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Abstract 
 

Different approaches can be used to assess 
sperm function in different conditions, i.e. sperm 
storage, freezing-thawing or activation by induction of 
capacitation and acrosome reaction. 

In this review we will focus on the assays 
routinely performed in our laboratories, giving a 
literature support to critically analyse different 
approaches. In fact, researchers usually tend to look for 
the “one shot” parameter that could explain itself a 
specific process; it is our conviction that a 
multiparametric approach is still more valid, as some 
changes in sperm function are very complex and could 
be explained only by operating in different ways. 

Sperm motility, the most evident sperm 
characteristic, should be assessed by computer-aided 
sperm analysers that permit an objective evaluation of 
the motility and its kinematic parameters. Commercial 
and open source instruments are available and could be 
profitably used together with specific statistical 
approaches. The use of microscopy, and particularly 
fluorescent microscopy, could be a very useful tool to 
assess different parameters in sperm cells both by 
fluorophores that give indication of a determined 
function, and by immunolocalization of proteins, that 
permits the discover of new features or to explain 
particular sperm functions. The same substrates could 
be used also in flow cytometry: the difference is that it 
permits to study wider sperm populations (and their sub-
population distribution). Flow cytometry is undergoing 
a very wide use in spermatology and technical and 
experimental rigor is needed to obtain reliable results. 
Metabolic assessment of sperm features, particularly 
energetic supply, ATP formation and other enzyme 
activities, could represent a very important challenge to 
acquire new information and complete/integrate those 
derived from other techniques. Finally, functional 
assays such as oocyte binding and in vitro fertilization, 
represent a very strong tool to assess sperm function in 
vitro, as they could evidence the functional intactness of 
some pathways. 
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Introduction 

 
Spermatozoa are cells specifically programmed 

to deliver male genetic material to the female gamete, 
thus permitting fertilization and born of a new 
individual. 

To be able to achieve this goal, spermatozoa 
should undergo numerous functional adaptations from 

the time they are ejaculated, passing through male 
genital tract, then female one, to reach the fertilization 
site (usually the ampulla of the oviduct; Suarez and 
Pacey, 2006). 

In vitro assays to assess different sperm 
functions are, at present, a very important tool to 
understand and discover the pathways implicated in 
sperm function and their changes. Different approaches 
are used nowadays to assess sperm features in vitro: 
sperm motility analysis systems (Amann and Katz, 
2004; Hoogewijs et al., 2012; Boryshpolets et al., 2013; 
Amann and Waberski, 2014), morphology (Morrell, 
2006;  Love, 2011), fluorescent microscopy (Mattioli et 
al., 1996; Gravance et al., 2000; Flesch et al., 2001; 
Guthrie et al., 2008; Ortega Ferrusola et al., 2009; 
Satorre et al., 2009; Kim et al., 2011), protein analysis 
(Spinaci et al., 2005b; Krisfalusi et al., 2006; Gadella, 
2008; Flores et al., 2011; Kumaresan et al., 2011), flow 
cytometry (Didion et al., 2009; Martìnez-Pastor et al., 
2010; Petrunkina and Harrison, 2010; Hossain et al., 
2011; Gürler et al., 2015; Barrier Battut et al., 2016; 
Battut et al., 2017), metabolic assay (Albarracín et al., 
2004; Storey, 2008; Bucci et al., 2011; Gibb and 
Aitken, 2016; Rodríguez-Gil and Bonet, 2016); sperm 
oocyte interaction (Funahashi et al., 1997; Sinowatz et 
al., 2003; McPartlin et al., 2008; Mugnier et al., 2009; 
Balao da Silva et al., 2013; Plaza Dávila et al., 2015). 

The present review was aimed at presenting 
some of the most important approaches in mammalian 
sperm function analysis, with particular focus on our 
laboratory experience and at furnishing a critical view 
of the different parameters examined. 
 

Sperm motility assessment 
 

Sperm motility is one of the most evident 
features of spermatozoa, even if its significance is 
sometimes misestimated (Suarez and Pacey, 2006): 
spermatozoa are mainly passively transported in the 
female genital tract, while their motility is especially 
required for reaching the egg and during zona pellucida 
penetration (Schmidt and Kamp, 2004; Suarez, 1996, 
2008; Boryshpolets et al., 2015). 

