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The development of reliable methods for identification of robust biomarkers for complex
diseases is critical for disease diagnosis and prognosis efforts. Integratingmulti-omics data
with protein-protein interaction (PPI) networks to investigate diseases may help better
understand disease characteristics at the molecular level. In this study, we developed and
tested a novel network-based method to detect subnetwork markers for patients with
colorectal cancer (CRC). We performed an integrated omics analysis using whole-genome
gene expression profiling and copy number alterations (CNAs) datasets followed by
building a gene interaction network for the significantly altered genes. We then
clustered the constructed gene network into subnetworks and assigned a score for
each significant subnetwork. We developed a support vector machine (SVM) classifier
using these scores as feature values and tested the methodology in independent CRC
transcriptomic datasets. The network analysis resulted in 15 subnetwork markers that
revealed several hub genes that may play a significant role in colorectal cancer, including
PTP4A3, FGFR2, PTX3, AURKA, FEN1, INHBA, and YES1. The 15-subnetwork classifier
displayed over 98 percent accuracy in detecting patients with CRC. In comparison to
individual gene biomarkers, subnetwork markers based on integrated multi-omics and
network analyses may lead to better disease classification, diagnosis, and prognosis.
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INTRODUCTION

Artificial intelligence (AI) and Machine learning (ML) approaches have been widely used to
investigate the disease diagnosis and predict the outcome (Maciukiewicz et al., 2018; Lai et al.,
2019; Eicher et al., 2020; Jamal et al., 2020; Sanchez andMackenzie, 2020; Sinkala et al., 2020; Stafford
et al., 2020; Toraih et al., 2020). The integration of multiple high-throughput omics datasets, such as
messenger RNA (mRNA) expression profiles, proteomics, copy number alterations (CNAs),
methylation and others, may increase the robustness and reliability in identifying disease
associated biomarkers (Colak et al., 2010; Colak et al., 2013; List et al., 2014; Al-Harazi et al.,
2016; Colak et al., 2016; Aldosary et al., 2020; Eicher et al., 2020). A protein−protein interaction (PPI)
network can be defined as a directed or undirected network that consists of vertices as proteins or
genes and edges as the interactions among them (Wiredja and Bebek, 2017; Sanchez and Mackenzie,
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2020). Interactions among proteins or genes are meant to be
specific and biologically meaningful (Wiredja and Bebek, 2017;
Sanchez and Mackenzie, 2020). It has been reported that
network-based approaches have high efficacy in identifying
biomarkers for numerous complex diseases, including cancers
(Wang et al., 2017; Chen et al., 2019; Liu et al., 2019; Uddin et al.,
2019; Khan et al., 2020; Van et al., 2020).

Traditional statistical approaches are not suitable for
detecting gene interactions, especially when interactions
appear between more than two genes, or when the data are
high-dimensional, meaning the data have many attributes or
independent variables (McKinney et al., 2006; Lai et al., 2019).
Machine learning approaches have been widely used to
identify disease biomarkers (Lim et al., 2019; Moni et al.,
2019; Tabl et al., 2019; Sanchez and Mackenzie, 2020).
Recently, Sanchez et al. identified methylation biomarkers
for leukemia by investigating PPI for differentially methylated
genes (DMGs) and differentially expressed genes (DEGs)
using machine learning approach (Sanchez and Mackenzie,
2020). The authors reported that the identified biomarkers are
reliable and associated with cancer development and risk
(Sanchez and Mackenzie, 2020). Tabl et al. proposed a
hierarchical machine learning system to develop
biomarkers that can support the identification of the best
therapy for breast cancer patients based on their gene
expression and clinical data that achieved a high
classification accuracy (Tabl et al., 2019). Furthermore,
Sinkala et al. applied machine learning algorithms coupled
with integrative profiling of multiple data types to identify
biomarkers that can differentiate between pancreatic cancer
subtypes (Sinkala et al., 2020).

