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Involvement of JNK-mediated pathway in EGF-mediated
protection against paclitaxel-induced apoptosis in SiHa
human cervical cancer cells 

B Liu 1, M Fang1, Y Lu1, Y Lu2, GB Mills 2 and Z Fan 1,2

1Department of Experimental Therapeutics and 2Department of Molecular Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
77030, USA 

Summary We investigated the signalling pathways by which epidermal growth factor (EGF) modulates paclitaxel-induced apoptosis in SiHa
human cervical cancer cells. SiHa cells exposed to paclitaxel underwent apoptosis, which was strongly inhibited by EGF. This inhibition of
apoptosis by EGF was not altered by pharmacological blockade of phosphatidylinositol 3′-OH kinase (PI-3K) with the PI-3K specific inhibitor
LY294002 or blockade of the mitogen-activated protein kinase (MAPK) kinase (MEK) with the MEK specific inhibitor PD98059, or by
transfection of the cells with PI-3K or MEK dominant-negative expression vectors. EGF did not stimulate PI-3K/Akt, MEK/MAPK, or p38
MAPK activity in SiHa cells but did transiently activate the c-Jun NH2-terminal kinase (JNK). Co-exposure of SiHa cells to SB202190 at
concentrations that inhibit JNK abolished the protective effect of EGF on SiHa cells against paclitaxel-induced apoptosis. Our findings indicate
that the JNK signaling pathway plays an important role in EGF-mediated protection from paclitaxel-induced apoptosis in SiHa cells. © 2001
Cancer Research Campaign http://www.bjcancer.com
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The epidermal growth factor (EGF) is one of the most impor
mitogens for many epithelial cells and typically promotes 
proliferation through the well-characterized Grb2/SOS/Ras/
ERK pathway (Ullrich and Schlessinger, 1990). Recent stu
from several laboratories have shown that EGF can also ac
survival factor in suppressing apoptosis induced by various d
signals (Caraglia et al, 1999; Gibson et al, 1999; Lan and W
1999; McClellan et al, 1999; Payne et al, 1999; Leu et al, 20
This latter function is performed primarily by EGF recept
mediated activation of the phosphatidylinositol 3′-OH kinase (PI-
3K) pathway and/or the mitogen-activated protein kinase (MA
pathway. EGF activates PI-3K through EGF receptor-assoc
substrate molecules, such as the Grb2-associated binder-1 (G
that form the docking sites for the SH2 domains of the p85 ad
subunit of PI-3K. This recruits PI-3K to proximity with the EG
receptor, enabling subsequent phosphorylation and activatio
PI-3K (Rodrigues et al, 2000). Additionally, EGF can also activ
PI-3K through the small guanosine triphosphatase (GTP)-bin
protein Ras, which interacts directly with the catalytic subun
PI-3K in a GTP-dependent manner through the Ras effecto
(Rodriguez-Viciana et al, 1994). Activation of PI-3K leads to a
vation of a serine/threonine kinase termed protein kinase B (P
or Akt (Downward, 1998), which promotes cell survival by ph
phorylating and inactivating several key apoptosis regula
molecules, including the pro-apoptotic bcl-2 family member B
(Datta et al, 1997; del Peso et al, 1997), the protease casp
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(Cardone et al, 1998), and the forkhead transcription fa
FKHRL1 (Brunet et al, 1999). In contrast to PI-3K, MAPK 
traditionally considered to be a component of the Grb2/S
Ras/Raf/ERK protein kinase cascade, linking growth and diffe
tiation signals with transcription in the nucleus. Activated MA
(ERK p44/p42) translocates to the nucleus, where it activates
scription by phosphorylation of such transcription factors as E
and stat3. Recent studies suggested that MAPK is also involv
cell survival. Phosphorylation of Bad at either Ser-136 and 
112 promotes the binding of Bad to 14-3-3 protein and inhibits
binding of Bad to the pro-survival proteins Bcl-X and Bcl-2 (Z
et al, 1996). While Akt phosphorylates Bad at Ser-136, re
studies demonstrated that the MAPK-activated p90 ribosoma
kinase family (Rsks) phosphorylates Bad at Ser-112 (Bonni e
1999; Fang et al, 1999; Scheid et al, 1999). The results of 
studies provided an important convergence of the Grb2/S
Ras/Raf/MEK/ MAPK/Rsk pathway and the PI-3K/Akt pathw
in promoting cell survival. 