Subjective motility evaluation is commonly 
used to assess the quality of liquid stored and 
cryopreserved semen but  sperm motility is at present 
studied by mean of computer assisted sperm analysers 
(CASA systems) (Mortimer, 2000; Amann and 
Waberski, 2014). To date, the most common CASA 
systems are mid to high-cost systems; this prevented a 
widespread diffusion of this technology, that is 
specifically used in research centres, university labs or 
high-level sperm producing centres. 
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Motility analysis permits to determine the total 
motility of a determined sample, the progressive one, 
and other so-called sperm kinematic parameters 
(Mortimer, 2000; Schmidt and Kamp, 2004; Amann and 
Waberski, 2014) such as velocities (curvilinear, VCL; 
average, VAP; straight-line, VSL) straightness and 
linearity, amplitude of lateral head displacement and 
beat cross frequency. The approach in sperm motility 
study could be different, depending on the output data 
and the needs of the researcher. 

In fact the simplest but profitable approach is 
to analyse sperm motility and use the average results 
given from the machine; this is a powerful analysis, as it 
is usually indicated to analyse at least 1000 sperm cell, 
thus furnishing a strong representation of the average 
motility features of a given sample (Mortimer, 2000; 
Contri et al., 2010; Hoogewijs et al., 2012; Amann and 
Waberski, 2014;). This approach could be useful in 
comparing ejaculates of different males from the same 
species, or differently treated sperm samples (i.e. freshly 
ejaculates sperm vs frozen-thawed ones).  

A more complex approach is the 
multiparametric statistical analysis of CASA output. In 
this case, single sperm kinematic features are studied to 
perform a subpopulation study: usually a cluster 
analysis followed by a multiparametric regression 
(Quintero-Moreno et al., 2004; Schmidt and Kamp, 
2004; Martínez-Pastor et al., 2011; Bucci et al., 2018). 
This combination of statistical techniques permits to 
delineate features that could be masked by the average 
parameters approach: in a determined sperm sample, 
various cell subpopulations are present and display 
different features. This is why the multiparametric 
approach is more powerful and profitable for studying 
motility patterns, kinematic features and particular 
differences also among samples. 

In the last years, growing interest is dedicated 
to CASA systems based on open source software 
(Wilson-Leedy and Ingermann, 2007; Boryshpolets et 
al., 2013; Giaretta et al., 2017): these alternatives to 
commercial systems allow a wider use of the technology 
and could also give a push to the standardization of 
good laboratory practices for this kind of analysis. 
 

Sperm analysis by epifluorescence microscopy 
 

A very precious tool for studying 
morphological and functional characteristics of sperm 
cells is, obviously, the microscope. In this review we do 
not approach standard microscopic evaluation, that 
represented a golden standard of sperm evaluation in the 
past (i.e. morphology) (Love, 2011) but we will focus 
on sperm analysis by fluorescent probes or 
fluorochrome-conjugated antibodies, that permit an 
analysis of different sperm conditions and functions by 
a direct visualization of the single sperm cell.  

Several fluorescent probes are used in 
spermatology (Silva and Gadella, 2006), most of which 
regard sperm membrane integrity (SYBR green 14; 
propidium iodide; sytox green) (Maxwell and Johnson, 
1997), acrosomal membrane integrity (FITC or TRITC- 
conjugated Pisum sativum agglutinin and Peanuts 

agglutinin) (Mari et al., 2010), mitochondrial activity 
(JC1) (Gravance et al., 2000; Giaretta et al., 2014) 
calcium storage sites (chlortetracycline – CTC, fluo3 
and fluo 4) (Green and Watson, 2001; Bucci et al., 
2012); membrane destabilization (Annexin V FITC-
conjugated) (Spinaci et al., 2005a); caspase activation 
(VAD-fmk FITC-conjugated) (Vallorani et al., 2010); 
actin cytoskeleton reorganization (phalloidin TRITC-
conjugated) (Brener, 2002); DNA fragmentation 
(Halomax ®) (De Ambrogi et al., 2006; Alkmin et al., 
2013). These are some examples that clearly explain 
how wide the use of fluorescent microscopy in 
spermatology could be. The main approach followed by 
researchers when using fluorescent probes, is to 
visualize single sperm and understand if the probe stains 
the target or not. The evaluation is performed on a 
smeared sample and a proper number of cells (usually at 
least 200) is examined. In this way, this technique 
allows to perform both a description study (to delineate 
which sperm cell compartments are stained by a specific 
probe) and a sub-population study, as it is possible to 
distinguish the probe positive subpopulation from the 
negative one. When using more than one probe mixed 
together (i.e. JC1+PI+SYBR green 14), the 
subpopulation analysis is enriched in different classes 
(i.e. live cells with/without active mitochondria; dead 
cells with/without active mitochondria) 

Furthermore, this kind of approach permits to 
examine particular features of some organelles and their 
specific activation patterns (Ramió-Lluch et al., 2011b). 

