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Abstract: Asynchronously tuned elementary cellular automata (AT-ECA) are described with respect
to the relationship between active and passive updating, and that spells out the relationship between
synchronous and asynchronous updating. Mutual tuning between synchronous and asynchronous
updating can be interpreted as the model for dissipative structure, and that can reveal the critical
property in the phase transition from order to chaos. Since asynchronous tuning easily makes
behavior at the edge of chaos, the property of AT-ECA is called the unfolded edge of chaos. The com-
putational power of AT-ECA is evaluated by the quantitative measure of computational universality
and efficiency. It shows that the computational efficiency of AT-ECA is much higher than that of
synchronous ECA and asynchronous ECA.

Keywords: cellular automata; dissipative structure; computational universality; edge of chaos;
asynchronous updating

1. Introduction

Research on complex systems frequently claims the system is far from equilibrium [1].
While dissipative structure proposed by Prigogine evokes perturbations from the out-
side [2], most studies on complex systems claim that a macroscopic system consists of
microscopic elements interacting with each other and that the property of perturbations
can be embedded in microscopic nonlinear interactions [3–5]. Especially, since chaotic
dynamics was proposed, researchers have tendencies to consider that even randomness
can be embedded as the properties within a system [6] and is recently utilized in encryp-
tion [7,8]. Those ideas are also taken in the studies of cellular automata (CA), and that
leads to the classification of cellular automata because some CA have high nonlinearity
and others have none [9–11].

The idea of which the property of an element of a system can be defined in the form
of dynamics still accelerates the attempt to find out specific dynamics embedding not only
the perturbation (chaos) but also the properties mixing the order and chaos. It entails that
specific dynamics embedding the order and chaos can be regarded as dynamics containing
both the inside of the system as order and the outside of the system as chaos. These
dynamics touch on two important aspects. The one is the issue of the relation between
microscopic and macroscopic perspectives, for instance, the statistical mechanics and
thermodynamics [12], and the other one is the issue of the edge of chaos or criticality [13–15].
Both aspects are based on the issue of how one can understand two different concepts which
look like elements of binary opposition on one hand but might be related to each other.

In the relationship between statistical mechanics and thermodynamics, if they are
equivalent to each other, it is theoretically easy to deal with the system. Therefore, there
was an endeavor to find out the condition under which statistical mechanics and thermody-
namics are equivalent to each other. The isolated system without thermal exchange allows
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entropy maximization equivalent to free energy minimization. The closed system with
thermal exchange allows entropy maximization equivalent to thermodynamic potential
minimization [12]. Those conditions were found by an endeavor to relate the macroscopic
perspective with the microscopic perspective. How about a system far from equilibrium?
While the attempt to relate the micro with the macro failed, the non-local property is
introduced to contrast the microscopic to the macroscopic perspectives [16,17]. A novel
general way to understand a pair of microscopic and macroscopic perspectives is required.

In the relationship between the inside and the outside, two concepts, the inside and
outside might be opposite with each other. However, if the relationship is embedded
in the form of specific dynamics, one can find special dynamics featuring the order and
chaos, that is found at the critical state in the phase transition. The critical state is called
the edge of chaos [13,14]. It implies that any interaction between the inside and outside
can be expressed as dynamics and that the inside-dominant dynamics show the order
pattern and the outside-dominant dynamics show the chaotic pattern. Not only dynamics
in differential equations but CA also shows the edge of chaos. If one recalls the situation of
the system far from equilibrium, the attempt to relate the inside with the outside might
be failed because the natural system is more perturbed from the outside [18]. As well as
the relationship between the microscopic and macroscopic perspectives, a novel way to
understand a pair of the inside and the outside is also needed.