When a specific gene/protein is related to a particular
disease or biochemical process, its associated genes/
proteins may also be involved in the same disease or
biochemical process (Barabási et al., 2011). Most
interaction networks can be clustered into small connected
subgraphs that are called disease modules or subnetworks
(Barabási et al., 2011). A disease subnetwork or module
consists of linked genes or proteins that share mutations,
biological processes or expression variations which can be
related to a specific disease (Al-Harazi et al., 2016). Previous
reports indicated that the development of disease-related
subnetwork markers is a robust approach that can provide
markers with higher accuracy in disease classification in
comparison to using individual genes (Al-Harazi et al.,
2016; Khunlertgit and Yoon, 2016; Al-Harazi et al., 2019).
Indeed, network-based analysis of gene expression profiling
was performed to identify subnetworks and hub genes that are
associated with different cancer, including breast cancer
(Khan et al., 2020), lung cancer (Huang et al., 2015),
ovarian cancer (Zhang et al., 2013), and others and have
demonstrated the significance of the method in
discovering genes related to development and progression
of cancer (28).

Colorectal cancer (CRC) is one of the most frequent cancers,
with a high morbidity and mortality rate. In 2018,
approximately 1.8 million new instances of CRC were

diagnosed, and 881,000 deaths (Bray et al., 2018). Despite
advances in screening and treatment strategies, the annual
incidence and mortality rates of CRC are still increasing
rapidly. Molecular studies have reported that CRC is a
complex and molecularly heterogeneous disease (Hahn et al.,
2016; Molinari et al., 2018; Murphy et al., 2019; Fanelli et al.,
2020). Gene-expression profiling is widely used in developing
prognostic and diagnostic signatures for colorectal cancer
(Chen et al., 2016; Xu et al., 2017; Uddin et al., 2019; Zuo
et al., 2019). However, because of the heterogeneity of CRC,
minimum overlapping was observed in gene lists reported in
previous studies (Cao et al., 2017).

In this study, we developed an integrated omics and network-
based methodology to identify subnetwork markers for disease
diagnosis and prognosis. We applied our methodology to develop
subnetwork markers for CRC. We first performed integrated
analysis of global gene expression and copy number data. We
then constructed a PPI network for the identified DEGs using
molecular interaction data from several databases, including
Database of Interacting Proteins (DIP) (Salwinski et al., 2004),
BioGRID (Chatr-Aryamontri et al., 2017), HPRD (Mishra et al.,
2006), IntAct (Kerrien et al., 2007), BIND (Alfarano et al., 2005),
andMolecular INTeraction database (MINT) (Licata et al., 2012).
We calculated an activity score for each subnetwork and built a
classifier using these scores as feature values. We finally validated
diagnostic and prognostic potential of the identified network
markers.

MATERIALS AND METHODS

Data Collection and Integrated Analysis
Whole-genome gene expression and CNA datasets for Saudi patients
with colorectal cancer were gathered from the NCBI GEO (www.ncbi.
nlm.nih.gov/geo). The whole-genome gene expression dataset
(GSE23878) contains 35 colorectal cancer and 24 noncancerous
matched samples (Uddin et al., 2011). All samples were probed
using Affymetrix Human Genome U133 Plus 2.0 Array. The raw
data were normalized using GC Robust Multi-array Average (GC-
RMA) algorithm (Wu and Irizarry, 2004;Wu and Irizarry, 2005). The
differentially expressed genes (DEGs) were identified usingAnalysis of
Variance (ANOVA) with the adjustment of probability (p) values for
multiple comparisons by false discovery rate (FDR) according to
Benjamini-Hochberg step-up procedure (Benjamini and Hochberg,
1995). TheDEGswere defined as thosewith absolute fold change (FC)
> 2 and adjusted p-value < 5%.

The CNA dataset contains thirty samples (15 tumor and 15
adjacent normal samples) from Saudi patients (GSE47204) (Eldai
et al., 2013). The data were generated using Affymetrix CytoScan
HD arrays. The CNAs were identified as previously described in
(Eldai et al., 2013) that revealed 144 genes with copy number
changes (91 of which associated with CRC, that we included in
our analysis). Next, we used the Venn diagram approach to
identify the DEGs with copy number alterations in CRC using
data from global mRNA and CNA. These genes were then used as
input list or “seed genes” for building the PPI network (Martin
et al., 2010).
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Functional annotation and biological term enrichment
analysis were performed using the Database for Annotation,
Visualization and Integrated Discovery (DAVID) (Huang
et al., 2009) and Protein Analysis Through Evolutionary
Relationships (PANTHER) (Mi et al., 2019). Figure 1A
illustrates the framework for the integrated analysis.
Statistical analyses were performed using PARTEK Genomics
Suite (Partek Inc., St. Lois, MO, United States). All statistical tests
were two-sided and p-value < 0.05 was considered statistically
significant.