The most interesting application of fluorescent 
microscopy regards immunolocalization studies using 
fluorophore-conjugated antibodies. Several studies from 
our and many other laboratories (Maccarrone et al., 
2005; Spinaci et al., 2005b; Jones et al., 2008; Bucci et 
al., 2010b, 2010a; Flores et al., 2010; Bucci et al., 2011, 
2012; Ramió-Lluch et al., 2012; Spinaci et al., 2013, 
2014) used antibodies against a specific protein or 
protein residue to detect the presence of the specific 
proteins in sperm cells as well as to describe their 
localization and eventual relocalization at different 
functional moments such as capacitation. 

Moreover, this kind of approach is fundamental 
in discovering new features of the sperm cell and 
eventually new proteins (or at least proteins that are not 
known to be expressed in the spermatozoon) that may 
play interesting and surprising roles (Flores et al., 2010; 
Ramió-Lluch et al., 2012; Spinaci et al., 2014). 
 

Protein analysis 
 

Analysis of protein expression is of 
fundamental importance in trying to investigate sperm 
function, as new proteins could be discovered in the 
mature sperm cell and their function could be 
elucidated. Several studies demonstrated the presence of 
proteins by both visual inspecting technique 
(microscopy) and protein analysis such as western 
blotting (Flores et al., 2008; Bucci et al., 2010b, 2010a; 
Flores et al., 2011; Spinaci et al., 2014). The latter is 
usually considered the most specific technique to 
effectively recognize a determined protein, as the 
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possibility to get false positive results is significantly 
lower if compared with immunofluorescence technique. 

Western blotting analysis also permits to 
quantify the amount of a determined protein; this 
approach could be of fundamental importance in 
understanding some physiological processes or changes 
induced by sperm biotechnical procedures(Spinaci et 
al., 2005b; 2006). Again, this technique, coupled with 
immuolocalization of the protein of interest, could give 
interesting and fundamental information regarding the 
amount as well as possible changes in the site of 
expression of a given protein.  

In addition, the use of specific antibodies could 
be very useful in detecting changes in the quantity of 
activated proteins in a determined functional state (i.e. 
capacitation or acrosome reaction or post-thawing). This 
is the case of studies regarding regulatory proteins of 
determined intracellular pathways (Harayama et al., 
2004; Maccarone et al., 2005; Grasa et al., 2009; 
Ramió-Lluch et al., 2011a,b; Bucci et al., 2012; 
Gonzalez-Fernandez et al., 2012; Hurtado De Llera et 
al., 2013; Gonzalez- Fernandez et al., 2013; Yeste et al., 
2014); in the reported examples specific antibodies 
against proteins/activated proteins were used to 
determine the status of activation of specific pathways 
and/or of the whole sperm cell. 

The central role of proteins in mammalian cell 
processes should be taken into account also in 
spermatology; in this way, several proteins have been 
suggested as specific indicators of determined functions 
(Spinaci et al., 2005b; Pinart et al., 2015), even if 
caution should be given to this kind of approach. It is a 
common will of researchers to find the “one-man band” 
parameter, able to describe, alone, an entire process. 
Anyway, it is not so easy to detect such a parameter nor 
it is always explicative of the entire process. 
 

Flow cytometry 
 

In the last two or three decades, flow cytometry 
gained a very high importance in spermatology: the 
diffusion of numerous cytometers as well as their high 
performance in analysing cells has attracted the 
attention of many researchers. 

Flow cytometry mainly bases on the possibility 
to analyse single cells passing through a liquid flow by 
exciting them with specific lasers and reading the 
response of the cell. Fluorochromes play an important 
role in this system as, choosing the right ones, permit to 
study different functions/features of the cell (Hossain et 
al., 2011). 

Usually, flow cytometry (similarly to what 
seen in epifluorescence microscopy) permits to 
determine different populations of sperm cells, on the 
basis of their positivity to a determined stain (Hossain et 
al., 2011), also combining two or more dyes (Martìnez-
Pastor et al., 2010; Robles and Martínez-Pastor, 2013). 