CA that are more perturbed might be realized by using asynchronous updating. It is
well known that behaviors of CA with asynchronous updating are totally different from
those of CA with synchronous updating [19–22]. In addition, various devices to implement
perturbed CA were proposed in the context of unconventional computing [23,24]. Notwith-
standing those endeavors, there is little research to systematically consider perturbed CA
including asynchronous updating. Although we previously proposed asynchronously
tuned elementary cellular automata (AT-ECA) and argue that most of them show critical
properties independent of the transition rule [25–27], the construction of the updating is so
complicated that the significance of it was unclear. In this paper, we define the active and
passive updating in a term of the order of updating and define AT-ECA equipped with the
device tuning the synchronous with the asynchronous updating. If asynchronous tuning is
applied to ECA, then that leads to critical behavior which looks like behavior at the edge
of chaos. The computability of AT-ECA is here estimated by a quantitative measure of
computational universality and computational efficiency.

2. Asynchronously Tuned ECA (AT-ECA)

We previously proposed asynchronously tuned elementary cellular automata (AT-
ECA) and showed their basic properties [25–27]. Since AT-ECA is proposed, compared
to synchronous ECA that is usually used, we here first argue the significance of syn-
chronous time.

Elementary cellular automata (ECA) are defined by a set of the binary sequences
of cells, Bn with B = {0, 1} and a transition rule fr:B3→B, where fr is synchronously up-
dated to all cells and r represents the rule number, where r = Σ7

s = 02sds with ds = fr (x, y, z)
and s = 4x + 2y + z. The transition rule with synchronous updating is expressed as
ai

t+1 = fr(ai-1
t, ai

t, ai+1
t). Given a binary sequence, a transition rule is globally and syn-

chronously adapted to all cells [9,11]. Although synchronous updating is usually ignored,
synchronous updating is a special assumption in biological systems. Imagine a multicellu-
lar system. Consider the updating of a cell, autonomously activated by the active updating,
and the updating triggered by neighboring cells by the passive updating. If there is a
temporal gap in the updating, one can find the difference between the active and passive
updating with respect to the order of updating. The preceding cell’s updating is called
active, and the following cell’s updating is called passive. Synchronous time invalidates the
difference between active and passive updating because it looks as if a cell autonomously
updates its state and simultaneously as if a cell updates its state triggered by neighboring
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cells. One cannot determine whether either of the active and passive updating is true in
synchronous updating.

Figure 1 shows the indistinguishability between the active and the passive by the
straight line connecting the active circle and the passive circle and shows the hidden
assumption founding the indistinguishability as synchronous time. We call the element
on the left the interface. In ECA the synchronous time plays a role as the interface. Any
perturbation outside ECA does not influence ECA, and that is shown by the outside
surrounded by a broken circle. While one can couple the effect of perturbation with ECA,
that perturbation is not “inevitable”. We here introduce the perturbation in a broad sense
as the “inevitable”.
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Figure 1. Schematic diagram for synchronous cellular automata. The isomorphism between the
active and passive is based on the hidden assumption of synchronous time that plays a role as
an interface.

To implement the inevitable perturbation, we define the positive and negative anti-
nomy, coupled them, and that leads to the construction of AT-ECA. Through this argument,
one can find that AT-ECA is the inevitable dissipative structure. To implement inevitable
perturbation, we first define the positive antinomy instead of the interface that is shown
in Figure 1. The positive antinomy of the active and passive implies that each cell allows
both active and passive updating. If the order of updating is given, and if a cell updates its
state before its neighboring cells, then a cell is interpreted as active. Otherwise, a cell is
interpreted as passive. Thus, if the order of updating is randomly given at each time, a cell
can be active at some time step and can be passive at other time steps, depending on the
order at that time step. That implements the positive antinomy of the active and passive
antinomy, since the positive antinomy allows both active and passive updating that tends
to connect them with each other, as shown in the diagram of Figure 2 (left) above. Next,
we define the negative antinomy of the active and negative updating. With respect to a
transition rule, one can find neither active and passive updating in a multicellular system.
The active attitude to a transition rule can be defined as choosing one invariant transition
rule. In contrast, the passive attitude can be defined as a changeable rule dependent on
the order. Thus, if one defines both a passive rule and negative rule for each cell, and
if the passive rule is invariant and the active rule is changeable, one can establish that
neither active nor negative rule is accepted for each cell, and that implies that the notion
of active and passive is separated from each other in the form of the negative antinomy,
as shown in the diagram of Figure 2 (right) above. Coupling the two antinomies leads to
the traumatic structure. Although trauma is a technical term in psychiatry, we here use
the traumatic structure in a broader sense. Since the trauma implies an entangled state
consisting of two antagonistic senses such as the sense of victim and of perpetrator, we
call the entangled state of the positive and negative antinomy of the active and passive the
traumatic structure (Figure 2 below). Since that an entangled state does not usually appear
without a psychiatric disorder, that is immediately relevant for traumatic structure.
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Coupling the positive with negative antinomy results in AT-ECA, where the coupling structure is
called traumatic structure.

