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Abstract: Using the framework of aquaphotomics, we have sought to understand the changes within
the water structure of kiwifruit juice occurring with changes in temperature. The study focuses
on the first (1300–1600 nm) and second (870–1100 nm) overtone regions of the OH stretch of water
and examines temperature differences between 20, 25, and 30 ◦C. Spectral data were collected
using a Fourier transform–near-infrared spectrometer with 1 mm and 10 mm transmission cells for
measurements in the first and second overtone region, respectively. Water wavelengths affected
by temperature variation were identified. Aquagrams (water spectral patterns) highlight slightly
different responses in the first and second overtone regions. The influence of increasing temperature
on the peak absorbance of the juice was largely a lateral wavelength shift in the first overtone region
and a vertical amplitude shift in the second overtone region of water. With the same data set, we
investigated the use of external parameter orthogonalisation (EPO) and extended multiple scatter
correction (EMSC) pre-processing to assist in building temperature-independent partial least square
regression models for predicting soluble solids concentration (SSC) of kiwifruit juice. The interference
component selected for correction was the first principal component loading measured using pure
water samples taken at the same three temperatures (20, 25, and 30 ◦C). The results show that the
EMSC method reduced SSC prediction bias from 0.77 to 0.1 ◦Brix in the first overtone region of
water. Using the EPO method significantly reduced the prediction bias from 0.51 to 0.04 ◦Brix, when
applying a model made at one temperature (30 ◦C) to measurements made at another temperature
(20 ◦C) in the second overtone region of water.

Keywords: soluble solids content; Brix; kiwifruit juice; aquaphotomics; near infrared spectroscopy;
extended multiplicative scatter correction (EMSC); external parameter orthogonalisation (EPO)

1. Introduction

Water is the major constituent of fruits, typically more than 80% [1,2], and absorbs
near-infrared (NIR) radiation [3,4]. The NIR spectrum of fruit shows a strong absorption
peak around 970 nm, which corresponds to the second overtone of the OH stretch in
water [5,6]. NIR spectroscopy (NIRS) models for predicting dry matter (DM) and soluble
solids content (SSC) of fruit (apples) have been developed using the narrow spectral range
from 800 to 1100 nm around this absorption peak [5].

NIRS models are called robust when their prediction accuracy is relatively insensitive
to unknown changes in external factors [7]. A factor that can strongly affect NIR model
performance is temperature [8]. Shifts in the water absorbance bands with temperature can
reduce model performance [9–12]. Acharya et al. [12] have studied the effect of temperature
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on prediction models of fruit quality, observing that a calibration equation developed
at one fixed temperature could not reliably predict on samples measured at a different
temperature. Roger et al. [10] found a model offset bias of 8 ◦Brix for a temperature
variation of 20 ◦C (range 5–25 ◦C) for SSC prediction in apples. Several techniques have
been previously investigated to compensate fruit model predictions for fluctuations in
sample temperature. Kawano et al. [9] developed calibration equations for peaches using
samples at different temperatures. Peirs et al. [13] similarly developed robust calibration
models for a wide range of apple cultivars, incorporating samples at all temperature ranges
expected in future measurements. Roger et al. [10] removed the temperature-induced
bias in SSC predictions on apples by applying the external parameter orthogonalisation
(EPO) algorithm, as a pre-processing step, to remove the part of the spectral data matrix
most affected by temperature. Several new techniques have been reported recently in the
literature, indicating the problem is far from solved for all circumstances [14].

The framework of aquaphotomics appears suitable for examining the temperature
sensitivity of fruit spectra. Aquaphotomics is an NIR spectral analysis methodology
that focuses on changes in the pattern of water absorbance bands due to perturbations
by extraneous factors. The field has aided the understanding of the role of water in
biological systems [15–18]. The effect of perturbations on water binding structures has been
observed due to variation in solute concentration, temperature, and other environmental
factors [16,18,19]. The aquaphotomics methodology defines 12 water absorption bands in
the first overtone region of water, called the water matrix coordinates (WAMACS), which
describe the water states in an aqueous system. The methodology has been applied to the
study of apple juice when the sample temperature is increased from 20 to 30 ◦C, revealing
an increase in free water molecule states that raises the spectral absorbance at 1414 nm [20].