Protein−Protein Interaction Network
Construction and Subnetwork Identification
We built the PPI network using BisoGenet, a Cytoscape plugin
(Martin et al., 2010). BisoGenet imports the interaction data from
several databases, including DIP (Salwinski et al., 2004), BioGRID

(Chatr-Aryamontri et al., 2017), HPRD (Mishra et al., 2006),
IntAct (Kerrien et al., 2007), BIND (Alfarano et al., 2005), and
MINT (Licata et al., 2012). We input the set of seed genes (the
DEGs with altered CNs) into the plugin which then builds the
gene networks. The input list of genes (seed genes) are mapped to
nodes, that will become initial set of network nodes (seed nodes)
from which the network is expanded (Martin et al., 2010). The
edges of the PPI network represent molecular interactions.

The constructed gene network is then clustered into
subnetworks using another Cytoscape pluginclusterMaker”
to cluster the network into subnetworks (Morris et al., 2011).
The plugin provided the Markov Cluster Algorithm (MCL)
(Van Dongen, 2001; Enright et al., 2002) that we used in our
analysis. The MCL is a widely used method for analyzing
complex biological networks. It uses a flow simulation to
perform clustering of graphs by first building a matrix of
values to be clustered that are stored in edge attributes. Then

FIGURE 1 | (A) The framework of performing integrated omics and network-based analysis. (B) Venn diagram representing the overlapping DEGs between global
mRNA and CNA. (C) A PPI network for the seed/differentially expressed genes. Red nodes indicate the seed genes and the blue ones are the interacting genes. Edges
represent the interactions. PPI: Protein-protein interaction.
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MCL algorithm is performed iteratively. After constructing
the discriminant subnetworks, we selected only the
subnetworks that contained at least one gene from the seed
genes and the number of nodes ≥3. We then performed
functional annotation and biological term enrichment
analyses of the identified subnetworks using DAVID
(Huang et al., 2009) and PANTHER (Mi et al., 2019).

Scoring Subnetworks and Classification
We standardized the expression data for each gene across all
samples using the z-transformation before calculating the
subnetwork activity scores. We then calculated an activity
score for each subnetwork as the average expression of up-
regulated genes minus that of down-regulated genes in each
sample. These scores were then used as feature values to build
a classification model using GSE23878 dataset for training
(n � 59). In order to assess the classifier’s performance, we used
an independent microarray gene expression dataset for human
colorectal cancer from The Cancer Genome Atlas (TCGA)
database (TCGA data version 2016_01_28 for colorectal
adenocarcinoma (COADREAD); https://gdac.broadinstitute.
org/). The dataset contains 244 samples (222 tumor and 22
normal samples) performed on Agilent 244K Custom Gene
Expression G4502A-07–3 arrays. We used level 3 preprocessed
and normalized gene expression data as described in detail by the
TCGA workgroup at the Broad Institute at the link above.

We tested the designed classifier based on the identified
subnetwork markers by measuring its ability to differentiate
patients from normal controls. The following measures were
used for evaluating the performance:

Accuracy � true positive + true negative

true positive + false negative + false positive + true negative

Sensitivity � true positive
true positive + false negative

Specificity � true negative
false positive + true negative

Moreover, the area under the curve (AUC) with the 95%
confidence interval (CI) and unsupervised principal component
analyses (PCAs) are performed to further test the performance of
subnetworks.

Furthermore, we compared the classification performance
of the subnetwork markers with those of the previously
reported CRC gene signatures as well as the DEGs
identified in this study. Hence, we built several classifiers
using four well-known CRC gene signatures and tested them
on the same training and validation datasets. The
ColoGuideEx is a gene expression classifier consisting of 13
genes designed for CRC patients at stage II (Ågesen et al.,
2012). The second gene signature (ColoPrint) is 18-gene
signature that is identified using whole-genome expression
data and has been shown to predict high risk of recurrence in
CRC patients with stage II or III (Tan and Tan, 2011). GeneFx
is a 634 probe-set signature is a prognostic assay developed for
patients with stage II colon cancer (Kennedy et al., 2011). The
Oncotype DX, contains 12-gene signature, is also used for

Stage-II CRC patients for recurrence risk prediction and
guide therapy options after surgery (Clark-Langone et al.,
2010).