We herein report our observations that EGF acts as a sur
factor in inhibiting paclitaxel-induced apoptosis in SiHa hum
cervical cancer cells through a PI-3K- or MAPK-independ
pathway. We found that the anti-apoptotic effect involves the E
activated c-Jun NH2-terminal kinase (JNK) pathway but not
PI-3K/Akt or MEK/MAPK signalling pathway in the cells. Th
JNK pathway is homologous to MAPK in its overall pathway 
is activated largely by distinct extracellular stimuli, such as u
violet irradiation, osmotic stress, DNA-damaging agents, infla
matory cytokines and even growth factors (Ichijo, 1999; Le
and Bohmann, 1999). EGF can activate the JNK signa
pathway in certain cell types (Hashimoto et al, 1999; Chen e
2000). In contrast to EGF-mediated MAPK activation, which w
abolished upon the loss of the Grb2 adapter protein but not 
the loss of the Shc adaptor protein, EGF-mediated JNK activ
303
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304 B Liu et al 
was dependent on Shc but not on Grb2 (Hashimoto et al, 1
Activation of JNK phosphorylates the N-terminal domain of 
transcription factor c-Jun, thereby increasing its transactiva
potency. Although there is compelling evidence that c-Jun ac
tion can lead to apoptosis (Zanke et al, 1996; Tournier et al, 2
a number of reports indicate that, under certain circumsta
activation of c-Jun can also inhibit apoptosis and promote
proliferation, transformation, or differentiation (Nishina et 
1997; Smith et al, 1997). In addition, many studies also rep
lack of correlation between JNK activation and apoptosis 
et al, 1996; Khwaja and Downward, 1997). Thus, it is appa
that the effects of c-Jun activation on cellular response depe
cell types and the context of other regulatory signals that the
receive from the environment. The results of our current stu
indicate that activation of JNK by EGF protected SiHa cerv
cancer cells from paclitaxel-induced apoptosis. 

MATERIALS AND METHODS 

Cell lines and tissue culture 

SiHa human cervical cancer cells and MDA-MB-468 bre
cancer cells were obtained from American Type Cul
Collection (Manassas, VA, USA). The cells were maintaine
1:1 (v/v) Dulbecco’s modified Eagle medium/Ham’s F-12 mixt
supplemented with 10% fetal bovine serum (FBS) in a 3
humidified atmosphere containing 95% air and 5% CO2. 

Antibodies and reagents 

Anti-HA monoclonal antibody was obtained from Roc
Diagnostics Corp (Indianapolis, IN, USA). Anti-phosphotyros
monoclonal antibody (4G10) was purchased from Ups
Biotechnology Inc (Lake Placid, NY, USA). Anti-phosphorylat
Akt polyclonal antibodies (Ser473 and Thr308), anti-Akt po
clonal antibody, anti-phosphorylated p44/p42 MAPK monoclo
antibody, anti-phosphorylated JNK polyclonal antibody, a
phosphorylated p38 MAPK polyclonal antibody, and anti-p
MAPK polyclonal antibody were purchased from New Engla
Biolabs, Inc (Beverly, MA, USA). Anti-ERK2 polyclonal ant
body was from Santa Cruz Biotechnology, Inc (Santa Cruz, 
USA), anti-JNK1 monoclonal antibody (G151–333) was fr
PharMingen Biotechnology, Inc (San Diego, CA, USA) and a
poly-(ADP-ribose) polymerase (PARP) antibody C-2-10 w
purchased from CHUL Research Center, Laval Univer
(Quebec, Canada). Paclitaxel (Taxol) was purchased from Br
Myers Squibb Company (Princeton, NJ, USA). Recombinant 
was obtained from Collaborative Research Inc. (Bedford, 
USA). PD98059, LY294002, and SB202190 were obtained f
CalBiochem Corp (San Diego, CA, USA). Protein A-sepha
beads used for immunoprecipitation were purchased 
Repligen Corp (Cambridge, MA, USA). All other reagents w
purchased from Sigma Chemical (St. Louis, MO, USA) un
otherwise specified. 