In spermatology numerous assays can be 
performed by flow cytometry (Guthrie and Welch, 
2007; Martìnez-Pastor et al., 2010; Hossain et al., 2011; 
Robles and Martínez-Pastor, 2013) thus  allowing a very 
wide range of parameters to be assessed by this 

technique.  
Before giving some examples, some important 

points need to be highlighted. After some years of 
experience in working on flow cytometry, we have 
noticed that sometimes literature lacks some important 
information regarding the technique: the experimental 
design as well as the technical characteristics of the 
flow cytometer and the setting used in the analysis are 
completely missing. It should be recommendable to 
have a rigorous approach in describing materials and 
methods, as reported in (Lee et al., 2009). 

Another important technical remark regards the 
possibility to overestimate some sperm subpopulations, 
namely those that are negative for determined staining; 
in this case, in fact, the negative subpopulation could 
contain some non-cellular particles (cell acrosomes, 
tails; non-sperm particles) that could be detected by 
instrument. To overcome this technical gap, (Petrunkina 
et al., (2010) and Petrunkina and Harrison (2010) have 
developed a specific technique as well as a mathematic 
formula to avoid big mistakes in the subpopulation 
estimation. 

Flow cytometry has been used in different 
species (Maxwell and Johnson, 1997; Rijsselaere et al., 
2005; Pinart et al., 2015; Battut et al., 2017) to 
determine both sperm quality and function. 

The technique permits to estimate membrane 
integrity (Pinart et al., 2015; Bucci et al., 2018), 
mitochondrial function and ROS production (Gravance 
et al., 2000; Koppers et al., 2008; Gibb et al., 2015; 
Gürler et al., 2015; Bucci et al., 2018), lipid 
peroxidation (Aitken et al., 2007; Ortega Ferrusola et 
al., 2009), sperm capacitation (Rathi et al., 2001; 
Piehler et al., 2006; Martìnez-Pastor et al., 2010; 
Hossain et al., 2011); oxidative status (Gibb et al., 
2014; Giaretta et al., 2015). 

The use of fluorochrome-bound antibodies 
against specific proteins or activated proteins 
(i.e.phosphorilated ones) is of actual importance 
(Piehler et al., 2006); it should be noted that, in the case 
of flow cytometry, the instrument output when using 
antibodies could be related to the presence/absence of 
the determined protein and, partially, on the intensity of 
the signal (that could be related to the amount of the 
protein). This technique does not give any information 
on the localization of the protein within the cell, even if 
some new cytometers permit also the visual inspecting 
of the cells passing through the flow. 

At present, multiparametric analysis are 
possible, and the development of newest cytometers 
with more lasers and optical channels permits the 
contemporary assessment of different parameters thus 
giving a multiparametric output that is extremely 
precious for determining specific cell functional statuses 
(i.e. capacitation). 

 
Sperm metabolism 

 
A consistent part of sperm function we can 

analyse by the techniques above described represents 
the final evidence of numerous metabolic processes that 
characterize sperm cell. Thinking of capacitation, for



 Bucci et al. Sperm function assessment. 
 

Anim. Reprod., v.16, n.1, p.72-80, Jan./Mar. 2019 75 

example, different approaches to determine the effective 
status of the cell are possible (calcium relocation; 
tyrosine phosphorylation; motility changes; membrane 
scrambling and so on, see above) but other functions of 
the cell are beneath these effects. 

Sperm cells metabolism has been studied in 
different species and under different aspects: the first, 
and probably the most important one is energy supply 
and production. For energy substrate supply, different 
researchers analysed the presence and function of sugar 
transporters (Burant, 1992; Angulo et al., 1998; Sancho 
et al., 2007; Bucci et al., 2010a, 2010b, 2011). These 
studies, were coupled with others determining the 
internal energetic pathways of different sugars in 
different species (Ballester et al., 2000; Rigau et al., 
2001, 2002; Marin et al., 2003; Albarracín et al., 2004; 
Fernández-Novell et al., 2004; Mukai and Okuno, 2004; 
Medrano et al., 2005; Urner and Sakkas, 2005; Ford, 
2006; Medrano et al., 2006; Rodriguez-Gil, 2006; 
Terrell et al., 2011; Rodríguez-Gil and Bonet, 2016). 
All together these studies delineated the metabolic 
strategies in energy obtainment in boar, dog, felids and 
horse spermatozoa, defining different metabolic 
strategies of sperm cells on the basis of their ability to 
better use hexoses. 