Asynchronously tuned ECA (AT-ECA) is defined by ECA equipped with the traumatic
structure. To implement the positive antinomy of the active and passive updating, the
order of updating for all cells, i ε {1, 2, · · · , N} is defined by

Ordt(i) ε {1, 2, · · · , N} , i 6= j⇒ Ordt(i) 6= Ordt(j). (1)

A function, Ordt(i) is defined as a bijective map, and implies an order of updating
at the t-th step for the i-th cell. N implies a system size. In the case of N = 5, Ordt(i) is
expressed as

Ordt(0) = 3, Ordt(1) = 5, Ordt(2) = 4, Ordt(3) = 1, Ordt(4) = 2. (2)

In time development, Ordt(i) is randomly determined at each time step. By using
Ordt(i), the state of each cell is updated.

As mentioned above, the traumatic structure is implemented by the active and passive
rules for each cell. The passive rule that is invariant through time and universal for all cells
is defined by

000
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,
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,
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a2

,
011
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100
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,
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a6

,
111
a7

, (3)

where a0 ∼ a7 is either 0 or 1. In contrast, the active rule is defined such that it is different
for each cell and is temporally changed. Thus, the active rule at the t-th step for the i-th cell
is defined by

000
et

i, 0
,

001
et

i, 1
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010
et

i,2
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011
et
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100
et

i, 4
,

101
et
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110
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,

111
et

i, 7
(4)

et
i, 0 ∼ et

i, 7 is also either 0 or 1. It is assumed that for each cell the active rule is initially
the same as the passive rule. It implies that for t = 0, and for any i,

e0
i, k = ak (k = 0, · · · , 7) . (5)

In t > 0, et
i, k is determined at each step by the procedure mentioned later.
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The state of the i-th cell at the t –th step expressed as ci(t) is defined as

ci(t) ∈ {0, 1} . (6)

Initially ci(0) is randomly distributed in an array.
The state of each cell is updated, depending on the local order of updating that is the

order of Ordt(i− 1), Ordt(i), and Ordt(i + 1). The condition of that updating is divided
into the following four cases.

If Ordt(i− 1) > Ordt(i) < Ordt(i + 1) ,
ci(t + 1) = gt

i (ci−1(t), ci(t), ci+1(t));
(7)

If Ordt(i− 1) < Ordt(i) < Ordt(i + 1) ,
ci(t + 1) = f (ci−1(t + 1), ci(t), ci+1(t));

(8)

If Ordt(i− 1) > Ordt(i) > Ordt(i + 1),
ci(t + 1) = f (ci−1(t), ci(t), ci+1(t + 1));

(9)

If Ordt(i− 1)< Ordt(i) >Ordt(i + 1),
ci(t + 1) = f (ci−1(t + 1), ci(t), ci+1(t + 1))