Quantification of apoptosis by ELISA 

We used an apoptosis ELISA kit (Roche Diagnostics Corp
quantitatively measure cytoplasmic histone-associated DNA 
ments (mononucleosomes and oligonucleosomes) after ind
British Journal of Cancer (2001) 85(2), 303–311
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cell death. This photomeric enzyme immunoassay was perfor
according to the manufacturer’s instructions. 

Caspase-3 enzymatic activity assay 

Caspase-3 enzymatic activities were measured by colorim
assays with a kit purchased from Clontech Laboratories, Inc (
Alto, CA, USA). The assay is based on spectrophotometric de
tion of the chromophore p-nitroanilide (pNA), which is cleaved
from the caspase-3 specific substrate DEVD-pNA by activa
caspase-3. The assay was performed according to the man
turer’s instructions. 

Transfection of cells with expression vectors 

Cell transfection was performed with the FuGENETM-6 transfec-
tion kit (Roche Diagnostic Corp) according to the manufactur
instructions. 

Western blot analysis 

Cells were lysed in a lysis buffer containing 50 mM Tris (pH 7.
150 mM NaCl, 0.5% NP-40, 50 mM NaF, 1 mM Na3VO4,
1 mM phenylmethylsulfonyl fluoride, 25µg ml–1 leupeptin, and
25µg ml–1 aprotinin. The lysates were cleared by centrifugati
and the supernatants were collected. Equal amounts of ly
protein were used for Western blot analysis with the indica
antibodies as previously described (Fan et al, 1995). 

PI-3K activity assay 

The PI-3K activity assay was performed as previously repo
(Lu et al, 1996). Briefly, equal amounts of cell lysate we
subjected to immunoprecipitation with anti-phosphotyros
monoclonal antibody 4G10. The immunoprecipitates were re
pended in 60µl of kinase buffer containing 33µM Tris-HCl (pH
7.6), 125 mM NaCl, 15 mM MgCl2, 200µM adenosine, 20µM
ATP, and 30µCi of [γ-32P]ATP (New England Nuclear, Boston
MA, USA). PI-3K assays were initiated by the addition of 10µl of
PI suspension to the immunoprecipitates. The reaction 
allowed to proceed for 30 min at room temperature and was te
nated by the addition of 100µl of 1 N HCl to the reaction mixture
Lipids were extracted with 600µl of chloroform-methanol (1:1)
and separated by thin-layer chromotography with chlorofo
methanol-ammonium hydroxide-distilled water (60:47:2:11.
Radiolabelled PIP was visualized by autoradiography. 

JNK1 and p38 kinase activity assay 

The JNK1 and p38 kinase assay was performed as previo
described (Liu et al, 2000). Briefly, equal amounts of cell lys
were subjected to immunoprecipitation with anti-JNK1 mon
clonal antibody or anti-p38 antibody. The immunoprecipita
were washed twice with a kinase buffer (20 mM Tris, 7.5 m
MgCl2, 1 mM dithiothreitol). The kinase reaction was perform
by incubating the immunoprecipitates with 40µl of kinase buffer
containing 2µg of GST-c-Jun (or GST-ATF2), 25µM lithium
ATP, and 5µCi of [γ-32P]ATP at 30˚C for 30 min. The reaction wa
terminated by boiling the samples with 40µl of 2x SDS sample
buffer. The products of the reaction were resolved using 1
SDS-PAGE and then subjected to autoradiography. 
© 2001 Cancer Research Campaign
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Figure 1 Induction of apoptosis and activation of caspase-3 by paclitaxel in
SiHa cells. SiHa cells were pulse-exposed to 1 µM paclitaxel for 4 h followed
by additional indicated hours of post-paclitaxel period in culture medium
containing 0.5% FBS (A), or were pulse-exposed to serially diluted doses of
paclitaxel for 4 h, followed by a 20-h post-paclitaxel period in culture medium
containing 0.5% FBS (B and C). Cells were then harvested and subjected to
an apoptosis ELISA analysis (A and B) or caspase-3 assay (C) as described
in Materials and Methods. Inset: Cleavage of the capsase-3 substrate PARP
by paclitaxel treatment. Cell lysates were separated by SDS-PAGE, followed
by Western blot analysis with antibodies against PARP and β-actin 
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Figure 2 Inhibition of paclitaxel-induced apoptosis and activation of
caspase-3 by EGF in SiHa cells. SiHa cells were exposed to 1 µM paclitaxel
for 4 h, followed by an additional 20-h post-paclitaxel culture period with
increasing concentrations of EGF, in culture medium containing 0.5% FBS.
Cells were then harvested and subjected to an apoptosis ELISA analysis (A)
or caspase-3 assay (B) as described in Materials and Methods. Inset:
Inhibition of paclitaxel-induced capsase-3 substrate PARP cleavage by EGF.
Cell lysates were separated by SDS-PAGE, followed by Western blot
analysis with antibodies against PARP and β-actin 
RESULTS 