Survival Analysis
We performed univariate andmultivariate survival analyses using
the Cox proportional hazard regression model on TCGA
(COADREAD) to evaluate the prognostic value of the
identified subnetwork markers and their relationships with
overall survival of CRC patients. The multivariate Cox
regression analysis was performed to examine whether the
predictive ability of the subnetwork markers was independent
of other clinical factors, including age, gender, pathologic stage,
and lymphatic invasion.

The prognostic risk score for each patient is calculated as the
sum of the product of subnetwork score with the corresponding
regression coefficient in the multivariate Cox proportional hazard
regression model analysis as follows:

Risk score � SS1pβSubnetwork1 + SS2p βSubnetwork2 + . . .

+ SSnpβSubnetwork n

where SSi and βSubnetwork i indicate the ith subnetwork score and
the corresponding regression coefficient in the multivariate Cox
proportional hazard analysis, respectively.

After calculating the risk scores, the median risk score is
used to divide patients into high and low risk groups and
Kaplan-Meier method is used to plot the survival curves.
Significance between survival curves was calculated by the
log-rank test. A p-value < 0.05 was considered statistically
significant.

For further validation, we used an independent microarray
dataset (GSE17537, n � 55) that included data from 55 CRC
patients, downloaded from the NCBI GEO database and
standardized using z-score transformation. We performed
survival analysis using the same regression coefficients (βis)
that was calculated using the TCGA cohort.

RESULTS

Identification of Overlapping Colorectal
Cancer Differentially Expressed Genes
We first analyzed global mRNA expression profile from CRC
(n � 35) and normal samples (n � 24) and identified 1,366
DEGs (up- or down-regulated) in tumor compared to normal
(adjusted p value < 5% and absolute fold change >2). We
obtained 91 significant genes identified in CNA regions from
(Eldai et al., 2013) and performed Venn diagram approach to
identify overlapping significant mRNAs that have
concomitant copy number alterations (Figure 1B). The
integrated omics analysis revealed 24 significant DEGs.
Functional analysis using PANTHER (Mi et al., 2013)
revealed that these genes are related to protein
phosphorylation, locomotion, system process, cell
migration, and cell motility, that are known to be
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associated with cancer (Yamaguchi et al., 2005; Singh et al.,
2017; Stuelten et al., 2018) (Supplementary Table S1).

Disease-Associated Subnetwork Markers
Several reports have demonstrated that subnetwork markers are
more reliable and robust than single biomarker genes and
achieved higher accuracy in disease classification (Al-Harazi
et al., 2016; Al-Harazi et al., 2019). Here, we constructed gene
interaction network using BisoGenet (Martin et al., 2010) for the
DEGs with altered CN (seed genes; shared genes in the Venn

diagram in Figure 1B). The PPI network for the seed genes had
797 nodes and 9,634 edges (Figure 1C). The PPI networks are
necessary to almost all cell processes, therefore investigating PPIs
is essential for understanding the physiological function of
human cells in normal and disease states (Al-Harazi et al.,
2016). The edges of the PPI network represent molecular
interactions annotated in DIP (Salwinski et al., 2004),
BioGRID (Chatr-Aryamontri et al., 2017), HPRD (Mishra
et al., 2006), IntAct (Kerrien et al., 2007), BIND (Alfarano
et al., 2005), and MINT (Alfarano et al., 2005) databases. The

FIGURE 2 | Significant subnetworks associated with colorectal cancer. The color of each gene scales with the fold-change in gene expression in CRC patients
compared to normal. Up-regulated genes are indicated in red and down-regulated genes in green. Edges represent the interactions. Biological processes that are
associated with the subnetworks are shown.

TABLE 1 | Gene ontology enrichment analysis of 15 subnetworks.