(10)

where ci(t) represents the state of the i-th cell at the t-th step, and function, f and gt
i represent

the passive rule defined by Equation (3) and the active rule defined by Equation (4). Namely,
for the passive rule, f (0, 0, 0) = a0, f (0, 0, 1) = a1, f (0, 1, 0) = a2, f (0, 1, 1) = a3,
f (1, 0, 0) = a4, f (1, 0, 1) = a5, f (1, 1, 0) = a6, f (1, 1, 1) = a7. For the active rule,
gt

i (0, 0, 0) = et
i, 0, gt

i (0, 0, 1) = et
i, 1, gt

i (0, 1, 0) = et
i,2, gt

i (0, 1, 1) = et
i, 3, gt

i (1, 0, 0) = et
i, 4,

gt
i (1, 0, 1) = et

i, 5, gt
i (1, 1, 0) = et

i,6, gt
i (1, 1, 1) = et

i, 7.
Finally, the active rule is updated by the following procedure. The condition of

updating the active rule is divided into three cases, depending on the updating of the state
of the cell. For the first case, if the state of the cell is updated by following Equation (7), the
active rule is not updated, and that implies

et+1
i, k = et

i, k (k = 0, · · · , 7). (11)

For the second case, if the state of the cell is updated by Equations (8) and (9), the
active rule is updated by

et+1
i, k =

{
a0 (k = m)
et

i, k (k 6= m)
, (12)

where m = 4·ci−1(t)+ 2·ci(t)+ ci+1(t) . It implies that the value corresponding to the neigh-
borhood at the t-th step is replaced by a0 that is defined in the passive rule. Equation (12)
plays a role in initializing the active rule. For the third case, if the state of the cell is updated
by Equation (10), the active rule is updated by

et+1
i, k =

{
ci(t + 1) (k = m)

et
i, k (k 6= m)

. (13)

While each cell has both the passive and the active rules, they are tuned with each
other in the form of Equation (13). Since Equation (13) invalidates the difference between
the passive and active rules, the positive active/passive antinomy which contains both
active and passive updating is weakened, and that also implies the negative active/passive
antinomy. That tuning between the passive and the active rules is illustrated as shown in
Figure 3. In Figure 3, any cell has the same active rule whose rule number is rule 22. Since
the configuration of squares (cells) in vertical direction represents time, it is easy to see that
the configuration of the active rule in Figure 3 represents the local order in the neighborhood
such as Ordt(i− 1) > Ordt(i) < Ordt(i + 1). The passive rule of the sixth cell in Figure 3
is also rule 22, and is illustrated for three cases, Ordt(i− 1) > Ordt(i) > Ordt(i + 1),
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Ordt(i− 1) < Ordt(i) < Ordt(i + 1), and Ordt(i− 1)< Ordt(i) >Ordt(i + 1). For the sixth
cell in Figure 3, ci(t + 1) = 1 and ci−1(t) = 0, ci(t) = 0, ci+1(t) = 0, and then the active
rule is updated by the following: et+1