Inhibition of paclitaxel-induced apoptosis by EGF in
SiHa cells 

SiHa cells are sensitive to treatment with paclitaxel. A 4-h pu
exposure of the cells to paclitaxel caused the cells to und
apoptosis 16 to 24 h later, as measured by an apoptosis EL
(Figure 1A). The induction of apoptosis was paclitaxel do
dependent and was most pronounced in the dose range from
© 2001 Cancer Research Campaign
to 10µM paclitaxel (Figure 1B). The apoptosis was characteriz
by an elevated level of caspase-3 activity and by cleavage o
caspase-3 substrate PARP (Figure 1C). When EGF was a
during the post-paclitaxel period, the induction of apoptosis w
markedly reduced (Figure 2A). The inhibition of paclitaxe
induced apoptosis by EGF was accompanied by a lower le
of caspase-3 activity and a lower rate of cleavage of PA
(Figure 2B and inset). 

Lack of involvement of the PI-3K/Akt and MEK/MAPK
pathways in EGF-mediated protection against
paclitaxel-induced apoptosis 

Because EGF activates the PI-3K/Akt and MEK/MAPK pathwa
in a variety of human cell types, to learn how EGF protects S
cells from paclitaxel-induced apoptosis, we first examin
whether EGF activated one or both of these pathways. Figu
shows that SiHa cells contain a high basal level of phosphoryl
MAPK and a high level of total ERK protein. In contrast with th
results observed in a control cell line, MDA-MB-468 huma
breast cancer cells, that EGF stimulated phosphorylation
MAPK p44/p42, stimulation of SiHa cells with EGF under simil
condition did not increase the MAPK phosphorylation. Figure 
British Journal of Cancer (2001) 85(2), 303–311
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SiHa MDA-MB-468

EGF (min): 0 10 30 0 10 30

MAPKp44/p42 - P

ERK2

Figure 3 Effect of EGF on activation of MEK/MAPK in SiHa cells. SiHa
and MDA-MB-468 cells were untreated or treated with 5 nM EGF for 10 and
30 min. Cells were then harvested, lysed, and subjected to Western blot
analyses with antibodies against phosphorylated MAPK p44/p42 and total
ERK2 
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Figure 4 Effect of EGF on activation of PI-3K/Akt in SiHa cells. A, SiHa and
MDA-MB-468 cells were untreated or treated with 5 nM EGF for 10 and
30 min. Cells were then harvested, lysed, and subjected to immuno-
precipitation with the anti-phosphotyrosine monoclonal antibody 4G10. The
immunoprecipitates were assayed for PI-3K activity with phosphatidylinositol
(PI) as a substrate as described in Materials and Methods. The bar graph
underneath shows quantitative determination (using arbitrary units) of PIP
production by phosphoimaging analysis. B, SiHa and MDA-MB-468 cells
were treated as described in (A). Cell lysates were prepared and subjected
to Western blot analysis with antibodies against ser473-phosphorylated Akt1,
thr308-phosphorylated Akt1, and total Akt protein, respectively 
shows the results with a PI-3K activity assay. Again, in contra
the results for MDA-MB-468 cells, in which EGF activated PI-
(as shown by increased phosphorylation of phosphatidylinos
after EGF stimulation), SiHa cells exhibited a high basal le
of PI-3K activity, and stimulation of these cells with EGF d
not increase the level of phosphorylated phosphatidylinosi
In the MDA-MB-468 cells, Western blot analysis with an
phosphorylated Akt antibodies (Ser473 or Thr308) showe
time-dependent phosphorylation of Akt upon EGF stimulat
Despite the high basal level of PI-3K activity, the level of ph
phorylated Akt was minimal in SiHa cells, even though the c
did display a significant level of total Akt protein shown as
doublet band on the SDS-electrophoresis pattern (Figure 
Western blot analysis with an Akt2 specific antibody indica
that the lower band of the Akt doublet was in same positio
Akt2, suggesting that it is likely to represent Akt2 (data 
shown). The observation that stimulation of SiHa cells with E
did not produce any detectable change in phosphorylated A
serine-473 or threonine-308 suggests that there might be a d
in the signal transduction pathway leading to phosphorylatio
Akt upon PI-3K activation in SiHa cells, which is beyond t
scope of current study. Taken together, these results ind
that EGF does not stimulate the PI-3K/Akt and MEK/MAP
pathways in SiHa cells. 

