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Abstract Nuclear genomes of human, animals, and plants
are organized into subunits called chromosomes. When iso-
lated into aqueous suspension, mitotic chromosomes can be
classified using flow cytometry according to light scatter and
fluorescence parameters. Chromosomes of interest can be
purified by flow sorting if they can be resolved from other
chromosomes in a karyotype. The analysis and sorting are
carried out at rates of 10°~10* chromosomes per second, and
for complex genomes such as wheat the flow sorting tech-
nology has been ground-breaking in reducing genome com-
plexity for genome sequencing. The high sample rate
provides an attractive approach for karyotype analysis (flow
karyotyping) and the purification of chromosomes in large
numbers. In characterizing the chromosome complement of
an organism, the high number that can be studied using flow
cytometry allows for a statistically accurate analysis. Chro-
mosome sorting plays a particularly important role in the
analysis of nuclear genome structure and the analysis of
particular and aberrant chromosomes. Other attractive but
not well-explored features include the analysis of chromo-
somal proteins, chromosome ultrastructure, and high-
resolution mapping using FISH. Recent results demonstrate
that chromosome flow sorting can be coupled seamlessly
with DNA array and next-generation sequencing technolo-
gies for high-throughput analyses. The main advantages are
targeting the analysis to a genome region of interest and a
significant reduction in sample complexity. As flow sorters
can also sort single copies of chromosomes, shotgun se-
quencing DNA amplified from them enables the production
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Introduction

With some rare exceptions (Crosland and Crozier 1986),
nuclear genomes of animals and plants are made not of a
single but several molecules of DNA, each of them forming
a highly organized structure called chromosome. Chromo-
somes are formed by packing DNA into a small space via
the interaction with histones and non-histone proteins, which
also play an important role in the regulation of gene expres-
sion (Margueron and Reinberg 2010; Zhou et al. 2011). Al-
though there is no obvious relationship between genome size
and the number of chromosomes (Heslop-Harrison and
Schwarzacher 2011), it is believed that there is an upper limit
of chromosome size and large genomes must be distributed
into several smaller chromosomes (Schubert and Oud 1997).
The interaction of kinetochore structures formed on chromo-
somes with the spindle apparatus ensures an ordered separa-
tion of replicated DNA into daughter cells during mitosis
(Verdaasdonk and Bloom 2011; Gordon et al. 2012) and
production of functional gametes during meiosis (Brar and
Amon 2008; Pawlowski 2010). Recombination and random
segregation of homologous chromosomes during meiosis is
crucial for generating genetic variation (Yanowitz 2010;
Lichten and de Massy 2011; Osman et al. 2011).

@ Springer



398

Funct Integr Genomics (2012) 12:397-416

Genome mapping, sequencing, and gene isolation proj-
ects have, to date, rarely exploited the organization of
plant and animal genomes into the chromosomes. Yet,
plant and animal genomes may be large and complex
because of a high content of repetitive and duplicated
DNA sequences. The complexity of some plant genomes
is further augmented by allopolyploidy resulting from the
presence of two or more structurally similar chromosome
sets originating from different parental species. These
features hamper the construction of clone-based physical
maps, positional gene cloning, and de novo genome
sequencing. Although it is not a problem to fingerprint
the large numbers of clones needed to establish a phys-
ical map (Luo et al. 2003), and to sequence billions of
DNA bases (Metzker 2010), the difficulty is to arrange
the large number of fingerprints and short reads into an
unambiguous order that faithfully represents the genome
(Wei et al. 2009; Alkan et al. 2011; Treangen and
Salzberg 2012). Another area which profits from the
analysis at single-chromosome level is the production of
haplotype-resolved genome sequences (Yang et al. 2011).

In this review, we describe how laser flow cytometry can
be used to dissect nuclear genomes into single chromosomes
in order to provide a basis for a chromosome-focused anal-
ysis of the genome. We provide examples of the use of flow-
sorted chromosomes to analyze genomes of human, ani-
mals, and plants. We conclude that flow cytogenetics holds
the key to tackling complex genomes by greatly reducing
genome complexity for targeted and cost-effective studies.

Chromosome isolation and flow cytogenetics

A majority of cells in plant and animal bodies are at inter-
phase and their nuclei contain decondensed chromosomes,
which cannot be physically separated from each other. This
is possible only during the metaphase stage of cell division
when the chromosomes are condensed. Early studies isolat-
ed single chromosomes from metaphase spreads of dividing
cells using a micromanipulator (Chambers and Sands 1923;
Barigozzi 1939; Scalenghe et al. 1981; Schondelmaier et al.
1993). Following the first generation of mechanical micro-
manipulators, computer-aided instruments using laser tech-
nology were developed (Matsunaga et al. 1999). A clear
advantage of micromanipulation is that the operator visually
identifies chromosomes to be isolated. A disadvantage is
that only a small number of chromosomes can be collected
(Hobza and Vyskot 2007) and that the quality of chromo-
somal DNA may be suitable only for some types of analysis
(Ma et al. 2010). Recent improvements in the area of chro-
mosome micromanipulation include the atomic force micro-
scope nanolithography, which enables dissection of
fragments as small as 0.4 pm (Di Bucchianico et al. 2011).
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Isolation of chromosomes from populations of dividing
cells into aqueous suspension provides other options for
manipulation and the opportunity to isolate chromosomes in
large numbers. Separation of chromosomes based on relative
density by gradient centrifugation enables the separation of
small and large chromosomes only and is therefore not suitable
for the isolation of particular chromosomes (Stubblefield and
Oro 1982). Another option is to separate a specific chromo-
some using magnetic beads after hybridization with a biotin- or
fluorochrome-labeled chromosome-specific probe (Dudin et
al. 1988; Vitharana and Wilson 2006). This approach, howev-
er, suffers from lower purities in isolated fractions.

To date, the most successful and almost universally
used approach for separating chromosomes on a prepar-
ative scale has been flow cytometry, a method designed
to analyze the optical parameters of microscopic particles
during a passage in a narrow stream of liquid. Flow
cytometry analyzes cells and cell organelles at rates of
10%-10%s (Fig. 1). If a chromosome of interest can be
resolved from other chromosomes based on its optical
properties (light scatter, fluorescence), it can be purified
in large quantities.

Flow cytometry to analyze and sort metaphase chromo-
some (flow cytogenetics, Gray 1989; Bartholdi 1990) is
usually applied to mitotic preparations since the preparation
of suspensions of meiotic chromosomes is not practical.
Tissues and cell cultures from which the samples are pre-
pared must be synchronized to achieve a high proportion of
cells in metaphase. In animal systems, up to 95 % of cells
can be accumulated in metaphase (Carrano et al. 1976,
1979); a lower degree of synchrony of about 50 % meta-
phase cells has been achieved in plants (Vrana et al. 2000;
Vlacilova et al. 2002). Chromosomes are released from cell
populations highly enriched for metaphase cells into a suit-
able isolation buffer; chromosomal DNA is stained using a
DNA-specific fluorochrome to allow chromosomes to be
classified according to fluorescence intensity (relative
DNA content). The analysis of large populations can be
carried out in a short time and results in representative
distributions of chromosomal DNA content termed flow
karyotypes. Ideally, each chromosome forms a distinct peak
on the flow karyotype, whose location is proportional to
fluorescence intensity and whose volume is proportional to
the frequency of occurrence of that chromosome type. How-
ever, due to similarity in size and relative DNA content,
peaks of some chromosome types may overlap and the
chromosomes cannot be resolved.