i, 0 = ci(t + 1) = 1 (0 = 4·ci−1(t) + 2·ci(t) + ci+1(t) ).
The result of the tuning is drawn by red squares in the rewrite active rule in Figure 3.
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Figure 5 shows some examples of patterns generated by asynchronously tuned cellular
automata (AT-ECA). Each pair of squares shows a pattern generated by AT-ECA (left) and
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a pattern generated by synchronous ECA (right), where the passive rule of AT-ECA is the
same as the rule of synchronous ECA, which is represented by the accompanying number.
Due to the common rule number, one can say that the procedure of asynchronous tuning is
applied to ECA. For the top left pair in Figure 5, the procedure of asynchronous tuning is
applied to rule 22 of ECA. It is easy to see that asynchronous tuning lets the ECA exhibit
class 4 like behavior, whether the original synchronous ECA are class 1, 2, or 3. Due to
asynchronous tuning, the class 3 chaotic pattern generated by rule 22 shows a cluster-like
pattern, and the class 2 local periodic pattern generated by rule 156 or 62 also shows a
cluster-like pattern. Even if the original synchronous ECA shows the class 1 homogeneous
pattern, asynchronous tuning changes the behavior to the cluster-like pattern.
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We previously examined the behavior of all AT-ECA, 256 rules [25,26]. It is found that
the behaviors of many ECA are changed from class 1, 2, and 3 to class 4. Although there is no
order parameter controlling the phase from class 1, 2, 3, and 4, all ECA rules can be arranged
in an ECA rule space, with respect to whether chaotic behavior appears or not. It leads
to the phase transition from the order pattern (class 1 or 2) to the chaotic pattern (class 3)
via the complex class 4 pattern. The phase transition from the order to chaos is similar to
the phase transition from the solid phase (order) to the liquid (chaos) phase in H2O. Both
transitions contain the critical phenomenon showing the intermediate state of order and
chaos. Even in ECA, one can find class 4 behavior in rule 110, showing the intermediate
complex pattern consisting of chaos and order. Rule 110 shows a complex periodic pattern
that is locally oscillated and sometimes fires spatially propagated solitary waves (called
gliders). If those patterns are disturbed by perturbation, patterns show typical cluster-
like patterns, of which locally stable patterns containing spatially propagating elements.
Although it is not known that rule 110 shows an extrinsic critical character such as power
law distribution, it is considered that rule 110 is located as the critical phenomenon in the
phase transition from order to chaos. The critical state in the transition from order to chaos
is sometimes called the edge of chaos.

In terms of computability, one can see computation in patterns generated by ECA. If
configurations of cells whose values are 1 are compared to the values in computation, it is
considered that class 1 or 2 ECA shows a highly efficient computation since a specific stable
pattern is rapidly obtained from random initial conditions. In contrast, it is considered that
class 3 ECA shows a universal computation since various configurations can be obtained
from the initial conditions. While an important role in computation is efficient and universal
computation, which can be realized neither by class 1 and 2 nor by class 3 ECA. It is known
that rule 110 showing class 4 can be used as a universal Turing machine. Since locally
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periodic patterns interact with each other via the gliders, rule 110 can show both universal
and highly efficient computation to some extent. That computability might be taken after
by cellular automata showing cluster-like patterns.

Those considerations can lead to schematic diagrams showing the unfolded edge of
chaos, as shown in Figure 6. A diagram in the above center shows a schematic diagram of
the edge of chaos found in synchronous ECA rule space. It is assumed that all 256 ECA
rules are arranged depending on whether their generated patterns are chaos or not. In ECA
rules located at the edge of chaos there are only four rules which are symmetric to rule 110
with respect to local configurations or values. Typical patterns generated by synchronous
ECA are shown, such that class 2 and class 1 are classified by order pattern, and class 3
are classified by chaos. Those synchronous ECA patterns are shown in Figure 6 above
and connected to the phase transition by thin arrows, while thick arrows represent the
application of asynchronous tuning to synchronous ECA. As well, in Figure 5, both order
and chaos can be replaced by cluster-like patterns corresponding to the edge of chaos.
Two patterns connected by thick arrows have the same rule of ECA as well as the case
of Figure 5, and i.e., if synchronous ECA is rule r, the passive rule of AT-ECA is also rule
r. Since the application of asynchronous tuning to synchronous ECA changes generated
patterns from both chaos and order to the cluster-like patterns at the edge of chaos for
many cases, one could say that the edge of chaos is unfolded by asynchronous tuning, as
shown in Figure 6.
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Not only patterns, but the power law distribution of the temporal decay of the density
and of the power spectrum is estimated for AT-ECA. It is found that the pattern generated
by AT-ECA shows the power law distribution of the decay of the density of state-1, and
that the exponent of the power law is close to the exponent found at the critical point in the
phase transition of the directed percolation. It is also found that the time series of decimal
expression for the binary sequence generated by AT-ECA shows, what is called, 1/f noise.
Those results directly support that AT-ECA shows critical behavior or behaviors found
at the edge of chaos. In that sense, one can justify the idea of unfolding edge of chaos
of which the critical phenomenon found only at the narrow area of the critical point in
synchronous ECA can be unfolded in the rule space of ECA and the critical behaviors are
ubiquitously found in the rule space.