The PI-3K-specific inhibitor LY294002 and the MEK
specific inhibitor PD98059 have been extensively used in lit
ture for their respective specific effects on these two pathw
(Vlahos et al, 1994, 1995; Dudley et al, 1995; Langlois et
1995; Waters et al, 1995; Yano et al, 1995; Baumann and W
1998; Cardone et al, 1998; Kultz et al, 1998). To excl
whether any basal activities of PI-3K/Akt and MEK/MAPK we
involved in EGF-mediated protection against paclitaxel-indu
apoptosis, we investigated whether these two inhibitors c
interfere with this protection. Figure 5A shows that the pa
taxel-induced apoptosis was strongly inhibited by EGF (Fig
5A, bars 5 and 6). Co-exposure of the cells to EGF 
LY294002 (bar 7) or PD98059 (bar 8) had only a moderate e
on EGF-mediated inhibition of paclitaxel-induced apoptosis.
further confirm this result, we examined the effects of trans
expression of dominant-negative MEK cDNA (MEK-DN) 
dominant-negative PI-3K (∆p85) on the EGF-mediated inhib
tion of paclitaxel-induced apoptosis. Both MEK-DN and PI-
∆p85 were expressed in SiHa cells after the transient transfe
(Figure 5B, inset). In our studies, transfection of the cells with
expression vector containing GFP cDNA under similar exp
mental conditions resulted in 35–50% of the cells being G
positive (green cells) (data not shown). Neither the expressio
MEK-DN nor the expression of PI-3K ∆p85 reversed the protec
tive effect of EGF against paclitaxel-induced apoptosis in 
SiHa cells (Figure 5B). 

Involvement of JNK activity in the EGF-mediated
protection against paclitaxel-induced apoptosis 

JNK plays a dual role in the regulation of apoptosis. Recent stu
have shown that JNK can be involved in both the induction 
suppression of apoptosis in response to a variety of death s
(Leppa and Bohmann, 1999). Because EGF can activate 
under some circumstances (Hashimoto et al, 1999; Chen 
2000), we therefore examined whether EGF activated JNK an
related p38 MAPK in SiHa cells. We found that exposure of S
British Journal of Cancer (2001) 85(2), 303–311
a
B).
d
as
t
F
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cells to EGF resulted in a transient enhanced phosphorylatio
both JNK1 and JNK2, which peaked around 10 min after E
stimulation and disappeared 1 to 2 h after EGF stimulation (Fi
6A). There was no change in the level of JNK1 protein upon E
stimulation. We further confirmed this result with an in vit
kinase assay using GST-Jun fusion protein as a substra
measure immunoprecipitated JNK1 activity following EGF tre
ment in SiHa cells. In contrast to the results obtained with J
activation, EGF only marginally affected p38 MAPK phospho
lation and did not change its expression level in the cells (Figure6B).
© 2001 Cancer Research Campaign
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Figure 5 Lack of PI-3K/Akt and MEK/MAPK signalling pathway involvement
in EGF-mediated protection from paclitaxel-induced apoptosis in SiHa cells.
A, In the left 4 bars, SiHa cells were cultured for 20 h with no addition
(control), 5 nM EGF, 2 µM LY 294002, or 10 µM PD 98059; in the right 4
bars, SiHa cells were pulse-exposed to 1 µM paclitaxel for 4 h, followed by a
20-h post-paclitaxel period of culture with no addition, 5 nM EGF, 5 nM EGF
plus 2 µM LY 294002, or 5 nM EGF plus 10 µM PD 98059, as indicated.
Cells were harvested and subjected to an apoptosis ELISA analysis. B, SiHa
cells were transiently transfected for 30 h with a control vector, an HA-tagged
MEK dominant-negative (MEK-DN) vector, or an HA-tagged PI-3K dominant-
negative (∆ p85) vector. During the last 4 h of the transfection, cells were
pulse-exposed to 1 µM paclitaxel. The cells were then cultured for an
additional 20-h post-paclitaxel period in the absence or presence of 5 nM
EGF, in 0.5% FBS medium. Cells were harvested and subjected to an
apoptosis ELISA analysis. Inset: Expression of PI-3K dominant-negative
vector (∆ p85) and MEK dominant-negative vector (MEK-DN). After the
plasmids were removed from the culture medium, the cells were either
harvested immediately (0 h) or cultured for additional hours in regular culture
medium. Equal amounts of lysate protein from each sample were subjected
to Western blot analysis for the expression of MEK-DN or ∆ p85 with anti-HA
or β-actin antibody 
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Figure 6 Activation of JNK but not p38 MAPK by EGF in SiHa cells.
A, SiHa cells were untreated or treated with 5 nM EGF for the indicated time
intervals. Cells were then harvested, lysed, and subjected to Western blot
analysis with antibodies that recognize phosphorylated isoforms of all 3
JNKs, and antibodies that specifically recognize JNK1, and then subjected to
an in vitro JNK1 kinase assay using GST-Jun as a substrate, as described in
Materials and Methods. B, SiHa cells were untreated or treated with 5 nM
EGF for the indicated time intervals. Cells were then harvested, lysed, and
subjected to Western blot analysis with antibodies against phosphorylated
p38 MAPK and total p38 MAPK and then subjected to an in vitro p38 kinase
assay using GST-ATF2 as a substrate, as described in Materials and
Methods 
An in vitro kinase assay using GST-ATF2 fusion protein a
substrate showed no change in the phosphorylation level of G
ATF2 following EGF treatment in SiHa cells. 