Biological
Processes

FEa p-value Cellular
Components

FEa p-value Molecular
Functions

FEa p-value

Sodium ion transport 16.6 1.8E-05 Node of Ranvier 59.6 1.4E-06 Protein binding 1.3 4.9E-08
Nuclear division 4.0 4.8E-03 Extracellular matrix 4.4 2.0E-05 Growth factor binding 9.1 6.7E-05
Signaling 2.0 5.8E-03 Anchoring junction 3.3 2.0E-04 Sodium channel activity 18.5 8.8E-05
Cell cycle 3.1 8.5E-03 Cytoplasm 1.3 3.4E-04 Voltage-gated sodium channel activity 27.2 2.5E-04
Cell communication 1.9 1.0E-02 Main axon 12.3 3.9E-04 Small molecule binding 2.0 6.5E-04
Cellular response to stimulus 1.8 1.1E-02 Cell-cell contact zone 11.0 5.9E-04 Cytoskeletal protein binding 2.7 1.0E-03
Mitotic cell cycle 3.8 1.2E-02 Cell junction 2.1 1.1E-03 ATP binding 2.2 2.8E-03
Biological regulation 1.5 1.4E-02 Early endosome 3.8 2.6E-03 Kinase binding 2.7 4.2E-03
Regulation of cell communication 2.4 1.8E-02 Cell-cell junction 3.3 3.0E-03 Receptor ligand activity 3.0 1.0E-02
Cell surface receptor signaling pathway 2.3 1.9E-02 Cytoskeleton 1.9 3.7E-03 Signaling receptor activator activity 2.9 1.1E-02

aFE, Fold Enrichment is calculated by dividing the number of genes in 15 subnetworks implicated in each GO term by the expected number.
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constructed PPI network is then clustered using the MCL
algorithm of clusterMaker app in Cytoscape that revealed
174 gene-clusters (subnetworks). We selected 15 subnetworks
that contained at least one seed gene (DEG) and the number of
nodes ≥3 (Figure 2 and Supplementary Table S2).

The functional and gene ontology enrichment analyses revealed
that these subnetworks are highly enriched in biological processes
that are related to sodium ion transport, nuclear division, signaling,
mitotic cell-cycle, biological regulation and cell communication
(Figure 2; Table 1). The enriched cellular components include
extracellular matrix, anchoring junction, and cytoplasm. Protein
binding, growth factor binding, sodium channel activity, and
voltage-gated sodium channel activity are the significantly
enriched molecular functions among the 15 subnetwork markers
(Table 1).

Optimal Support Vector Machine
Classification Model and Performance
Comparison
We assessed the classification performance of the classifier
that is designed using 15 subnetwork markers. The CRC/
normal transcriptomic dataset (GSE23878) has been used as
the input data for training the classifier. Expression values for
each gene across all samples were normalized using
z-transformation. A subnetwork activity score is then
computed for each sample, as detailed in the Materials and
methods section. We then designed an SVM classifier (Chang
and Lin, 2011) using the 15 subnetwork scores as features to
build the classification model. To evaluate the classifier’s
performance, an independent microarray dataset from
TCGA was used. The subnetwork markers achieved 98%
accuracy, 98% sensitivity and 100% specificity, and 0.99
AUC (Table 2).

For comparison to other gene signatures, we designed
classifiers for the 24-gene DEGs (DEGs with altered CN,
in Figure 1B) and four well-known gene signatures for
colorectal cancer, namely ColoGuideEx (Ågesen et al.,
2012), ColoPrint (Tan and Tan, 2011), Genefx (Kennedy
et al., 2011) and Oncotype DX (Clark-Langone et al.,
2010), using the same training (GSE23878) dataset and
tested each classifier’s performance on the TCGA dataset.
The results demonstrated that the subnetwork markers
outperformed the 24-gene DEGs and all tested gene
signatures, except for the Genefx (634–probe set signature)
that achieved the same performance with our subnetwork
markers (Table 2). The 15 subnetwork markers and the tested

TABLE 2 | Disease classification results of SVM classifiers using 15 subnetwork
markers and other known gene signatures.

Accuracy (%) Sensitivity Specificity AUC

15 Subnetworks 98 0.98 1.00 0.99
24 DEGs* 97 0.94 1.00 0.97
ColoGuideEx 84 0.83 1.00 0.91
ColoPrint 84 0.82 1.00 0.91
Genefx 98 0.98 1.00 0.99
Oncotype DX 87 0.85 1.00 0.93

Abbreviations: AUC, Area Under Curve; DEG, Differentially expressed genes. *DEGswith
copy number alterations identified in this study (Figure 1B). All classifiers for gene
signatures, ColoGuideEx (59), ColoPrint (60), Genefx (61), and Oncotype DX (62) and 24
DEGs, are designed using GSE23878 dataset as training and TCGA dataset as
validation.

FIGURE 3 | Unsupervised principal component analyses (PCAs) discriminates samples as tumors and normal controls on GSE23878 (A) and TCGA (B). The red
spheres refer to tumors and blue ones for normal controls.
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gene signatures shared only two genes: INHBA (Oncotype
DX) and MACC1 (Genefx).