Flow analysis of human and animal chromosomes

In their pioneering experiments, Gray et al. (1975a) and
Stubblefield et al. (1975) analyzed chromosome suspensions
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Fig. 1 Schematic view of a flow cytometer and sorter. In this example,
the instrument is equipped with one laser used as light source. The
sample (suspension of intact chromosomes) is stained by a DNA-
specific dye and introduced to a flow chamber from which a narrow
stream of liquid emerges and carries the chromosomes. The chromo-
somes in the stream interact individually with the laser beam, and
scattered light and emitted fluorescence are quantified. Histogram of
fluorescence intensity (flow karyotype) is generated during the analysis

prepared from Chinese hamster cell lines after staining with a
DNA fluorochrome, ethidium bromide. Large numbers of
chromosomes (10°~10°) were analyzed in a short time and
the position of peaks in flow karyotypes corresponded with
the expected distribution of chromosomal DNA content.
Microscopic analysis of particles sorted onto microscope
slides from each peak showed less than 20 % contamination
with other chromosomes. Subsequent flow measurement of
chromosomes from two Chinese hamster cell lines indicated
a potential to detect chromosome rearrangements such as
translocations (Gray et al. 1975b). Initial analysis of human
chromosomes obtained from male cell line resulted in a flow
karyotype with seven peaks for the 24 chromosome types
(Fig. 2; Gray et al. 1975b) and the classification of chromo-
somes from male deer Indian muntjac according to DNA
content led to flow karyotype with five major peaks
corresponding to five chromosome types in this species
(Carrano et al. 1976). The latter work demonstrated a feasi-
bility to sort chromosomes at rates of many hundreds per
second with a purity of 90 % and hence a possibility to
collect microgram quantities of purified chromosomes.
These historical experiments laid the foundations of flow
cytogenetics and indicated its potential to characterize kar-
yotypes, identify structural chromosome changes, and puri-
fy large quantities of chromosomes for biochemical and
molecular analyses. A prerequisite was to improve the res-
olution of flow karyotyping to increase the number of chro-
mosome types, which can be identified and sorted, and to
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and if the chromosome of interest differs in relative fluorescence
intensity, it forms a separate peak on flow karyotype and the chromo-
some can be sorted. Sorting is achieved by breaking the liquid stream
into droplets and by electrically charging droplets carrying chromo-
somes of interest. Chromosome droplets are deflected during a passage
through electrostatic field and collected in suitable containers (repro-
duced from: Meksem and Kahl (2005) with permission)

develop flow cytogenetics in other species. By replacing
ethidium bromide with Hoechst 33258 to stain chromosom-
al DNA, Carrano et al. (1979) improved the resolution of
human flow karyotypes so that they could classify the 24
chromosome types into 15 groups. A major advance was
made by Langlois et al. (1982) who took the advantage of
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Fig. 2 Distribution of relative fluorescence intensity (flow karyotype) of
mitotic chromosomes extracted from a human diploid cell strain (2n=46,
XY), stained by ethidium bromide and measured in the Livermore flow
microfluorometer. Experimental data points are connected by a solid line.
Seven groups of chromosomes were discriminated, represented by peaks
labeled A-G. X axis, relative fluorescence intensity; Y axis, frequency of
particles (Gray et al. (1975b), with permission, modified)
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the differences in AT/GC content among the human chro-
mosomes and analyzed chromosomes stained by two dyes
differing in base specificity—Hoechst 33258 (preferential
AT-binding) and chromomycin A3 (preferential GC-
binding). This so called bivariate flow karyotyping enabled
the discrimination of all human chromosomes except chro-
mosomes 9—-12 and chromosomes 14 and 15 (Fig. 3). The
variability in peak position within the flow karyotype was
small enough to detect chromosome gains and losses equiv-
alent to 1/600 genome, and this facilitated the detection of
chromosome polymorphism.

Sample quality determines the success in discriminating
individual chromosomes and thus the protocols for the prepa-
ration of aqueous suspensions of chromosomes must be opti-
mized to maintain chromosome morphology and to ensure that
the suspensions are free of cell and chromosomal debris,
chromatids, and chromosome clumps (Sillar and Young
1981; Bijman 1983; van den Engh et al. 1984; Aten et al.
1987a; Telenius et al. 1993; Ng and Carter 2006). Improved
methods become available to prepare samples not only from
cell lines (van den Engh et al. 1984) and peripheral lympho-
cytes (Matsson and Rydberg 1981; Young et al. 1981) but also
from solid tissues and tumors (Kooi et al. 1984). Optimization
of chromosome isolation and staining protocols permitted the
discrimination and sorting of all human chromosomes except
chromosomes 9, 10, 11, and 12 (Gray and Cram 1990). Bivar-
iate flow karyotyping has become a golden standard in human
and animals, where it has been used in a number of species (for
a list of examples, see, e.g., Ferguson-Smith 1997). However,
as in human, not all chromosomes can be resolved in all animal
species. In a male dog, the 76 autosomes and two sex chromo-
somes were resolved into 32 peaks (Langford et al. 1996), and
19 chromosomal pairs of the swine karyotype were resolved

into 18 peaks (Yerle et al. 1993). Out of the 78 chromosomes of
domestic chicken, only macrochromosomes 1-9, Z and W

chromosomes, and three microchromosomes were distinguish-
able (Nie et al. 2009).