To determine whether the JNK activation contributed to 
EGF-mediated protection against paclitaxel-induced apoptosis
examined whether selective inhibition of the JNK pathway w
© 2001 Cancer Research Campaign
a
T-

e
we
h

the pyridinyl imidazole compound SB202190 would reverse 
protection. SB202190 was initially identified as a speci
inhibitor for p38 MAPK (Lee et al, 1994) but recent studies ha
indicated that SB202190 also blocks activation of the J
pathway (Chen et al, 1998; Ming et al, 1998). Thus, we f
examined whether SB202190 could block JNK activation indu
by ultraviolet irradiation in SiHa cells. We found that SB2021
clearly inhibited the activities of JNK1 and JNK2 in a
SB202190 dose-dependent manner (Figure 7A). There wa
change in the level of JNK1 protein upon ultraviolet irradiati
and SB202190 treatment. An in vitro kinase assay with GST-
fusion protein as a substrate showed similar result of J
activity inhibition by SB202190. We then examined the effect
SB202190 on EGF-induced activation of JNK and EGF-me
ated protection against paclitaxel-induced apoptosis in the cell
Pretreatment of SiHa cells with 20µM SB202190 inhibited EGF-
induced JNK1 activation at both the 10-min and 30-min time po
(Figure 7B). Pre-exposure of SiHa cells to 20µM SB202190 almost
completely reversed the protective effect of EGF (Figure 7C). 
reversal of EGF-mediated protection against paclitaxel-indu
apoptosis by SB202190 was accompanied by restoration
caspase-3 activity and cleavage of the caspase-3 substrate 
(Figure 7D and 7E). Because EGF did not activate p38 MAPK
SiHa cells (Figure 6B), our results therefore strongly suggest 
JNK activation is involved in the EGF-mediated inhibition of pac
taxel-induced apoptosis in SiHa cells. 