Furthermore, we performed unsupervised PCA to test the
performance of the subnetwork markers on GSE23878 and
TCGA datasets. The PCA scatter plots, in which each sphere
denotes a sample in the dataset, clearly distinguished
CRC patients from normal controls in both datasets
(Figure 3).

Prognostic Risk Score and Multivariate
Analysis
We performed univariate and multivariate survival analyses
using the Cox proportional hazard regression model using the
TCGA dataset (n � 222 tumor samples). We calculated the
prognostic risk score for each patient as the weighted sum of
subnetwork score with their corresponding regression
coefficient in the multivariate Cox proportional hazard

regression model analysis. The 15 subnetwork marker-risk
score for each patient in TCGA data is defined as:

Risk score � SS1p(−1.4) + SS2p(−1.1) + SS3p(−1.3)
+ SS4p(−1.4) + SS5p(−1.0) + SS6p(1.2)
+ SS7p(1.0) + SS8p(−1.2) + SS9p(1.1)
+ SS10p(1.0) + SS11p(−1.2) + SS12p(1.0)
+ SS13p(−1.2) + SS14p(1.0) + SS15p(−1.9)

where SSi indicates the ith subnetwork score. The median risk
score (−0.05) is used to divide the patients cohort into high and
low risk groups.

The univariate Cox regression analysis revealed that three
factors, the 15 subnetwork markers risk score (HR � 2.53,
95% CI � 1.29–4.99, p � 0.007), pathologic stage (HR � 3.45, 95%
CI � 1.78–6.70, p � 0.0003) and lymphatic invasion (HR � 2.81,
95% CI � 1.39–5.68, p � 0.004) were significantly associated with

TABLE 3 | Univariate and multivariate analysis associated with overall survival.

Variables Univariate analysis Multivariate analysis

p value HR (95% CI) p value HR (95% CI)

Age (years) 0.80 0.86 (0.26–2.80) 0.86 1.12 (0.33–3.79)
≥50 vs < 50
Gender 0.26 1.43 (0.76–2.66) 0.93 1.03 (0.53–2.01)
Female vs Male
Pathologic Stage 0.0003 3.45 (1.78–6.70) 0.01 2.63 (1.22–5.66)
III-IV vs I-II
Lymphatic Invasion 0.004 2.81 (1.39–5.68) 0.17 1.75 (0.78–3.90)
Yes vs No
Risk score 0.007 2.53 (1.29–4.99) 0.005 2.67 (1.35–5.30)
High vs Low

Bold indicates significance. Abbreviations: CI, confidence interval; HR, hazard ratio.

FIGURE 4 | Prognostic performance of risk score based on 15-subnetwork marker in TCGA andGSE17537 CRC cohorts. Kaplan-Meier survival analysis using the
15-subnetwork markers on TCGA cohort (n � 222) (A) and GSE17537 (n � 55) (B). Kaplan-Meier curves for risk groups, red/green curves indicate high/low-risk groups,
respectively.
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the CRC patients’ overall survival, but other factors did not exhibit
any association with the survival (Table 3). In the multivariate
analysis, the subnetworkmarkers showed prognostic significance for
CRCoverall survival risk (HR� 2.67, 95%CI� 1.35–5.30, p� 0.005).
Hence, the multivariate Cox regression analysis revealed that the
prognostic risk score based on the 15-subnetworkmarkers predicted
the outcome of CRC independent of other clinical factors (Table 3).
Indeed, Kaplan–Meier survival analysis displayed that patients in the
high-risk group had a significantly poorer prognosis compared to
low-risk group (p � 0.005) (Figure 4A). Furthermore, we used
another independent dataset (GSE17537, n � 55) to perform overall
survival analysis using the same risk score model with beta
coefficients that were calculated on TCGA dataset, that also
revealed significant survival differences between high and low risk
groups (p � 0.04) (Figure 4B), confirming the prognostic
significance of the 15-subetwork markers.

DISCUSSION

Integration of biological information, especially from
biological networks is considered an important step for
achieving more robust, stable and interpretable biomarker
signature discovery (Al-Harazi et al., 2016; Alcaraz et al.,
2017; Ma et al., 2019; Khan et al., 2020; List et al., 2020; Seifert
et al., 2020; Sinkala et al., 2020). In this study, we proposed an
integrated omics (mRNA and CNA) and network-based
methodology to identify subnetwork markers. We applied
our method to investigate colorectal cancer data from Saudi
patients and identified 15-subnetwork markers that are
associated with the disease and validated its diagnostic and
prognostic potential using independent datasets.