In this paper, we use the aquaphotomics approach to study the changes in the water
structure of kiwifruit juice caused by variation of temperature in the vicinity of the 1450
nm (first overtone of OH stretch of water) and 970 nm (second overtone of OH stretch
of water) absorbances. The second overtone region has had very little research attention
from an aquaphotomics perspective, which is surprising given the importance of that
region for intact fruit quality prediction by NIR, including on kiwifruit [21,22]. Physically
filtered fruit juices, removing most particulate matter, minimize light scattering variation
between samples and thus provide an ideal medium for fundamental aquaphotomics
studies involving controlled temperature perturbations of the sample water chemistry. The
results from such studies, if clarifying the fundamental mechanisms involved, may help
in understanding and/or overcoming the temperature sensitivities associated with NIRS
whole fruit measurements.

We also evaluate the pre-processing modeling methods, extended multiplicative scatter
correction (EMSC), and EPO, using pure water spectra as interferent, to minimize the tem-
perature sensitivity of NIRS models for the SSC of kiwifruit juice. Previous aquaphotomics
analysis showed the effective use of EMSC for minimizing the temperature sensitivity of
apple juice models for SSC prediction, where the spectral measurements were over the
1300–1600 nm first overtone region, and the required interferent spectra were derived
from pure water measurements [20]. The EPO technique is somewhat similar in requir-
ing the specification of an interferent spectrum. It has been previously explored for the
development of temperature-insensitive NIR models of intact apple SSC across the second
overtone region using common fruit samples, measured at different temperatures to derive
the required interferent spectra [10].

2. Materials and Methods
2.1. Sample Preparation

A total of 100 fully ripe Zespri® SunGold Kiwifruit (Actinidia chinensis var. chinensis
‘Zesy002’) were purchased from New Zealand retail stores. Juice was expressed from
about 2 cm thick endcaps, removed from the stem and calyx ends of each fruit, and was
collected in Eppendorf tubes. The samples were centrifuged at 13,400 rpm for 3 min
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(MiniSpin, Eppendorf, Hamburg, Germany) and then filtered through a 0.2 µm syringe
filter to produce a clear juice (Figure 1). The samples were stored in a refrigerator at 4 ◦C.
Fourier transform–near-infrared (FT-NIR) spectra and reference SSC measurements were
performed the next day after the samples were equilibrated to room temperature (20 ◦C).
Milli-Q water with a resistivity of 18.2 MΩ cm was produced using a water purification
system (Millipore, Thermofisher Scientific, Knox, Australia).
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Figure 1. Experimental procedure for kiwifruit soluble solids content (SSC) measurement.

2.2. Reference SSC (◦Brix) Measurement

The SSC value of the kiwifruit juice samples was measured at room temperature using
a digital refractometer (PAL-1, Atago Co., Ltd., Tokyo, Japan), calibrated with Milli-Q
water. The Brix value was recorded after placing approximately 0.5 mL of juice into the
measurement chamber of the refractometer; this was enough to fully cover the optical
interface.

2.3. FT-NIR Spectral Measurements

Transmittance spectra of the juice samples were measured at 20, 25, and 30 ◦C (±1 ◦C)
with an FT-NIR spectrometer (Tango, Bruker Corporation, Bremen, Germany) equipped
with a temperature-controlled holder. Two measurements were acquired for each juice sam-
ple, using quartz cuvettes of 1 mm and 10 mm optical path length for the 1300–1600 nm and
870–1100 nm wavelength ranges, respectively [23]. For each measurement, one spectrum
was the average of 32 successive scans and was recorded with a resolution of 16 cm−1. The
total number of juice spectra was 600 (100 samples × 1 consecutive scan × 3 temperatures
× 2 cuvettes). The samples were divided into two sets, one for the 1300–1600 nm and one
for the 870–1100 nm wavelength ranges. After the removal of five outliers, anomalous read-
ings speculated to be laboratory blunders, the final data set consisted of 95 juice samples
(285 spectra for three temperatures) in each wavelength set. The spectral region above
1800 nm was discarded because of the high absorption in aqueous samples. To monitor
interfering signals, a reference spectrum of Milli-Q water was taken at the beginning, mid-
dle, and end of the experiment, which resulted in a total of 18 water spectra (3 samples × 1
consecutive scan × 3 temperatures × 2 cuvettes).