DISCUSSION 

In this article, we report our results elucidating the signal pathw
by which EGF protects SiHa cervical carcinoma cells fro
paclitaxel-induced apoptosis. In contrast to its well-documen
British Journal of Cancer (2001) 85(2), 303–311
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Figure 7 Abrogation of EGF-mediated protection from paclitaxel-induced apoptosis in SiHa cells by SB202190. A, Dose-dependent inhibition of ultraviolet
irradiation-induced JNK phosphorylation and activation by SB202190. Following ultraviolet irradiation, SiHa cells were cultured for 1 h in the presence or
absence of the indicated doses of SB202190. Cells were then harvested, lysed, and then subjected to Western blot analysis with antibodies against
phosphorylated JNK and total JNK1 and subjected to an in vitro JNK1 kinase assay using GST-Jun as a substrate, as described in Materials and Methods. B,
Inhibition of EGF-activated JNK1 by SB202190. Cells were pretreated with 20 µM SB202190 for 1 h, followed by stimulation of the cells with 5 nM EGF for 10
and 30 min. Cell lysates were prepared and analysed as described in (A). C, D and E, Reversal of EGF-mediated inhibition of apoptosis by SB202190. SiHa
cells were exposed to 1 µM paclitaxel for 4 h, followed by an additional 20-h post-paclitaxel culture period in the absence or presence of 5 nM EGF or of 5 nM
EGF plus 20 µM SB202190, as indicated. Cell lysates were prepared and subjected to an apoptosis ELISA analysis (C), caspase-3 activity assay (D), or
Western blotting analysis with antibodies directed against PARP and β-actin (E) 
activation of PI-3K/Akt or MEK/MAPK pathways in other cell
EGF inhibited apoptosis in SiHa cells through a mechanism
involves JNK activity. Overall, whether or not the JNK pathw
operates as a major EGF-mediated protective pathway in hu
cancer seems cell type-dependent which is apparently the ca
SiHa cells. We speculate that it may exist as a backup pathw
parallel with the MAPK and Akt pathways in some types of c
or under certain circumstances. 
British Journal of Cancer (2001) 85(2), 303–311
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SiHa cells have low EGF receptor density compared with o
squamous carcinoma cell lines such as A431, HN5 or Cask
found that SiHa cells appear defective in Akt phosphoryla
following stimulation of the cells with EGF. The reasons why E
failed to stimulate PI-3K in SiHa cells and why the high basal l
of PI-3K was accompanied only by minimal level of Akt phosp
rylation were not explored in current study, because this w
deviate from our focus. The lack of effect of EGF stimulation
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PI-3K/Akt could be due to low expression of HER3 in these c
(data not shown), which is generally believed to be a nece
intermediate to couple the EGF receptor to this pathway. 
failure of Akt phosphorylation in the cells could be due to a po
bility that the kinases that phosphorylate Akt at threonine 308
serine 473 (PDK1 and PDK2, respectively) are defect
Alternatively SiHa cells might express mutated Akt proteins 
can not be phosphorylated by PDK1 and PDK2. In additio
having an abnormality in the PI-3K/Akt pathway, the SiHa c
did not show a typical response to EGF-mediated activatio
MAPK either, although the proliferation of SiHa cells was stim
lated by EGF. Our as-yet-unpublished results indicate that 
appears to stimulate SiHa cell proliferation through a mecha
that is independent of cyclin-dependent kinase activity (Sch
and Fan, manuscript in review). Inducible expression of p16Ink4a,
p21Waf1 or p27Kip1 in these cells, although strongly inhibiting CD
activity, could not override the stimulatory effect of EGF on c
proliferation, presumably because of the HPV16 infection statu
these cells. The HPV viral oncoprotein E7 has been show
render cells capable to bypass G1 arrest induced by serum 
vation and by p21Waf1, because the E7 protein constitutive
inactivates the Rb protein and causes sequestration of Rb
E2F binding (Morozov et al, 1997). 

After we determined that the PI-3K/Akt and MEK/MAPK pat
ways were not involved, we examined the possible involveme
the JNK pathway and found that the mechanism by which E
protected SiHa cells from paclitaxel-induced apoptosis was s
tive to inhibition of JNK activity by SB202190. Although EGF d
not increase the activity of p38 MAPK (Figure 6B), our res
shown in Figure 6B do not exclude a possible requirement of s
basal activity of p38 MAPK for EGF-mediated protection aga
paclitaxel-induced apoptosis, because the dose of SB202190
to inhibit JNK1 activity (Figure 6A) can also inhibit the bas
activity of p38 MAPK (Ming et al, 1998). 