The network-based markers have been shown to be
effective in disease classification, (Zhang et al., 2013; Al-
Harazi et al., 2016; Al-Harazi et al., 2019; Khan et al., 2020).
Several molecular interaction databases, including DIP
(Salwinski et al., 2004), BioGRID (Chatr-Aryamontri
et al., 2017), HPRD (Mishra et al., 2006), IntAct (Kerrien
et al., 2007), BIND (Alfarano et al., 2005), and MINT
(Alfarano et al., 2005) databases have been used to
construct the PPI network. Network-based methodologies
are widely used for the prediction of potential candidate
genes and in the construction of gene regulatory networks
for different diseases (Nair et al., 2014; Dai et al., 2020;
Wang et al., 2021). It has been reported that network-based
methods are more effective in discovering cancer
biomarkers if integrated with omics datasets (Al-Harazi
et al., 2016; Cao et al., 2017; Al-Harazi et al., 2019; List
et al., 2020). Indeed, our CRC associated 15-subnetwork
markers that we identified in this study achieved excellent
accuracy in disease classification that was better than that of
several well-known colorectal cancer prognostic gene
signatures, such as ColoGuideEx (Ågesen et al., 2012),
ColoPrint (Tan and Tan, 2011) and Oncotype DX (Clark-
Langone et al., 2010) as well as the 24-gene DEGs. In
addition, our results also demonstrated the markers’
prognostic significance, hence supporting the conclusion

that subnetwork markers based on integrated multi-omics
and network analyses may provide robust biomarkers for
disease classification, diagnosis, and prognosis. Results from
the gene ontology enrichment analysis revealed enrichment
of genes involved in cancer related biological processes such
as protein phosphorylation (Singh et al., 2017), cell motility
(Stuelten et al., 2018), and cell migration (Yamaguchi et al.,
2005).

We identified subnetwork markers using the DEGs with
altered CN as seed genes while building the gene network.
Previous studies have indicated that integrating gene
expression with CN data may lead to key cancer driver
genes that are involved in tumor initiation and
progression (Colak et al., 2010; Colak et al., 2013;
Ohshima et al., 2017). Our integrated omics with the
network-based analysis revealed potential subnetwork
markers for CRC that may play an important role in
tumorigenesis. The PTP4A3 gene, the hub gene in
Subnetwork 1 (Figure 2) was previously identified as a
metastasis biomarker for the colorectal cancer (Guzińska-
Ustymowicz et al., 2011). A recent study indicated that
frameshift mutation in ANK3 (hub in Subnetwork 4) in
colon cancer (Yeon et al., 2018). PTX3 (hub gene in
Subnetwork 5) is involved in immune system process and
has been shown to be prognostic marker for CRC (Liu et al.,
2018). In another study, FGFR2 (hub gene in Subnetwork 7)
is reported to promote the PD-L1 expression via the JAK/
STAT3 signaling in colorectal tumors and associated with
disease progression and poor survival (Carter et al., 2017; Hu
et al., 2019). Network analysis also indicated other cancer-
associated genes, such as ITGB4 and FGF10. ITGB4 is
considered to be a therapeutic target and prognosis
marker for colon cancer (Li et al., 2019). The high
expression of FGF10 is found to be correlated with the
size of the CRC tumors, indicating its critical role in the
prognosis and survival of colorectal cancer patients
(Farajihaye Qazvini et al., 2019). Similarly, AURKA
(Jacobsen et al., 2018), BAG3 (Li et al., 2018), NUBP1 (Liu
et al., 2017), and ANLN (Wang et al., 2016) are all found to be
dysregulated in colorectal cancer and involved in cancer
progression and invasion. The subnetworks revealed genes
that are previously reported as CRC-associated as well as
several yet undeciphered genes that may contribute
colorectal cancer, such as DNAAF5, RASL10B, DUSP19,
and TTC27.

In conclusion, our results demonstrated that the subnetwork
markers based on integrated omics (genomics and
transcriptomics datasets) are robust as disease biomarkers and
may lead to better disease diagnosis and prognosis compared to
single genes.
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