2.4. Aquaphotomics Analysis

Aquaphotomics water matrix coordinates (WAMACS) were created using the peak
wavelengths identified in a principal component analysis (PCA) of the full data set of
fruit juice spectra over the three temperatures in the first and second overtone regions of
the OH stretch of water. An anharmonic oscillator model was used to establish 12 water
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bands in the second overtone region that corresponded to the previously established
wavelengths in the first overtone region of water [24]. Aquagrams displaying the resulting
water spectral pattern (WASP) in each overtone region were studied to observe the effect of
temperature variation.

2.5. Multivariate Analysis

Predictive models were developed using MATLAB version R2018b (MathWorks Inc.,
Natick, MA, USA) and the PLS toolbox version 8.6.2 (Eigenvector Research Inc., Wenatchee,
WA, USA). The analysis involved the development of predictive models using spectra
pre-processed by:

2.5.1. SNV + 2D

This is the standard normal variate transformation of the raw spectra followed by
second derivative processing (Savitzky–Golay second-order derivative with smoothing
parameters: width 15, order 2).

2.5.2. EMSC

This is the extended multiplicative scatter correction of the raw spectra. The concept
of EMSC pre-treatment was introduced by Martens et al. [25,26]. EMSC was designed to
remove chemical variabilities by using a model framework that segregates the spectral
response of the analyte of interest from that of a known interference.

Equation (1) describes the theory of EMSC:

X = b0 + b1X + b2 I + e (1)

where X is the raw observed spectra, X is the mean spectrum (the mean of all calibration
spectra), I is an interferent spectrum (to be determined), b0, b1, and b2 are fitting constants,
and e is the residual [18]. Rearranging Equation (1) leads to:

X − b0

b1
− b2 I

b1
= X +

e
b1

(2)

The left-hand side of Equation (2) defines the corrected spectra,

X̂ =
X − b0

b1
− b2 I

b1
(3)

where the constant terms can be estimated by multiple linear regression (MLR).

2.5.3. EPO

This is the external parameter orthogonalisation of the raw spectral matrix X. The
concept of EPO was introduced by Roger et al. [10]. It is a pre-processing method that
aims at removing the part of the X matrix space most influenced by the external parameter
variations. The method identifies the parasitic subspace for removal by computing a PCA
on a small set of spectra measured on the same objects, while the external parameter is
varying.

The theory of the EPO algorithm is outlined below [27].
The spectra matrix X (size n × m) can be written as:

X = XP + XQ + R (4)

where P is the projection matrix (size m × m) of the useful part of the spectra: X* = XP; Q
is the projection matrix (size m × m) of the not useful part (e.g., influenced by temperature)
of the spectra: X# = XQ; R is the residual matrix (size n × m); n is the number of samples,
and m is the number of wavelengths.
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The aim of EPO is to obtain the useful spectra X* = X (I − Q), while matrix Q can be
written as Q = GGT where GT is the transpose of G. The transformed spectra for both the
calibration and validation sets are then calculated as X* = XP where P = I − GGT, and I is
the identity matrix. To estimate G, the uninformative part of the spectra that is orthogonal
to the useful part of the spectra, the principal component of the difference spectra D is
calculated. D is the difference matrix generated by subtracting the average spectra for the
samples at the lowest temperature (in our case) from the samples at all temperatures.

2.5.4. All Temperature Method

This involved combining samples from all three temperatures and applying a stan-
dard pre-treatment on all spectra, both calibration and validation, of SNV transformation
followed by 2nd derivative processing.

2.6. Statistical Analysis

The main data set in the long-wavelength region (1300–1600 nm) and the short wave-
length region (870–1100 nm) was split into three subsets for 20, 25, and 30 ◦C temperature,
respectively. The samples were first rank ordered by SSC value and then systematically
split into ten different groups, using a Venetian blind selection approach, delivering SSC
equivalence between the groups. This arrangement enabled a 10-way leave-each-group-out
approach to calibration-validation set modeling and analysis. Each of the ten calibration–
validation sets were created by holding out a single group in turn, as an independent
validation data set, and leaving the remaining nine groups to be combined as the calibra-
tion data set. Consequently, the total number of samples in each calibration set was 71, and
in each validation set was 24. A separate 10-way Venetian blind cross-validation process
was also undertaken with the calibration modeling on each calibration data set.