Plants are different

Only a decade after the first reports in Chinese hamster and
human, de Laat and Blaas (1984) reported on flow karyo-
typing in a plant, Haplopappus gracilis, and sorting its two
chromosome types. The progress in plants was slow due to a
low degree of metaphase synchrony and difficulties with
chromosome release from cells with rigid walls (for a review,
see Dolezel et al. (1994)). Initially, chromosome samples
were prepared from suspension cultured cells (de Laat and
Blaas 1984; Arumuganathan et al. 1991; Wang et al. 1992).
This approach has been abandoned as the cultures are often
heterogeneous and difficult to synchronize (Arumuganathan
et al. 1991), karyologically unstable (Leitch et al. 1993;
Schwarzacher et al. 1997), and not easy to initiate in some
species. Conia et al. (1987, 1989) suggested using leaf meso-
phyll protoplast cultures as an alternative. But as mitotic syn-
chrony induced by transferring isolated protoplasts to nutrient
medium was rather low, and as protoplast cultures are hard to
establish in many plants, the system has not been adopted by
others. Currently the only method used widely describes the
preparation of chromosome samples from root tip meristems of
young seedlings (Dolezel et al. 1992). The meristems are
karyologically stable and their cells are easy to synchronize.
Some authors used genetically transformed “hairy” root cul-
tures when working with lines that cannot be maintained by
seed propagation (Veuskens et al. 1995; Neumann et al. 1998).
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Fig. 3 Bivariate flow karyotype of human lymphocyte chromosomes,
which were stained with Hoechst 33258 and chromomycin A3. The
height of each peak in the distribution is indicated by contours. Lef,
chromosomes 9-12 form a composite peak and cannot be sorted
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individually. Right, expanded view of chromosomes smaller than chro-
mosome 8; chromosomes 14—15 are not clearly resolved. X axis, relative
fluorescence intensity of chromomycin A3; Y axis, relative fluorescence
intensity of Hoechst 33258 (Langlois et al. (1982), with permission)
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Plant mitotic chromosomes were initially released by lyzing
synchronized cells into a hypotonic buffer after the enzymatic
removal of their walls (de Laat and Blaas 1984; Arumuganathan
etal. 1991; Wang et al. 1992; Veuskens et al. 1995). The method
did not work well with root meristems and an alternative method
was developed in which the chromosomes were released by
mechanical homogenization of formaldehyde-fixed tissues
(Dolezel et al. 1992; Gualberti et al. 1996). While bivariate flow
karyotyping marked a great improvement in flow cytogenetics of
human and animals, it did not bring any significant improvement
in plants (Lee et al. 1997, 2000; Lucretti and Dolezel 1997). The
failure was most probably due to the presence of homogenously
dispersed repetitive DNA sequences in plants (Fuchs et al. 1996;
Schubert et al. 2001). As a result, flow cytometric analysis and
sorting is carried out after staining the samples with only one
DNA fluorochrome, typically DAPI (Vlacilova et al. 2002;
Uberall et al. 2004; Kubalakové et al. 2005). The number of
chromosomes which can be discriminated varies between species
(Table 1; Dolezel et al. 2004). For example, only one out of the
21 chromosomes of bread wheat can be discriminated from a
wild-type karyotype (Fig. 4a; Vrana et al. 2000), while five out of
eight chromosomes can be resolved in chickpea (V1a¢ilova et al.
2002).

Chromosome characterization by flow

Flow karyotyping is a quantitative, statistically accurate, and
high-throughput approach for karyotype analysis and the
detection of numerical and structural chromosome changes.
Typically 20,000-100,000 chromosomes (in human repre-
senting a combined karyotype of at least 400 cells) are
analyzed in a short time to generate univariate or bivariate
flow karyotypes. This provides an accurate measurement of
the frequency of different chromosome types. For instance,
trisomy 21 appears as a 50-% increase in the volume of peak
representing chromosome 21 as compared with other chro-
mosome types (Gray et al. 1986), and translocations result-
ing in derivative chromosomes that differ either in DNA
content or base pair ratio will appear as new peaks (Lebo et
al. 1986). Chromosome fluorescence can be measured with
coefficients of variation as low as 1 %, and the size of small
deletions can be estimated (Trask et al. 1996). However,
flow cytometry is not suitable for karyotype analysis in
heterogenous populations. To cope with this limitation,
Stepanov et al. (1996) designed a modified flow chamber
in which cells are ruptured individually and batches of
chromosomes from individual cells are analyzed separately
at rates of 10? cells/min. However, to our knowledge, this
system has not been adopted by others.

In biomedical research, flow karyotyping has been used
to identify translocation chromosomes in pig (Hausmann et
al. 1993) and identify its chromosomes in pig—mouse

somatic cell hybrid line (Bouvet et al. 1993), analyze kar-
yotype instability during a neoplastic process (Cram et al.
1983), identify tumor marker chromosomes (Nusse et al.
1992), and detect radiation damage (Fantes et al. 1983; Aten
et al. 1987b). In plants, flow karyotyping was found to be
sensitive enough to detect trisomy of chromosome 6 in
barley (Lee et al. 2000) and estimate the frequency of alien
chromosomes in populations of six wheat—rye chromosome
addition lines (Kubalédkova et al. 2003). Translocation chro-
mosomes were identified in field bean, garden pea, barley,
and wheat (Fig. 4f) (Dolezel and Lucretti 1995; Neumann et
al. 1998; Lysak et al. 1999; Vrana et al. 2000; Kubalakova et
al. 2002, 2003), and chromosome deletions were investigat-
ed in wheat (Gill et al. 1999; Kubalakova et al. 2002, 2005).
Accessory B chromosomes were readily detected in rye
(Fig. 4e) (Kubaldkova et al. 2003) and maize (unpublished
observation). Alien chromosomes were identified in oat—
maize and wheat-rye chromosome addition lines (Li et al.
2001; Kubaldkova et al. 2003); alien chromosome arms
were identified in wheat-rye and wheat-barley telosome
addition lines (Suchankové et al. 2006; Simkova et al.
2008) and chromosome polymorphism was observed in
barley, maize, rye, and wheat (Lee et al. 2000, 2002; Vrana
et al. 2000; Kubalakova et al. 2002, 2003).

As the flow karyotyping is based on chromosome DNA
content and/or AT/GC ratio, intrachromosomal rearrange-
ments and reciprocal translocations where equal amounts
of DNA are exchanged cannot be identified. Detection of
aberrations is also hampered by natural occurrence of
chromosome polymorphisms (Harris et al. 1986). With
these limitations, the labor-intensive character, and a need
for expensive equipment, flow karyotyping cannot com-
pete with advanced methods of cytogenetics such as mul-
ticolor fluorescence in situ hybridization (FISH),
chromosome painting, and DNA arrays. Thus, early hopes
that flow karyotyping will be used for semi-automatic
detection of aberrant chromosomes (Boschman et al.
1992) have remained unfulfilled. However, in the follow-
ing, we will show that many of the advanced cytogenetic
methods actually rely on using DNA from flow-sorted
chromosomes.

Chromosome sorting principles

The most frequent flow sorter design relies on breaking the
narrow liquid jet carrying the microscopic particles of the
sample into small droplets in a regular fashion. Droplets
carrying chromosomes of interest are charged electrically
and deflected during a passage through an electrostatic field
(Fig. 1). Like the analysis, sorting can be done at high
speeds of up to several hundred chromosomes per second
(Gray and Cram 1990). The utility of sorted chromosome
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Table 1 List of plant species from which flow cytometric analysis of mitotic chromosomes has been reported