The idea of the “unfolding edge of chaos” could explore the idea of criticality. Not
only ECA but dynamic systems show the edge of chaos in the phase transition in which
there is a very narrow region showing criticality, and that is generalized in the world of
natural systems. Since most biological systems are interpreted as systems adapted to their
own environments to some extent, they are regarded as systems at the edge of chaos. The
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next question arises, how do rare systems at the critical point become ubiquitously found
in biological systems. Most researchers think that the solution is natural selection, and
that tuning toward the criticality is driven by natural selection. That idea leads to the idea
of self-organized criticality. Although self-organized criticality could explain the reason
why the critical state is ubiquitously found in the natural world, the fitness under the
environments is required to define self-organized criticality, and that evokes the role of
natural selection too much. The idea of unfolding the edge of chaos implies that critical
phenomena are ubiquitously found without severe selection.

To understand the role of the unfolding edge of chaos, it is necessary to examine
the computability of AT-ECA. We propose the measure of universality and efficiency of
computability of ECA and compare the measurements obtained by synchronous ECA with
that by asynchronous ECA. We here examine that measure obtained by AT-ECA.

3. Computability of AT-ECA

The computability of AT-ECA is measured with respect to the following computational
universality and computational efficiency [28]. First, computational universality is defined
by the following. Given 2n all possible initial states with random boundary conditions, the
computational universality of rule r, U(r), is defined by

SR(r) =
{

G
(

f T
r

)
(c0, c1, . . . , cn+1) ∈ Bn

∣∣∣ (c1, . . . , cn) ∈ Bn, (c0, cn+1) ∈ R
(

B2
)}

(14)

U(r) = #SR(r) (15)

UN(r) =
U(r)

2n (16)

where for a set S, #S represents the cardinality of a set S, R
(
B2) represents one el-

ement set randomly determined from B2, superscript T represents T numbers itera-
tion of a transition rule fr. If n = 3, then U(0) = #{(0, 0, 0)} = 1, and U(204) =
#{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)} = 8.
UN(r) represents the normalized computational universality. Here, we call elements
of a set, SR(r), reachable states or possible goals.

Next, we define the computational efficiency of a transition rule r. To separate from
the computational universality, the computational efficiency is expressed by the average
time to reach the reachable states. For each reachable state X ∈ SR(r), the average time to
reach X is represented by τr(X) is expressed as

τr(X) = ∑
Y∈B∗

T(G( f T
r )(Y) = X) (17)

where B∗ = Bn ×R
(
B2), T

(
G
(

f T
r
)
(Y) = X

)
implies time T such that G

(
f T
r
)
(Y) = X. Ad-

ditionally, if G
(

f T
r
)
(Y) = X is not obtained within 2n time steps, then T

(
G
(

f T
r
)
(Y) = X

)
is a constant value, Tθ . For the case of R204 in which any initial condition is not changed by the
transition, G( fr)(Y) = Y with T = 1 and then for any X ∈ SR(r), τr(X) = (1+ Tθ(#B∗ − 1)),
since any initial condition except for X cannot reach the goal X. The computational effi-
ciency is defined by

E(r) = ∑
X∈SR(r)

τr(X)
#SR(r)

(18)

Since E(r) is the average time to reach the reachable state, the smaller E(r) is, the more
efficient ECA r is. By using that computational universality and computational efficiency,
we here examine the computability of AT-ECA.