3. Results and Discussion

The SSC of kiwifruit juice ranged from 11.9 to 19.2 ◦Brix, with a mean of 16.54 ◦Brix
and a standard deviation of 1.26 ◦Brix. Figure 2 shows the distribution of SSC for all fruit
juice samples in the experiment. There was a very small number of relatively low SSC
samples, below 14 ◦Brix, which may be population outliers.
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3.1. The Raw Spectra

The absorbance plot in Figure 3 illustrates that as the temperature increased in kiwifruit
juice, the absorbance curve in the first overtone region shifted to shorter wavelengths
with a broadening of the peak and a decrease in intensity (Figure 3a). However, in the
second overtone region, there was a slight upward shift in intensity towards the shorter
wavelengths with increasing temperature (Figure 3b). The isosbestic points were 1444 nm
(before the water peak wavelength) and 994 nm (after the water peak wavelength), each
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approximately 4 nm away from reported pure water isosbestic points at 1440 nm and 990
nm, respectively [28].
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3.2. Aquaphotomics Analysis

The wavelengths of the peak and trough in the PC1 spectrum (from PCA on all
juice samples and temperatures) were at 1414 nm and 1494 nm (the first overtone), and
963 nm and 1027 nm (the second overtone), as shown in Figure 4a,b. These wavelength
pairs correspond to C5 (S0: free water) and C11 (S4: species with four hydrogen bonds)
activation for the first overtone, and C6 (water hydration) and C12 (strongly bonded water)
activation for the second overtone region. The remaining WAMACS assignments, not
directly identified from the PCA, were selected as the midpoints of each known water band
in Table 1. As expected, the zero-crossing points for the two PC1 plots were identical to the
isosbestic points observed in Figure 3.
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Figure 4. PC1 loading of kiwifruit juice in (a) the first overtone and (b) the second overtone region of
the OH stretch of water. Labels indicate peak wavelengths (black) and zero-crossing points (red).

Table 1. Temperature-perturbed water wavelengths of kiwifruit juice in the first [16,29] and the
second overtone regions of OH stretch of water [30].

WAMACS Assignment
Wavelengths in Overtone Region Activated

Wavelengths, nm

First
(1300–1600 nm)

Second
(800–1100 nm)

First
Overtone

Second
Overtone

C1 ν3—asymmetric stretching
vibration 1336–1348 900–908

C2 OH stretch—water
solvation shell) 1360–1366 916–920

C3
ν1 + ν3—H2O symmetric

stretching and asymmetric
stretching vibration

1370–1376 923–927

C4 OH stretch (water solvation
shell) 1380–1388 930–935

C5 S0 (free water) 1398–1418 942–955 1414

C6 Water hydration, H5O2 1421–1430 957–963 963

C7 S1—water molecules with 1
hydrogen bond 1432–1444 965–973

C8
ν2 + ν3—H2O bending and

asymmetric stretching
vibration

1448–1454 975–979

C9 S2—water molecules with 2
hydrogen bonds 1458–1468 982–989

C10 S3—water molecules with 3
hydrogen bonds 1472–1482 992–998

C11 S4—water molecules with 4
hydrogen bonds 1482–1495 998–1007 1494

C12 Strongly bonded water or
ν1, ν2

1506–1516 1014–1021 1027

3.3. Aquagrams

The aquagrams of average spectra of the juice at three temperatures are illustrated in
Figure 5a,b for the two overtone regions. There are strong similarities in the two overtone
regions, free water species increasing with temperature as the water structure becomes less
organized as a result of increased molecular motion and less stable H-bonds. However,
there is a difference with the asymmetric stretching and bending (ν2 + ν3) only observed to
increase with temperature for the second overtone region. We might have expected that the
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same water coordinates to be similarly highlighted in the first and second overtone region.
However, this is not quite the case here.
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Figure 5. Aquagrams at three temperatures in (a) the first overtone (1300–1600 nm) (b) the second
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3.4. EMSC Correction
Pure Water Analysis