The PI-3K pathway has been implicated in the activation of
JNK signalling pathway (Klippel et al, 1996; Logan et al, 1997)
these previous studies, EGF activated JNK1 in the HPV
positive HeLa human cervical cancer cell line, and this activa
was blocked by treatment of the cells with the PI-3K inhib
wortmannin and by transfection of the cells with a PI-3K do
nant-negative expression vector, suggesting that PI-3K play
role in EGF-induced JNK activation in HeLa cells. Similarly, ov
expression of a truncated EGF receptor, EGFRvIII, transfor
NIH3T3 cells, accompanied by constitutive activation of PI-
and JNK1, with no increase in Ras/GTP levels and with low le
of MAPK activity (Huang et al, 1997; Antonyak et al, 199
Moscatello et al, 1998). This constitutive JNK activity was dow
regulated following treatment of the cells with the PI-3K spec
inhibitor LY294002 (Treisman, 1996). The results of our curr
study, however, suggest that EGF-induced JNK activatio
PI-3K-independent. Previous studies have also shown tha
addition to PI-3K, Ras and the Ras-related Rac/Rho small G
binding proteins can also mediate EGF-induced JNK activa
(Su and Karin, 1996). EGF-mediated JNK activation was inhib
by dominant negative Ras (RasN17) and dominant negative 
(Rac1N17) (Wood et al, 1992; Susin et al, 1999). There are at
two possible signalling pathways by which the EGF receptor
activate Ras: one is the direct binding of the Grb2/SOS
complex to the phosphorylated EGF receptor (Li et al, 19
Batzer et al, 1994), and the other pathway involves the Shc ad
protein (Shc/Grb2/SOS/Ras) (Rozakis-Adcock et al, 1992; G
© 2001 Cancer Research Campaign
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et al, 1995). Our observation that EGF activated JNK activity 
the SiHa cells without affecting the activities of PI-3K, ERK a
p38 MAPK suggests that JNK activation by EGF in SiHa ce
might involve, although not necessarily, the Shc adaptor pro

The mechanism by which JNK-mediated pathway inhib
paclitaxel-induced apoptosis in SiHa cells may partially invo
enhanced degradation of p53, because inhibition of EGF-ind
JNK activation with the JNK inhibitor SB202190 was accom
nied by reduced degradation of p53 and reduced inhibition o
paclitaxel-induced apoptosis by EGF (data not shown). In a
tion, inhibition of p53 degradation in SiHa cells with the 2
proteasaome inhibitor MG132 could partially reverse paclita
induced apoptosis (data not shown). It is known that EGF can 
vate AP-1, which is a collection of dimeric sequence-spec
transcriptional factors composed of c-Jun and c-Fos, in SiHa 
and that AP-1 can bind to the enhancer region of HPV E6
genes, thereby increasing the levels of HPV E6 and E7 expre
(Peto et al, 1995). Increased expression of E6 would then res
increased binding to the E6-associated protein (E6-AP), and
complex would tightly associate with p53, leading to ra
degradation of p53 via a ubiquitin proteasome-dependent path
(Scheffner et al, 1990; Crook et al, 1991). Unfortunately, we w
not able to detect E6 protein with Western blot analysis in 
study, presumably because of the very low concentrations o
protein produced by the naturally infected virus in SiHa ce
Previous studies used Northern blot analysis to measure cha
in the HPV E6/E7 mRNA level in HPV-infected cells. HPV E6/E
protein was detected by Western blot analysis only in H
E6/E7 cDNA-transfected cells. 

As it was mentioned in the introduction, JNK1 appears to pla
critical role in paclitaxel-induced apoptosis in several cellu
systems. Paclitaxel activates ASK1/JNK1, Raf/MAPK and p
MAPK that may contribute to Bcl2 phosphorylation and releas
Bax resulting in apoptosis in these cellular systems (Stone
Chambers, 2000; Subbaramaiah et al, 2000). These results a
to contradict our results in the current study; however, there
clearly JNK-independent mechanisms by which paclitaxel indu
apoptosis (Wang et al, 1999). SiHa cervical carcinoma cells, d
the presence of HPV E6 and EGF-induced enhancement o
expression and subsequent degradation of p53, may repres
different paradigm, wherein, JNK1-dependent p53 degrada
through JNK1/AP-1/E6/p53 plays a dominant role in determin
whether the cells undergo apoptosis. The result suggests that 
may play different roles in paclitaxel-induced apoptosis 
different cell lineages. 

In summary, we demonstrated that the JNK signalling path
plays an important role in EGF-mediated protection fr
paclitaxel-induced apoptosis in the HPV E6-expressing SiHa c
Our data suggest that there could be clinical benefits from ap
priate combination of conventional chemotherapeutic drugs 
new generation of signal transduction inhibitors. 
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