Species Chromosome number (7)®  Number of discriminated References
chromosomes
Latin name Common name Standard Cytogenetic
karyotype®  stock®
Aegilops biuncialis Goatgrass 14 2 - Molnar et al. (2011)
Aegilops comosa Goatgrass 1 - Molnar et al. (2011)
Aegilops umbellulata Goatgrass 4 - Molnar et al. (2011)
Avena sativa Oats 21 0 - Li et al. (2001)
Cicer arietinum Chickpea 8 5 - Vlacilova et al. (2002);
Zatloukalova et al. (2011)
Festuca pratensis Meadow fescue 7 1 - Kopecky et al. (2011)
Haplopappus gracilis 2 2 - de Laat and Blaas (1984);
de Laat and Schel (1986)
Hordeum vulgare Barley 7 1(2) 7 Lysék et al. (1999);
Lee et al. (2000);
Suchankova et al. (2006)
Lycopersicon esculentum Tomato 12 0 - Arumuganathan et al. (1991)
Lycopersicon pennellii Tomato 12 2 - Arumuganathan et al. (1991, 1994)
Melandrium album; Silene ~ White Campion 12 2 - Veuskens et al. (1995);
latifolia Kejnovsky et al. (2001)
Nicotiana plumbaginifolia ~ Tobacco 10 0 - Conia et al. (1989)
Oryza sativa Rice 12 0 - Lee and Arumuganathan (1999)
Petunia hybrida 7 1 - Conia et al. (1987)
Picea abies Norway spruce 12 3 - Uberall et al. (2004)
Pisum sativum Pea 7 2 4 Gualberti et al. (1996);
Neumann et al. (1998, 2002)
Secale cereale Rye 7 1 74 Kubalakova et al. (2003)
Triticum aestivum Bread wheat 21 1(2) 21°¢ Wang et al. (1992);
Schwarzacher et al. (1997);
Lee et al. (1997);
Gill et al. (1999);
Vrana et al. (2000);
Kubalakova et al. (2002)
Triticum durum Durum wheat 14 1 14 Kubalakova et al. (2005)
Vicia faba Field bean 6 1 6 Lucretti et al. (1993);
Dolezel and Lucretti (1995);
Lucretti and Dolezel (1997);
Kovarova et al. (2007)
Zea mays Maize 10 2(3) 108 Lee et al. (1996, 2002);

Li et al. (2001, 2004)

#Number of chromosomes in a haploid set

® Number of chromosomes that could be discriminated unambiguously. The numbers in brackets indicate the number of chromosomes that could be
discriminated in some lines due to chromosome polymorphism

¢ Number of individual chromosome types discriminated in different lines (translocation, deletion, or addition lines). Note that in some species this

option has not been verified

9Rye chromosomes 2R—7R could be discriminated from wheat—rye chromosome addition lines (Kubalakové et al. 2003)

¢ Sorting of almost all chromosome arms is possible in hexaploid wheat using individual (di)telosomic lines (Kubalakova et al. 2002)

fAll chromosome arms may be sorted from individual (di)telosomic lines (Kubaldkova et al. 2003)

€ Oat-maize chromosome addition lines (Li et al. 2001)

fractions is determined by their purity and quality of DNA
(or proteins if they are analyzed). Purity depends on the
degree to which the chromosome of interest can be resolved
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from other chromosomes, chromosome clumps, chromatids,
and chromosome fragments in the sample. Hence, the sam-
ple quality and instrument resolution are critical.
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Fig. 4 Examples of flow karyotyping in various cytogenetic stocks in
plants. Mitotic metaphase chromosomes were isolated from synchro-
nized root tip meristems and stained by DAPI prior to analysis. a Flow
karyotype of hexaploid wheat (2n=6x=42) comprises three composite
peaks representing groups of chromosomes and a peak representing
chromosome 3B. Only this chromosome can be sorted from wild-type
karyotype. b The analysis of a double ditelosomic line dDt3D of wheat
in which the arms of chromosome 3D are stably maintained as telo-
centric chromosomes 3DS and 3DL. The arms are smaller than the
remaining chromosomes, are represented by well discriminated peaks
on the flow karyotype, and can be easily sorted. ¢ Flow karyotype of

The extent of contamination in sorted fractions has been
estimated by microscopic observation of chromosomes sorted
onto microscopic slides and subjected either to G-banding
(Rommel et al. 1988; Hausmann et al. 1993), N-banding (Gill
et al. 1999), and/or FISH with probes, resulting in
chromosome-specific labeling pattern (Rommel et al. 1988;
VanDevanter et al. 1994; Schmitz et al. 1995; Kubalakova et
al. 2003). If alien chromosomes are sorted from a host organ-
ism, they may be identified using genomic in situ hybridization
with a labeled whole-genome probe (Li et al. 2001). Sorted
chromosomes were also identified using polymerase chain
reaction (PCR) in situ which does not require labeled probes

wheat—rye chromosome addition line 7R comprises peaks representing
chromosomes of wheat (/-//I and 3B) and a peak of chromosome 7R,
which can be sorted. d The analysis of chromosomes isolated from
wheat-barley chromosome arm addition line 3HS results in flow
karyotype with a well-discriminated peak of 3HS, which facilitates
its sorting. e A flow karyotype of rye cv. Adams carrying supernumer-
ary B chromosomes (2n=14+B) comprises one composite peak repre-
senting all rye chromosomes 1R-7R and a peak of chromosome B. f
Wheat cultivar Arina carries a translocation chromosome 5BL.7BL,
which is the largest in the karyotype and is represented by a peak to the
right of chromosome 3B

(Gualberti et al. 1996; Lysék et al. 1999). The ability to identify
chromosomes in sorted fractions has been important to char-
acterize flow karyotypes and assign peaks on flow karyotypes
to individual chromosomes. Although this can also be done
using PCR with chromosome-specific primers (Shepel et al.
1994; Lysak et al. 1999; Vlacilova et al. 2002), microscopic
analyses of sorted fractions are preferred as they enable the
identification of contaminating particles and determine their
frequency (Kubaldkova et al. 2000). If sorting is carried out
under favorable conditions and at a low sample rate, favoring
the high resolution of chromosome peaks, purities higher than
95 % can be achieved (Cram et al. 2002; Mayer et al. 2011).
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Sorting chromosomes that cannot be resolved

The application of flow-sorted chromosomes in genetics and
genomics of most of animal and plant species was hindered by
the inability to resolve all chromosomes (Fig. 4a). Various
approaches have been developed to deal with this and can be
classified into two groups: (a) improvements in instrumenta-
tion and methodology and (b) judicious selection of genotypes
from which desired chromosomes are purified. The efforts to
improve the instrumentation lead to development of slit-scan
flow cytometry, which classifies chromosomes according to
the distribution of fluorescence along their length (Bartholdi et
al. 1990; Rens et al. 1994). As the staining intensity is reduced
at the centromere, this approach provided the information on
centromere position (centromeric index) and the number of
centromeres. Bartholdi et al. (1989) demonstrated that chro-
mosome banding may provide additional landmarks along
chromosomes. Despite these encouraging observations, slit-
scan flow karyotyping did not find a wider use.