When applying PCA to the water spectra, the shape of the PC1 loading in the first
overtone region (Figure 6) is very similar to that reported by Segtnan et al. [8] and Maeda
et al. [31], indicating a change in water structure due to a change in temperature. The
shape of the PC1 loading of water in the second overtone region (Figure 6) is similar to the
PC1 loading in the first overtone region. Hence, the respective PC1 loadings, for the first
overtone and second overtone regions were used as the interferent spectra in the EMSC
correction method (Equation (3)).
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3.5. EPO Correction
PCA of the Difference Matrix D for EPO Correction

There was a variation in the temperature around the peak wavelength region of the
juice spectra (Figure 3). When applying PCA to the difference matrix, D, of water and juice
spectra (Figure 7), the shape of the PC1 loadings (Figure 8a,b) were nearly identical, and
the peak and trough positions were identical to those determined in the PCA of the raw
juice and water spectra (Figures 4 and 6). Therefore, the PC1 loadings of the difference
matrix, D, of water were used in the EPO correction (Figure 6) as the interferent spectra to
correct juice spectra against temperature variation.
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wavelengths.

3.6. Prediction of SSC

Application of both the EMSC and EPO pre-processing techniques generally reduced
the SSC prediction bias by a large margin in both the first (Figure 9) and second (Figure 10)
overtone regions, especially compared with SNV + 2D pre-processing. Beyond that, and
particularly comparing EMSC and EPO, it is difficult to see any consistent trends or patterns
in the results. For instance, in the first overtone region, the EMSC method seems advanta-
geous (lower bias) compared with the EPO method when applying a model calibrated at
30 ◦C to a validation set at 20 or 25 ◦C (Figure 9c). However, that does not apply in reverse,
a model calibrated at 20 ◦C is perhaps slightly better under the EPO method when applied
to validation sets at 25 and 30 ◦C. In the second overtone region, the EPO method seems
to have the advantage, although oddly it fails badly, even compared with the SNV + 2D
method, when using a model calibrated at 25 ◦C on a validation set at 30 ◦C (Figure 10b).
The variation in results of any particular method is relatively large, represented by standard
deviation error bars in the graphs, and suggests a large amount of modeling noise between
the various combinations of calibration and validation data sets.
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The performance of each method is shown in detail in Tables 2 and 3. The result for
the All-Temperature method is listed for comparison. The all-temperature method resulted
in the lowest overall biases of 0.03 in the first overtone region and less than 0.06 in the
second overtone region of water. However, the EPO method consistently produced the
lowest SEP and RMSECV for the first and second overtone regions of water. The RMSECV
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errors in the first and second overtone regions were fairly consistent, approximately 0.09
and 0.12 respectively when using the EPO method for calibration models at 20, 25, and
30 ◦C. However, the bias results were not consistent. For example, the calibration model at
30 ◦C predicting at 20 ◦C, produced a bias of 0.23 in the first overtone region whereas a bias
of 0.04 was generated in the second overtone region. The best choice of wavelength region
may depend on other matters, such as sample thickness—analysis of thicker samples, as in
thicker than the 1 mm pathlength, may demand the use of the second overtone region of
water to achieve sufficient light transmission.

Table 2. Performance comparison for soluble solids content (SSC) prediction of kiwifruit juice in the
first overtone (1300–1600 nm) region of the OH stretch of water at different temperatures.

With 1 mm Cuvette in the First Overtone Region (1300–1600 nm)

Ncal = 72, Nval = 23

Calibration Validation

Tcal [◦C] Method r2
cv RMSECV Tval [◦C] r2

p RMSEP BIAS SEP

All SNV + 2D 0.99 0.12 (±0.00)
20 0.99 0.12 (±0.01) 0.03 (±0.02) 0.12 (±0.01)

25 0.99 0.12 (±0.02) 0.03 (±0.01) 0.12 (±0.02)

30 0.99 0.13 (±0.02) 0.03 (±0.01) 0.12 (±0.02)