It is easy to imagine that computational universality trades off with computational
efficiency. Conrad previously claimed that molecular computing shows the tradeoff be-
tween computational universality and efficiency. We previously visualized the tradeoff
between computational universality and efficiency in synchronous ECA, the step function
outputting the discretized computational efficiency for the semi-interval in the interval
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[1,255] representing the range of the computational universality. That interval is divided
into m semi-intervals, and the k-th semi-interval is represented by

[
k−1

m , k
m

]
. For the k-th

interval, the discretized computational efficiency is defined by

EMIN(k) = min{E(r) | UN(r) ∈ Intk}, if UN(r) exists in Intk;
min{E(r)

∣∣UN(r) ∈ Intj, j > k
}

, otherwise.
(19)

Figure 7 shows the computational efficiency, E(r), plotted against the computational
universality, U(r), for synchronous ECA, AT_ECA, and asynchronous ECA. The E(r) plot-
ted against U(r) for synchronous ECA is expressed as a function defined by Equation (19).
Since all semi-intervals do not contain the point E(r) plotted against U(r) and if the
semi-interval has no point then EMIN(k) is assigned by the minimum E(r) in larger semi-
intervals, EMIN(k) is expressed as a step function. Step functions in Figure 7A,B reveal
EMIN(k) for synchronous ECA. That function implies that the computational efficiency
is realized at most in each semi-interval and that the monotonous implies the tradeoff
between computational universality and computational efficiency in synchronous ECA.
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Figure 7. Comparison between computability of AT-ECA and synchronous ECA. Each circle represents the mean time
to the possible goal (reachable state) plotted against universality. (A): Computability of AT_ECA. (B): Computability of
synchronous ECA.

Circles plotted in Figure 7A show E(r) plotted against U(r) for AT-ECA, where only
E(r) that is smaller than the step function EMIN(k) for synchronous ECA is represented by
a circle. Since plotted circles show more efficient computation rather than synchronous
ECA as far as the computational universality is almost the same, we here say for the
situation, that the tradeoff of synchronous ECA is broken. Each circle represents AT-ECA
whose passive rule is assigned by a rule, r. Although there are a possible 256 circles, some
circles are hidden in the area upper than EMIN(k). It is clear to see that about 70% of all
rules break the tradeoff found in synchronous ECA. Figure 7B shows E(r) plotted against
U(r) for asynchronous ECA. While asynchronous updating is variously implemented, it is
implemented by introducing the probability controlling updating a transition rule such that

ct+1
i = fr

(
ct

i−1, ct
i , ct

i+1
)

with 1− p;
ct

i , with p.
(20)

Figure 7B is obtained for the condition such that p = 0.25. However asynchronous ECA
also breaks the tradeoff of synchronous ECA, as fewer rules break the tradeoff compared
to AT-ECA.