The attempts to improve the methodology included immu-
nofluorescent staining of chromosomal proteins. Initial
experiments confirmed a possibility to label the proteins of
chromosomes in suspension with fluorescent antibodies
(Trask et al. 1984). While Fantes et al. (1989) failed to identify
dicentric chromosomes induced by radiation after labeling
centromeric regions with CREST antibodies, Levy et al.
(1991) succeeded in resolving chromosomes 2 and X in
Indian muntjac after immunofluorescent antikinetochore
staining. Also, this approach has not been followed by others.
In principle, labeling of particular DNA sequences should
provide a general approach to identify any chromosome. After
Trask et al. (1985) succeeded in labeling a specific DNA
sequence using FISH on interphase nuclei in suspension and
quantifying bound probe by flow cytometry, Dudin et al.
(1987) successfully applied the same method to chromosomes
in suspension. They used human genomic DNA as probe for
FISH to chromosomes isolated from Chinese hamster x human
hybrid cell line. However, they did not analyze the chromo-
somes by flow cytometry. Ma et al. (2005) described FISH in
suspension on chromosomes of barley and rye, but again
without confirming suitability for flow cytometric sorting.

FISH requires changing solutions, and washing and pel-
leting chromosomes cause chromosome clumping and los-
ses. Consequently, Macas et al. (1995) developed a protocol
for primed in situ labeling in suspension, with a reduced
number of washing and centrifugation steps. Pich et al.
(1995) used the procedure to discriminate and sort field
bean chromosomes based on Fokl repeat copy number.
Unfortunately, the protocol suffered from poor reproducibil-
ity (unpublished observation). A successful attempt to label
animal and human chromosomes in suspension was reported
by Brind’Amour and Lansdorp (2011) who used peptide
nucleic acid (PNA) probes. These probes have higher

@ Springer

binding affinity to DNA as compared to DNA or RNA
and are suitable for quantitative FISH. In this work, PNA
probe to human chromosome 18-specific pericentromeric
satellite facilitated the flow sorting of parental chromosome
homologs, which differed in the number of repeat units. An
attractive alternative to FISH is chromosome labeling using
synthetic polyamide probes, which bind in a sequence-
specific manner but do not require denaturation of DNA.
The feasibility of this approach for labeling chromosomes in
suspension was confirmed by Gygi et al. (2002) who used a
polyamide targeted to a sequence motif repeated in hetero-
chromatic regions to discriminate by flow cytometry human
chromosome 9 from chromosomes 10, 11, and 12. Surpris-
ingly, this method has not been used by others.

So far the most productive approach to sort otherwise non-
sortable chromosomes has been a careful selection of geno-
types from which particular chromosomes can be purified.
Chromosomes that could not be sorted from samples prepared
from human cells were sorted from human—hamster hybrid cell
lines containing one or a few human chromosomes of interest
(Lee et al. 1994; Gingrich et al. 1996). A similar approach was
used to sort some pig chromosomes from pig-mouse somatic
cell hybrid lines (Bouvet et al. 1993). An alternative was to use
cell lines containing chromosomes with distinctive heteromor-
phisms, and Harris et al. (1985) demonstrated that selection of
suitable lines facilitated sorting of all human chromosomes
apart from 10, 11, and 12. The recent progress in plant flow
cytogenetics has been stimulated mainly by the use of cytoge-
netic stocks. Lucretti et al. (1993) and Dolezel and Lucretti
(1995) showed that field bean chromosomes whose length has
been altered by translocation could be easily discriminated.
Since then, a whole range of cytogenetic stocks, including
deletions (Fig. 4b; Gill et al. 1999; Kubaldkova et al. 2002,
2005), translocations (Fig. 4f; Kubaldkova et al. 2002;
Neumann et al. 1998, 2002), alien chromosome addition
(Fig. 4c; Kubaldkova et al. 2003; Li et al. 2001), and alien
chromosome arm additions (Fig. 4d; Suchankova et al. 2000),
has been found useful to discriminate specific chromosomes
and chromosome arms in a variety of plant species.

The many important uses of flow-sorted chromosomes

Flow cytogenetics has become a powerful tool due to the
ability to isolate particular chromosomes in purities and
quantities needed for a broad range of applications. The
availability of purified fractions of chromosomes greatly
simplifies the analysis of complex genomes and enables
experimental approaches and studies which otherwise
would not be realistic. Flow cytogenetics was instrumental
during the early phases of the human genome sequencing
project, catalyzed the recent progress in clinical cytogenet-
ics, contributed significantly to the analysis of karyotype
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evolution in primates and other animals, and assisted in
physical mapping and sequencing plant genomes, to name
just a few key contributions. Genome analysis using
chromosome-based approaches has been termed chromo-
some genomics. The applications are numerous and keep
on expanding along with the advances in methods of cell
and molecular biology and genomics. What follows is a
brief outline of major uses and applications.

Physical mapping using DNA hybridization and PCR

Assignment of genes to particular chromosomes and sub-
chromosomal regions was one of the first uses of sorted
chromosomes. Initially, DNA was isolated from purified
chromosomes and used for Southern blotting with labeled
DNA probes (Lebo 1982). Later, chromosome dot-blots
were prepared from only 10* chromosomes sorted onto a
nitro-cellulose filter disk and the chromosomal DNA was
hybridized with labeled DNA probe (Lebo et al. 1984;
Arumuganathan et al. 1994). This approach was replaced
by PCR with specific primers, reducing the number of
chromosomes needed to less than 500 (Cotter et al. 1989).
PCR with sorted chromosomes has been used extensively in
human, animals, and plants to localize DNA sequences to
particular chromosomes (Kejnovsky et al. 2001), integrate
genetic and physical maps (Sargan et al. 2000; Neumann et
al. 2002; Vlacilova et al. 2002), and determine breakpoints
of chromosome deletions (Silverman et al. 1995) and trans-
locations (Kamnasaran et al. 2001). Sorting both derivative
chromosomes from translocation lines with balanced trans-
locations facilitates subchromosomal mapping (Carter 1993;
Macas et al. 1993). Amplification of chromosomal DNA
using high-fidelity DNA polymerases (Hui et al. 1995;
Simkova et al. 2008) has been used to produce DNA in
microgram quantities and sufficient for many PCR reac-
tions, thus obviating a need to sort many individual samples.
It is important that the amplification is highly representative
(Simkova et al. 2008).

Physical mapping using FISH

FISH has been an important tool in physical genome map-
ping, for example, to anchor genetic linkage groups to
particular chromosomes, establish order and orientation of
contigs during the construction of physical map, and esti-
mate the size of contig gaps (Szinay et al. 2010; Han et al.
2011). FISH has traditionally been done on mitotic meta-
phase spreads. Chromosomes sorted onto microscopic slides
are an attractive alternative as they are completely free of
cytoplasmic contamination and facilitate high-resolution
analysis on large populations of chromosomes (Lucretti et
al. 1993). This enabled the analysis of the intravarietal
polymorphism in genomic distribution of GAA clusters in

wheat (Kubalakova et al. 2002) and the identification of a
rare translocation between A and B chromosomes in rye
(Kubalakova et al. 2003). A further advantage of using
flow-sorted chromosomes for FISH is a possibility to stretch
them longitudinally up to a hundredfold compared with
untreated chromosomes, making them suitable for high-
resolution mapping (Valarik et al. 2004). This approach is
especially attractive for plant species with large genomes as
an alternative to FISH on pachytene chromosomes, which
are difficult to trace individually (de Jong et al. 1999).