20

SNV + 2D 0.99 0.14 (±0.01)
20 0.98 0.16 (±0.01) 0.04 (±0.01) 0.15 (±0.01)

25 0.96 0.24 (±0.05) 0.09 (±0.04) 0.22 (±0.05)

30 0.98 0.48 (±0.21) 0.43 (±0.22) 0.19 (±0.02)

EMSC 0.99 0.14 (±0.01)
20 0.99 0.13 (±0.02) 0.03 (±0.02) 0.13 (±0.01)

25 0.98 0.15 (±0.02) 0.04 (±0.03) 0.14 (±0.02)

30 0.99 0.15 (±0.04) 0.06 (±0.06) 0.13 (±0.02)

EPO 0.99 0.10 (±0.01)
20 0.99 0.09 (±0.02) 0.02 (±0.01) 0.09 (±0.02)

25 0.99 0.09 (±0.01) 0.03 (±0.02) 0.09 (±0.01)

30 0.99 0.10 (±0.02) 0.04 (±0.03) 0.09 (±0.01)

25

SNV+2D 0.99 0.13 (±0.02)
20 0.98 0.37 (±0.05) 0.32 (±0.07) 0.18 (±0.04)

25 0.98 0.15 (±0.03) 0.03 (±0.02) 0.14 (±0.03)

30 0.99 0.14 (±0.01) 0.03 (±0.02) 0.14 (±0.02)

EMSC 0.99 0.12 (±0.01)
20 0.99 0.21 (±0.07) 0.15 (±0.09) 0.13 (±0.01)

25 0.98 0.15 (±0.04) 0.03 (±0.02) 0.15 (±0.04)

30 0.99 0.14 (±0.02) 0.04 (±0.03) 0.13 (±0.02)

EPO 0.99 0.09 (±0.00)
20 0.99 0.11 (±0.03) 0.07 (±0.03) 0.09 (±0.02)

25 0.99 0.09 (±0.01) 0.03 (±0.01) 0.08 (±0.01)

30 0.99 0.09 (±0.02) 0.03 (±0.02) 0.09 (±0.01)

30

SNV+2D 0.99 0.14 (±0.00)
20 0.97 0.80 (±0.13) 0.77 (±0.13) 0.21 (±0.04)

25 0.98 0.28 (±0.04) 0.23 (±0.04) 0.15 (±0.03)

30 0.99 0.14 (±0.01) 0.02 (±0.02) 0.14 (±0.01)

EMSC 0.99 0.13 (±0.00)

20 0.99 0.18 (±0.10) 0.10 (±0.12) 0.13 (±0.03)

25 0.99 0.14 (±0.01) 0.04 (±0.04) 0.12 (±0.01)

30 0.99 0.13 (±0.01) 0.02 (±0.02) 0.12 (±0.01)

EPO 0.99 0.09 (±0.00)
20 0.99 0.26 (±0.15) 0.23 (±0.16) 0.10 (±0.03)

25 0.99 0.13 (±0.06) 0.08 (±0.07) 0.09 (±0.02)

30 0.99 0.09 (±0.01) 0.02 (±0.01) 0.09 (±0.01)
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Table 3. Performance comparison for SSC prediction of kiwifruit juice in the first overtone (870–1100
nm) region of the OH stretch of water at different temperatures.

With 10 mm Cuvette in the Second Overtone Region (870–1100 nm)

Ncal = 72, Nval = 23

Calibration Validation

Tcal [◦C] Method r2
cv RMSECV Tval [◦C] r2

p RMSEP BIAS SEP

All SNV + 2D 0.98 0.17 (±0.01)
20 0.98 0.18 (±0.04) 0.06 (±0.05) 0.16 (±0.03)

25 0.98 0.17 (±0.02) 0.05 (±0.02) 0.16 (±0.03)

30 0.98 0.18 (±0.02) 0.04 (±0.02) 0.17 (±0.02)

20

SNV + 2D 0.98 0.20 (±0.01)
20 0.97 0.21 (±0.03) 0.07 (±0.03) 0.21 (±0.04)

25 0.97 0.20 (±0.04) 0.06 (±0.03) 0.20 (±0.03)

30 0.97 0.19 (±0.03) 0.05 (±0.03) 0.20 (±0.03)

