustering. J Stat
Softw. 2014;62(1):1-43.

Schatz M, Sorkness CA, Li JT, Marcus P, Murray JJ, Nathan RA, Kosinski M,
Pendergraft TB, Jhingran P. Asthma control test: reliability, validity, and
responsiveness in patients not previously followed by asthma specialists. J
Allergy Clin Immunol. 2006;117(3):549-56.

Birzele LT, Depner M, Ege MJ, Engel M, Kublik S, Bernau C, Loss GJ, Genuneit
J, Horak E, Schloter M, et al. Environmental and mucosal microbiota and
their role in childhood asthma. Allergy. 2017;72(1):109-19.

Kirjavainen PV, Karvonen AM, Adams RI, Taubel M, Roponen M, Tuoresmaki
P, Loss G, Jayaprakash B, Depner M, Ege MJ, et al. Farm-like indoor
microbiota in non-farm homes protects children from asthma development.
Nat Med. 2019;25(7):1089-95.

Liu H-Y, Cx L, Z-y L, Sy Z, W-y Y, Y-m Y, Y=x L, R-c C, H-w Z, Su J. The
Interactions of Airway Bacterial and Fungal Communities in Clinically Stable
Asthma. Front Microbiol. 2020;11:1647.

Salo PM, Arbes SJ Jr, Sever M, Jaramillo R, Cohn RD, London SJ, Zeldin DC.
Exposure to Alternaria alternata in US homes is associated with asthma
symptoms. J Allergy Clin Immunol. 2006;118(4):892-8.

Masaki K, Fukunaga K, Matsusaka M, Kabata H, Tanosaki T, Mochimaru T,
Kamatani T, Ohtsuka K, Baba R, Ueda S, et al. Characteristics of severe
asthma with fungal sensitization. Ann Allergy Asthma Immunol. 2017;119(3):
253-7.



AL Bataineh et al. BMC Infectious Diseases

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

(2020) 20:697

Licorish K, Novey HS, Kozak P, Fairshter RD, Wilson AF. Role of Alternaria and
Penicillium spores in the pathogenesis of asthma. J Allergy Clin Immunol.
1985,76(6):819-25.

Edwards MR, Bartlett NW, Hussell T, Openshaw P, Johnston SL. The
microbiology of asthma. Nat Rev Microbiol. 2012;10(7):459-71.

Denner DR, Sangwan N, Becker JB, Hogarth DK, Oldham J, Castillo J,
Sperling Al, Solway J, Naureckas ET, Gilbert JA, et al. Corticosteroid therapy
and airflow obstruction influence the bronchial microbiome, which is
distinct from that of bronchoalveolar lavage in asthmatic airways. J Allergy
Clin Immunol. 2016;137(5):1398-405 e1393.

Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation.
Nat Rev Mol Cell Biol. 2019;20(7):436-50.

Stenholm S, Maggio M, Lauretani F, Bandinelli S, Ceda GP, Di lorio A,
Giallauria F, Guralnik JM, Ferrucci L. Anabolic and catabolic biomarkers as
predictors of muscle strength decline: the INCHIANTI study. Rejuvenation
Res. 2010;13(1):3-11.

Mouraux S, Bernasconi E, Pattaroni C, Koutsokera A, Aubert JD, Claustre J,
Pison C, Royer PJ, Magnan A, Kessler R, et al. Airway microbiota signals
anabolic and catabolic remodeling in the transplanted lung. J Allergy Clin
Immunol. 2018;141(2):718-29 e717.

Caruso M, Holgate ST, Polosa R. Adenosine signalling in airways. Curr Opin
Pharmacol. 2006;6(3):251-6.

da Rocha LF, de Oliveira AP, Accetturi BG, de Oliveira MI, Domingos HV, de
Almeida CD, de Lima WT, Santos AR. Anti-inflammatory effects of inosine in
allergic lung inflammation in mice: evidence for the participation of
adenosine A2A and a 3 receptors. Purinergic Signal. 2013;9(3):325-36.

He B, Hoang TK, Wang T, Ferris M, Taylor CM, Tian X, Luo M, Tran DQ, Zhou
J, Tatevian N, et al. Resetting microbiota by Lactobacillus reuteri inhibits T
reg deficiency-induced autoimmunity via adenosine A2A receptors. J Exp
Med. 2017;214(1):107-23.

Ostroukhova M, Goplen N, Karim MZ, Michalec L, Guo L, Liang Q, Alam R.
The role of low-level lactate production in airway inflammation in asthma.
Am J Phys Lung Cell Mol Phys. 2012;302(3):L300-7.

Xu YD, Cui JM, Wang Y, Yin LM, Gao CK; Liu YY, Yang YQ. The early
asthmatic response is associated with glycolysis, calcium binding and
mitochondria activity as revealed by proteomic analysis in rats. Respir Res.
2010;11:107.

George F, Daniel C, Thomas M, Singer E, Guilbaud A, Tessier FJ, Revol-
Junelles AM, Borges F, Foligne B. Occurrence and dynamism of lactic acid
Bacteria in distinct ecological niches: a multifaceted functional health
perspective. Front Microbiol. 2018;,9:2899.

de Vries SP, van Hijum SA, Schueler W, Riesbeck K, Hays JP, Hermans PW,
Bootsma HJ. Genome analysis of Moraxella catarrhalis strain BBH18,
[corrected] a human respiratory tract pathogen. J Bacteriol. 2010;192(14):
3574-83.

Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young
VB, Beck JM, Curtis JL, Huffnagle GB. Analysis of the upper respiratory tract
microbiotas as the source of the lung and gastric microbiotas in healthy
individuals. mBio. 2015;6(2):e00037.

Bisgaard H, Hermansen MN, Buchvald F, Loland L, Halkjaer LB, Bonnelykke K,
Brasholt M, Heltberg A, Vissing NH, Thorsen SV, et al. Childhood asthma
after bacterial colonization of the airway in neonates. N Engl J Med. 2007;
357(15):1487-95.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 11 of 11

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Functional profiling from 16S data
	Statistical analysis

	Results
	Sequence curation and metrics
	Respiratory microbiota of asthmatic subjects show lower levels of richness and complexity compared to healthy subjects
	Relative abundances of most abundant bacterial and fungal taxa in asthmatics
	Bacterial and fungal differential abundance among asthmatic individuals with relation to current medications and asthma control test (ACT)
	Functional profiling of asthmatic and healthy microbiota based on PICRUSt2 analyses of 16S data

	Discussion
	Supplementary information
	Abbreviations
	Acknowledgments
	Financial/nonfinancial disclosures
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