Small-insert DNA libraries

Flow cytogenetics played a key role in the early stages of the
human genome project in constructing chromosome-
specific libraries. The first small-insert DNA library was
constructed by Davies et al. (1981) from human chromo-
some X. In a similar work, Krumlauf et al. (1982) created
libraries from autosomes 21 and 22, and ultimately two
complete sets of small-insert DNA libraries for each of the
24 human chromosome types were created by the US Na-
tional Laboratory Gene Library Project (Van Dilla et al.
1986; van Dilla and Deaven 1990). Comparable libraries
were constructed for various animals (Baron et al. 1990;
Shepel et al. 1998) and in wheat (Wang et al. 1992). Con-
struction of short-insert libraries became easier after the
introduction of methods for representative amplification of
chromosomal DNA as only a few hundred or thousand
sorted chromosomes (Miller et al. 1992; Vooijs et al. 1993;
Macas et al. 1996) or even a single chromosome (Van
Devanter et al. 1994) was sufficient as starting material.
Chromosome specifics of the libraries facilitated gene map-
ping and targeted the development of DNA markers in
human, animals, and plants (Arumuganathan et al. 1994;
Grady et al. 1996; Lan et al. 1999; Korstanje et al. 2001;
Pozarkova et al. 2002).

Large-insert DNA libraries

Construction of physical maps and positional gene cloning
requires large-insert DNA libraries. Although their construction
requires large amounts of high molecular weight DNA, numer-
ous libraries were constructed successfully from partially
digested chromosomal DNA by cloning into cosmid (Stallings
et al. 1990; Nizetic et al. 1994; Ma et al. 1996), fosmid (Kim et
al. 1995; Gingrich et al. 1996), yeast artificial chromosome
(YAC) (McCormick et al. 1993a, b), and, later, bacterial artifi-
cial chromosome (BAC) (Safaf et al. 2004; Janda et al. 2006)
vectors. As the sorting of millions of chromosomes needed to
construct libraries cloned in YAC and BAC vectors is a daunt-
ing task, an alternative approach has been used and genomic
YAC or BAC library is constructed and screened with a probe
prepared either from a chromosome-specific cosmid library
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(Kim et al. 1994) or from DNA from flow-sorted chromosomes
(Sankovic et al. 2006) to identify clones coming from the
chromosome of interest and assemble a chromosome-specific
sub-library. This approach, however, is only feasible if repeti-
tive DNA in the probe can be blocked to avoid non-specific
hybridization and is not useful for plants, which are character-
ized by dispersed repeats (Schubert et al. 2001). In order to
construct BAC libraries from DNA of sorted plant chromo-
somes, Safaf et al. (2004) developed a protocol which requires
only a few micrograms of DNA. This advance facilitated the
construction of a number of chromosome-specific BAC librar-
ies in wheat and rye (Saf4f et al. 2010). The libraries have been
instrumental to establishing physical maps after restriction frag-
ment analysis (fingerprinting) and assembling BAC contigs
(Paux et al. 2008; International Wheat Genome Sequencing
Consortium, http://www.wheatgenome.org/) and have been a
key breakthrough in genome sequencing projects. The flow-
sorted chromosome-based analysis of the wheat and barley
genomes has simplified positional gene cloning especially in
wheat because it is a polyploid genome, almost four times
larger than that of human.

Physical mapping and nanofluidics

Rapid development of microfluidic technology provided new
opportunities for physical mapping eukaryotic genomes. One
of them is optical mapping, in which high-resolution restriction
maps are prepared from very long DNA molecules deposited
on a slide. The maps derived from single DNA molecules are
combined to produce a consensus, genomic map. Optical
mapping has been shown to be particularly useful in highly
repetitive and duplicated genomes to assemble their sequences
and verify finished sequence data (Zhou et al. 2009; Young et
al. 2011), study genome structural polymorphism (Teague et
al. 2010), and perform genome-wide DNA methylation map-
ping (Ananiev et al. 2008). A modified approach to construct
optical maps employs nanofluidic devices with a series of
parallel microchannels through which DNA molecules move
and can be analyzed (Das et al. 2010; Neely et al. 2011). The
analysis of DNA in solution is facilitated by using nicking
enzymes and fluorescent labeling of displaced single strands.
The use of chromosomal DNA could greatly simplify the
assembly of optical maps in organisms with large and poly-
ploid genomes such as bread wheat, and preliminary results
confirmed that DNA from flow-sorted chromosomes is suit-
able for optical mapping (unpublished observation).

Development of DNA markers
A typical procedure for marker development employs ge-
nomic DNA. If, however, there is a need to develop markers

from a particular genome region, this strategy is highly
inefficient. A targeted alternative has been the development
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of markers from short-insert chromosome-specific DNA
libraries (Arumuganathan et al. 1994; Grady et al. 1996;
Lan et al. 1999), in some cases enriched for DNA motives of
interest (Korstanje et al. 2001; Pozarkova et al. 2002; Kofler
et al. 2008). DNA markers were also developed from clones
from chromosome-specific DNA libraries with large inserts
after sequencing their ends (Paux et al. 2006; Bartos et al.
2008). Development of some types of marker such as the
Diversity Array Technology markers (Jaccoud et al. 2001)
does not require a prior construction of DNA libraries, and
the markers can be developed directly from only a few
nanograms of chromosomal DNA (Wenzl et al. 2010). A
powerful approach for targeted development of markers
became available thanks to the progress in mass parallel
sequencing technology (Mardis 2008). Next-generation se-
quencing chromosomal DNA identifies enough sequences
from genes and intergenic regions to develop literally an
unlimited number of markers, including single nucleotide
polymorphisms (SNPs) (Mayer et al. 2009, 2011; Berkman
et al. 2011; Wicker et al. 2011; Fluch et al. 2012).

Chromosome painting

Fluorescently labeled DNA from human chromosome-
specific DNA libraries can be used for FISH to label specif-
ically chromosomes in metaphase and interphase (Cremer et
al. 1988; Pinkel et al. 1998). This procedure, termed chromo-
some painting, developed into a major tool in clinical and
research molecular cytogenetics (Langer et al. 2004). Its
spread was supported by protocols for amplification of chro-
mosomal DNA (Chang et al. 1992; Telenius et al. 1992),
which allowed the generation of painting probes from a small
number of sorted chromosomes. Gribble et al. (2004) reported
on generating chromosome paints from single copies of chro-
mosomes. Although representative amplification of DNA
from a single chromosome is demanding, this approach avoids
the risk of contamination by other chromosomes and allows
generating paints from chromosomes, which cannot be dis-
criminated from other chromosomes.