EMSC 0.99 0.14 (±0.01)

20 0.98 0.15 (±0.03) 0.04 (±0.02) 0.14 (±0.03)

25 0.98 0.18 (±0.02) 0.07 (±0.04) 0.16 (±0.02)

30 0.98 0.20 (±0.05) 0.10 (±0.07) 0.17 (±0.03)

EPO 0.99 0.12 (±0.01)

20 0.99 0.13 (±0.01) 0.02 (±0.02) 0.13 (±0.01)

25 0.98 0.14 (±0.02) 0.03 (±0.02) 0.14 (±0.02)

30 0.98 0.17 (±0.03) 0.09 (±0.05) 0.15 (±0.02)

25

SNV+2D 0.98 0.20 (±0.01)

20 0.97 0.21 (±0.03) 0.07 (±0.03) 0.21 (±0.04)

25 0.97 0.20 (±0.04) 0.06 (±0.03) 0.20 (±0.03)

30 0.97 0.19 (±0.03) 0.05 (±0.03) 0.20 (±0.03)

EMSC 0.99 0.15 (±0.01)

20 0.97 0.19 (±0.01) 0.07 (±0.03) 0.18 (±0.02)

25 0.99 0.14 (±0.03) 0.04 (±0.04) 0.12 (±0.03)

30 0.98 0.17 (±0.03) 0.06 (±0.06) 0.14 (±0.02)

EPO 0.99 0.12 (±0.01)

20 0.97 0.21 (±0.02) 0.07 (±0.04) 0.19 (±0.03)

25 0.99 0.13 (±0.02) 0.04 (±0.02) 0.12 (±0.01)

30 0.98 0.24 (±0.05) 0.18 (±0.06) 0.15 (±0.03)

30

SNV+2D 0.98 0.19 (±0.01)
20 0.97 0.55 (±0.18) 0.51 (±0.18) 0.21 (±0.04)

25 0.98 0.35 (±0.12) 0.29 (±0.13) 0.18 (±0.01)

30 0.97 0.19 (±0.03) 0.06 (±0.03) 0.18 (±0.03)

EMSC 0.98 0.17 (±0.02)

20 0.98 0.34 (±0.06) 0.29 (±0.06) 0.16 (±0.03)

25 0.98 0.25 (±0.01) 0.18 (±0.03) 0.16 (±0.03)

30 0.98 0.17 (±0.05) 0.05 (±0.03) 0.15 (±0.05)

EPO 0.99 0.13 (±0.00)

20 0.98 0.14 (±0.02) 0.04 (±0.02) 0.14 (±0.02)

25 0.99 0.14 (±0.01) 0.05 (±0.01) 0.13 (±0.01)

30 0.99 0.12 (±0.01) 0.04 (±0.02) 0.12 (±0.01)

4. Conclusions

The aquaphotomics study here has revealed that the free water components of kiwifruit
juice increase and the bound water components decrease as the temperature rises from 20
to 30 ◦C. The key aquaphotomics wavebands in the first and second overtone regions were
identified. The influence of increasing temperature on the peak absorbance of kiwifruit
juice spectra was a lateral (wavelength) shift in the first overtone region and a vertical shift
in the second overtone region of water. In the second overtone region, the C8 asymmetric
stretching and bending component (ν2 + ν3) became more prominent in the aquagram with
increasing temperature, which was not the case in the first overtone region.

Predictive modeling of the SSC of kiwifruit juice over the temperature range 20 to 30 ◦C
was more robust (lower offset bias) when using EPO and EMSC pre-processing with an in-
terference term generated from PCA of a simple and independent pure water-temperature



Molecules 2022, 27, 504 14 of 15

spectral matrix experimentally generated over the same temperature range. The water-
temperature matrix only needs to be created once and, in being independent of the kiwifruit
juice samples, considerably simplifies the generation of temperature-independent predic-
tions. The consequence of this is that model calibration data on actual juice samples need
only be measured at one temperature, the EPO and/or EMSC pre-processing enables appli-
cation at any other temperature within the measured temperature range. This approach
may apply to other applications, such as other fruit juices or intact fruit modeling problems,
where robustness against temperature changes is desirable.
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