We here compare the break by AT-ECA with that by asynchronous ECA, as shown
in Figure 8. Figure 8A shows the frequency distribution for the mean deviation from
the tradeoff. For each r, the deviation from the tradeoff is obtained by EMIN(k) − E(r)
with UN(r) ∈ Intk, and for each k, the deviations in Intk are averaged. The frequency
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distribution of the deviation for asynchronous ECA is represented by yellow histograms
and that for AT-ECA is represented by dark blue histograms. Asynchronous ECA is
estimated for p = 0.25 in which more rules break the tradeoff rather than any other
parameters. It is clear to see that AT-ECA breaks the tradeoff of synchronous ECA larger
than asynchronous ECA with p = 0.25. Figure 8B shows the normalized number of rules
breaking the tradeoff of synchronous ECA. The left twenty bars represent the normalized
number of rule breaking the tradeoff for asynchronous ECA, with the parameter from 0.05
to 1.0 for each 0.05. Bars are arranged in order of size. The largest bar shows about 0.5. The
normalized number of rules breaking the tradeoff for AT-ECA is shown at the right end in
Figure 8B. Compared to asynchronous ECA, the normalized number for AT-ECA is much
larger than that for asynchronous ECA. With respect to both deviation from the tradeoff
and the normalized number of rules breaking the tradeoff, AT-ECA breaks the tradeoff
much more rather than asynchronous ECA. It implies that AT-ECA has more computability
rather than simple asynchronous ECA.
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Although it is known that computing based on asynchronous updating is different
from that on synchronous updating, they were studied as independently separated. As
well as the relationship between thermodynamics and statistical mechanics, the attempt to
spell out the relation between them in ECA should be pursued. We here first examine the
relationship between asynchronous and synchronous updating with respect to the passive
and active updating that is defined order of updating. Synchronous updating is described
as a specific updating in the form of passive updating that is assumed to be equal to
active updating. Instead of simple equality between passive and active updating, we here
implement the traumatic structure of the passive and active, of which both the passive and
active updating is accepted (positive antinomy) on one hand, and neither the passive nor
active updating is also accepted (negative antinomy) on the other hand. To implement the
traumatic structure, perpetual change of the order of updating is required, and that makes
each cell update rules both actively and passively (positive antinomy). Simultaneously, the
passive and the active are implemented as the form of the local transition rule. Since the
passive rule has universality actively dominating all cells and the active rule has passively
changed dependent on local configuration, the negative antinomy that is expressed as
neither passive nor active is also implemented. In that sense, the traumatic structure is
implemented in ECA, and that requires perpetual changing of the order of updating. That
is the implementation of the inevitable dissipative structure in ECA. That leads to AT-ECA.
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Due to the traumatic structure, each cell uses both passive rule and active rules in
tuning the relation between them. It results in time development tuning synchronous and
asynchronous updating. Via that tuning, randomness is perpetually supplied to change the
order of updating, and that implements inevitable dissipative structure. AT-ECA shows
the critical property found in the phase transition from chaos to order. Since applying
the asynchronous tuning to ECA leads to the behavior of the edge of chaos, it is easy
to implement the edge of chaos. Since either synchronous or asynchronous updating is
artificial, tuning between synchronous and asynchronous ECA which looks more natural
could show the aspect of natural phenomena. In that sense, the notion of the unfolded
edge of chaos plays a significant role in complex systems.

In particular, we estimate the computability of AT-ECA in a term of the quantitative
measure of computational universality and computational efficiency. While all ECA sys-
tems, synchronous ECA, asynchronous ECA, and AT-ECA show the tradeoff between the
computational universality and efficiency, AT-ECA reveals much more efficiency as far
as the computational universality of AT-ECA is as same as those of synchronous ECA
and asynchronous ECA. It implies that AT-ECA breaks the tradeoff of synchronous and
asynchronous ECA. That shows that unfolded edge of chaos generated by AT-ECA carries
high performance with respect to computability.

Recently it is well known that the recurrent neural network can be replaced by neural
networks containing the reservoir [29]. In particular, there are some attempts in which
the reservoir is implemented by cellular automata [30]. Since the reservoir is not a simple
thermal pool, the reservoir must play a role in both regulating and disturbing input patterns,
such as the edge of chaos. It is expected that a highly efficient and robust reservoir can be
realized by AT-ECA.

4. Conclusions

We here propose elementary cellular automata taking after the idea of dissipative
structure with respect to the updating mechanism. By introducing active and passive
updating in a term of the order of updating and non-locality, synchronous updating is
defined as an extreme updating of which the passive updating is equivalent to the active
one. In contrast, a natural perturbed system is defined by asynchronously tuned elementary
cellular automata (AT-ECA) of which both passive and active updating are accepted with
respect to the order of updating and neither passive nor active updating is accepted with
respect to non-locality. We here call such a paradoxical structure the traumatic structure
and claim that the traumatic structure takes after the idea of dissipative structure.

Since AT-ECA shows the critical property of the power law and complex cluster-like
patterns featuring both locally periodic and chaotic interaction, it can be said that they
mimic the behavior of cellular automata at the edge of chaos. Application of the device
of asynchronous tuning to ECA leads to such behaviors, we call the property like the
edge of chaos ubiquitously found “unfolded edge of chaos”. In particular, we examine
the computational power of AT-ECA with respect to computational universality and
computational efficiency. The result shows that AT-ECA or unfolded edge of chaos has
much more highly efficient computational power for the same computational universality
rather than synchronous and asynchronous ECA.
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