Amplification of chromosomal DNA enabled reverse chro-
mosome painting, in which the paint is developed from a flow-
sorted aberrant chromosome of interest and hybridized to a
normal karyotype to reveal the composition of the aberrant
chromosome and position of chromosomal breakpoints
(Fig. 5; Carter et al. 1992; Blennow 2004). Labeling the paint-
ing probes with several fluorochromes in a combinatorial ap-
proach allows identification of all 24 human chromosome types
in a single experiment (Speicher et al. 1996; Schrock et al.
1996). Chromosome painting probes can be prepared also in
animals; in addition, to study chromosome aberrations (Rubes
et al. 2009), major applications have included cross-species
(comparative) chromosome painting, which is termed ZOO—
FISH (Scherthan et al. 1994). This is a very useful technique to
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Fig. 5 Reverse chromosome painting, using the flow-sorted DOP—
PCR-amplified aberrant human chromosome 13 as a probe,
defines the exact origin and breakpoints of the insertion as 5q12 to
5q13.3 (Blennow (2004), with permission)

analyze evolution and phylogeny (Ferguson-Smith 1997,
Ferguson-Smith and Trifonov 2007; Nie et al. 2012). Unfortu-
nately, chromosome painting does not work in plants due to
significant amounts of dispersed repeats in their genomes
(Schubert et al. 2001). In species with small genomes and less
repetitive DNA, the alternative has been to use FISH with pools
of selected BAC clones (Lysak et al. 2001).

Physical mapping on DNA arrays and array painting

Coupling DNA array technology with flow cytogenetics
resulted in the so-called array painting, which allows high-
resolution analysis of the content and breakpoint of aberrant
chromosomes (Fiegler et al. 2003; Veltman et al. 2003). Here
the painting probes are prepared from two derivative chromo-
somes, each of them is labeled with a different fluorochrome
and both are hybridized to DNA microarray with mapped
DNA sequences. Plotting the fluorescence ratio against the
clone position along each chromosome provides information
on chromosome composition (Le Scouarnec and Gribble
2012). Originally, the DNA sequences were DNA clones,
and arrays with 30,000 BAC clones, which became available
in human, providing 100 kb resolution (Curtis et al. 2009). If
the sequence of a clone spanned chromosome breakpoint, the
exact position of the breakpoint could be determined. Further
improvement of the technology led to an increased number of
features on the array and use of shorter sequences as targets—
most frequently oligonucleotides. Thus, Conrad et al. (2010)
used a set of 20 ultra-high resolution oligonucleotide arrays
comprising 42 million probes in total, with a median probe
spacing of just 56 bp across the entire human genome. Similar
arrays are becoming commercially available for some
animals.

DNA arrays are becoming available also for non-
sequenced plants and recent results obtained in barley

confirmed the great potential of DNA arrays used with
sorted chromosomes for physical mapping. Simkova et al.
(2008) mapped 162 SNP loci, including 40 loci with hith-
erto unknown map position to barley chromosome 1H using
a pilot oligonucleotide pool assay. In a larger-scale study,
Mayer et al. (2011) used DNA from flow-sorted barley
chromosome 1H and arms of chromosomes 2H-7H on
barley 44k Agilent microarray to assign 16,804 genes to
individual chromosomes. During a development of a con-
sensus genetic map of barley, the authors used two barley
oligonucleotide pool assays to examine 3,072 SNP markers
with DNA from sorted barley chromosome 1H and arms of
chromosomes 2H—7H. As chromosome location is indepen-
dent of the allele, the mapping was robust and the authors
mapped 2,930 genes (96.1 % of total genes surveyed).
An additional 370 genes were mapped using flow-sorted
materials, which were not genetically mapped in any of
the ten mapping populations used. Finally, when coupled
with the consensus genetic map, gene mapping using
flow-sorted chromosome arms permitted the definition
of pericentromeric regions in chromosomes 2H-7H
(Mufioz-Amatriain et al. 2011).

Chromosome sequencing using next-generation technology

In species with sequenced genomes, re-sequencing chromo-
somes is a rapid means for studying variation at DNA level
by aligning short reads to the reference sequence. Sequenc-
ing single chromosomes reduces costs and simplifies data
analysis as compared to whole genomes. As demonstrated
by Chen et al. (2008, 2010), massively parallel sequencing
of flow-sorted derivative chromosomes is an elegant ap-
proach to determine the chromosome composition and
map chromosomal breakpoints with an error margin of less
than 1,000 bp (Fig. 6). With the falling sequencing costs,
this approach is expected to replace array painting. In
mouse, Sudbery et al. (2009) confirmed that whole-
chromosome sequencing allows generating dense maps of
genetic variation between different genotypes and that it is a
powerful approach for SNP discovery, deriving a high-
resolution picture of QTL regions.

Massively parallel sequencing of chromosomal DNA is
perhaps even more attractive in organisms for which ge-
nome sequence is not available. Mayer et al. (2009) dem-
onstrated that low-pass 454 sequencing flow-sorted barley
chromosome 1H (1.3-fold coverage) was a cost-effective
approach to describe gene content, assess gene synteny with
other species, and establish comprehensive linear gene-
order model for the chromosome (Fig. 7). This work was
expanded to wheat by Wicker et al. (2011) who studied the
molecular structure and gene content of homoeologous
chromosome group 1 of hexaploid wheat. Low-pass 454
sequencing of all chromosome of barley (2.2-fold average
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Fig. 6 Solexa sequencing a
profile of human derivative
chromosome 9. Shown are 1-
Mb intervals around the break-
points (arrows) on chromosome
7 (a) and 9 (b). A total of
199,421 and 1,047,649 reads
derived from the derivative
chromosome 9 were mapped to
unique positions on normal
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coverage) by Mayer et al. (2011) resulted in a blueprint of
the barley genome reaching—at a fraction of the costs—a
level of information density and resolution, which can be
surpassed only by whole genome sequencing. Sequencing
wheat chromosome 5A by 454 revealed the main sequence
features of this chromosome, including candidate miRNA
precursors, and enabled the production of a virtual gene
order based on synteny with other phylogenetically related
species (Vitulo et al. 2011). The same method was used to
sequence wheat chromosome 4A. Hernandez et al. (2012)
built an ordered gene map of chromosome 4A and localized
precisely translocations from chromosomes 5A and 7B and
inversion breakpoints on this most rearranged chromosome
of wheat. Fluch et al. (2012) sequenced by 454 the short arm
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of rye chromosome 1R, which is present in many cultivars
of bread wheat in the form of translocation chromosome
IRS.1BL. Among others, this work permitted a detailed
description of the gene space as well as the repetitive portion
of the chromosome.

In a similar work, Berkman et al. (2011) characterized the
short arm of wheat chromosome 7D (7DS) after sequencing by
[llumina to 34-fold coverage. Despite relatively short reads
(paired reads of 75, 76, or 100 bp and an insert size of
320 bp), they succeeded in assembling approximately 40 %
of 7DS and all known genes. They used syntenic relationship
between wheat and a sequenced close relative Brachypodium
distachyon to produce annotated syntenic builds whereby the
majority of genes have been placed in an approximate order
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Fig. 7 Schematic representation of marker- and synteny-guided as-
sembly of an integrated virtual gene map for barley chromosome 1 H.
Genetically anchored barley markers have been integrated with rice
and sorghum genes located in syntenic regions to give an enriched
tentative ancestral gene scaffold. Sequence reads from flow-sorted
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barley chromosome 1H as well as barley EST sequences have been
associated with this chromosome matrix and give rise to an ordered
integrated gene map of the chromosome (Mayer et al. (2009), with
permission)



Funct Integr Genomics (2012) 12:397-416

409

and orientation. Subsequently, Berkman et al. (2012) charac-
terized wheat chromosome arm 7BS in the same way. In
addition to describing gene content, they delimited the position
of a previously described translocation between 7BS and 4AL
with a resolution of one or a few genes and reported approxi-
mately 13 % genes from 7BS to have been translocated to 4AL.
An additional 13 genes were found on 7BS, which appeared to
originate from 4AL. With the unprecedented gene density and
resolution obtained at a fraction of cost of full-scale sequencing,
next-generation sequencing of flow-sorted chromosomes is
bound to aid greatly in gene mapping and cloning and the
analysis of genome evolution. Heat maps used to graphically
depict positions of chromosome sequence reads in genomes of
related species resemble the classical comparative painting.
However, electronic chromosome painting (E-painting;
Kemkemer et al. 2006) results in much higher resolution and
may be performed also in plants with repeat-rich genomes.

Flow cytometric sorting is attractive because of its capacity
to purify large numbers of chromosomes. However, flow
sorters can also be used to sort single copies of chromosomes.
Yang et al. (2011) took advantage of this and sequenced DNA
amplified from single copies of chromosome 19 and demon-
strated the utility of this approach, called Phase-Seq, to ana-
lyze phase information between parental allelic sequences. If
this result is confirmed, flow cytogenetics may play an impor-
tant role in producing haplotype-resolved genome sequences.
In fact, sequencing DNA from single chromosome copies may
be a solution in those cases where it is not possible to discrim-
inate single chromosome types. Sequencing pools of DNA
amplified from single copies of the same chromosome may
provide sufficient sequence coverage of any chromosome of
interest. This application of flow cytogenetics may be an
elegant alternative to the recently developed microfluidic ap-
proach, in which individual chromosomes from a single hu-
man metaphase are separated into distinct channels and
amplified (Fan et al. 2011).

Higher-order structure and proteins of mitotic chromosomes

In a majority of research, flow cytogenetics has been
employed to aid in analyzing chromosomal DNA. However,
there are as yet not fully explored opportunities to analyze the
higher-order structure of mitotic chromosomes and their major
component—the chromosomal proteins. Trask et al. (1984)
demonstrated the ability to label immunofluorescently histo-
nes and centromeric proteins on mitotic chromosomes and
classify the fluorescence by flow cytometry. Unfortunately,
the differences in immunofluorescent staining of centromeric
proteins between chromosomes were only minor and the
labeling did not allow identifying dicentric chromosomes to
quantify the effect of radiation, most probably due to non-
specific antibody binding (Fantes et al. 1989). Schubert et al.
(1993) demonstrated that isolated plant chromosomes were

suitable for immunostaining of chromosomal antigens and
this property enabled a detailed analysis of plant kinetochore
proteins (Binarova et al. 1998; ten Hoopen et al. 2000).

Recent progress in proteomics offers a possibility to
describe all proteins of mitotic chromosomes. A pioneering
work of Uchiyama et al. (2005) led to the identification of
107 proteins in human chromosomes and a proposal of a
four-layer model of metaphase chromosomes (Takata et al.
2007; Fukui 2009). In these studies, proteins were isolated
from chromosomes purified on a sucrose gradient. However,
incorporating the isolation of chromosomes by flow sorting
as part of protein analyses might result in higher sample
purity, and this option is worth exploring. This work may
contribute significantly towards characterizing the protein
component of mitotic chromosomes and understanding the
determination of centromere, a process which seems to
depend primarily on protein component and its posttransla-
tional modification (Birchler et al. 2009).

The suitability of isolated chromosomes for scanning elec-
tron microscopy to study their higher-order structure was dem-
onstrated already by Schubert et al. (1993). Compared to other
protocols (Wanner et al. 1991), large numbers of chromosomes
may be prepared and the preparations are not covered by
remnants of cytoplasm, which obscure surface details. Howev-
er, the opportunity to use flow-sorted mitotic chromosomes to
study their higher-order structure has not been addressed so far.

Development of artificial chromosomes

Artificial chromosomes or engineered mini-chromosomes
are safe and stable non-integrating vectors developed to
carry large segments of genomic DNA. They hold a great
promise for gene therapy, animal biotechnology, and plant
breeding (Duncan and Hadlaczky 2007; Birchler et al.
2010). They have been developed either via bottom-up
approach using cloned components of chromosomes or
top-down approach through the truncation of existing chro-
mosomes (Goyal et al. 2009; Hoshiya et al. 2009). Mini-
chromosomes derived by the top-down approach are more
natural systems for maintaining and expressing transgenes
(Macnab and Whitehouse 2009; Birchler et al. 2010). One
of the limiting factors hampering routine therapeutic and
other applications is the purification of high quantities of
artificial chromosomes, and flow cytometry has been con-
sidered suitable for this task (Lindenbaum et al. 2004). The
advances in parallel flow sorting technology make it possi-
ble to sort up to one billion particles per hour (Wlodkowic
and Darzynkiewicz 2011). The minimum size of a chromo-
some to segregate to a high fidelity during mitotic division in
human is 10 Mb (Macnab and Whitehouse 2009), and Ng et
al. (2007) demonstrated the ability to distinguish and flow-sort
chromosomes to be smaller than 3 Mbp; thus, flow cytometry
offers the required sensitivity and throughput.
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Conclusions

Flow cytometric chromosome analysis and sorting (flow cy-
togenetics) is a unique technology which requires specialized
equipment and thus has never been mastered by many re-
search teams. This contrasts with the enormous impact the
technology has made during the past 35 years in many areas of
basic and applied research in human and many animal and
plant species. Success was possible also due to the fact that
molecular chromosome resources could be distributed world-
wide from a few specialized laboratories. This mode of work
stimulates international collaborations in which several labo-
ratories work in parallel on different chromosomes. For ex-
ample, the availability of chromosome-specific DNA libraries
greatly facilitated the initial phases of the human genome
sequencing project. In wheat, the production and distribution
of chromosome arm-specific BAC libraries has underpinned
the current international effort to sequence the huge genome
(Feuillet and Eversole 2007; International Wheat Genome
Sequencing Consortium, http://www.wheatgenome.org/).
Production of chromosome painting probes revolutionized
clinical and research cytogenetics and provided an instrument
to study structural chromosome changes accompanying ge-
nome evolution in human and many lineages of animals.
Dissecting large and complex genomes of some crops to
smaller, chromosome-based parts has facilitated the construc-
tion of physical maps, positional gene cloning, and genome
sequencing. Coupling flow cytogenetics with high-resolution
DNA arrays and mass parallel sequencing has led to new
applications with enormous potential for genome analysis
and suggests that technology will continue to play a signifi-
cant role in many areas of genetic and genomic research.
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