Recently more knowledge was acquired on 
horse sperm metabolism, in particular regarding sperm 
function and capacity to overcome specific metabolic 
situations induced by sperm preservation in vitro (Gibb 
et al., 2015; Varner et al., 2015; Gibb and Aitken, 
2016). 

Mitochondrial function has also been focused 
and better delineated in recent years (Davila et al., 
2015; Peña et al., 2015) by the use of specific inhibitors 
of different mitochondria compartments (complex I or 
III). At present, we are performing studies ( unpublished 
data) regarding the mitochondrial function in boar 
sperm cells. Using different specific inhibitors for 
complex I, II, II, V, uncoupling agents and glucose 
agonists, we are trying to define the metabolic role of 
mitochondria by ATP production, oxygen consumption 
analysis as well as relating to sperm function as motility 
and membrane stability, deepening some previous 
studies by others (Ramió-Lluch et al., 2014). 

The metabolic activity of sperm cells could 
also be evaluated by measuring enzymatic activity of 
different enzymes (Glogowski et al., 2002; Turner and 
McDonnell, 2003; Pesch et al., 2006; Cocchia et al., 
2011; Kareskoski et al., 2011; Pinart et al., 2015; Bucci 
et al., 2014, 2017, 2016,) that could play focal roles in 
different sperm functions. 

 
Sperm-oocyte interaction assays 

 
Sperm-oocyte interaction is a naturally 

occurring event when spermatozoa have almost finished 
their travel along the female genital tract (Suarez and 
Pacey, 2006). Usually, mammalian spermatozoa 
encounter the oocyte after having undergone some 
profound membrane, biochemical and functional 
modifications known as “capacitation” (Gadella, 2008; 
Tsai et al., 2010; Leahy and Gadella, 2011). 

After penetration through cumulus ooforus, the 
first interaction between spermatozoon and oocyte is 
sperm binding to zona pellucida; thereafter spermatozoa 
undergo acrosome reaction, penetrate the zona and the 
plasma membrane and finally the sperm nucleus 
decondenses and forms the male pronucleus. This 
events’ succession is reproducible also in vitro, via 
binding assays as well as through in vitro fertilization 
(IVF) assays.  

Oocyte binding is a very useful tool to evaluate 
sperm function: spermatozoa are submitted to different 
stimuli (i.e. capacitation, freezing; use of specific 
substances) and then their capacity to bind to the zona 
pellucida is assayed (Sinowatz et al., 2003; Bucci et al., 
2016, 2017; Spinaci et al., 2017). The binding assay 
could be very important to assess sperm function in 
those species in which IVF is not reliably successful, 
such as horse (Balao da Silva et al., 2013; Plaza Dávila 
et al., 2015; Bucci et al., 2017). 

In some cases it is possible to use the 
homologous oocyte binding assay (Sinowatz et al., 
2003; Bucci et al., 2017; Spinaci et al., 2017), that 
permits a more stable binding between sperm and 
oocyte. In our studies we performed homologous oocyte 
binding in pig (Spinaci et al., 2017), horse (Bucci et al., 
2017) and dog (unpublished data). When the amount of 
oocytes needed is difficult to obtain (usually in horse as 
well as in dog), the heterologous oocyte binding could 
be profitably used to assess sperm function (Balao da 
Silva et al., 2013; Plaza Dávila et al., 2015; Bucci et al., 
2016). 

IVF trials to assess sperm function are focused 
on the ability of a (capacitated) spermatozoon to 
fertilize the egg and to actively penetrate the oocyte. In 
these assays oocytes are merely a kind of experimental 
substrate used to determine sperm function. Many 
examples could be furnished (Bucci et al., 2014; Gadani 
et al., 2017; Bucci et al., 2018; Spinaci et al., 2018), in 
which usually three parameters are considered: 
penetration rate (number of oocytes penetrated by 
spermatozoa %), monospermy rate (number of oocytes 
penetrated by only one spermatozoon %) and efficiency 
(number of monospermic oocytes /number of penetrated 
oocytes %). 

This kind of data permits a wider 
understanding of the effect of a treatment on sperm 
capacitation, or to delineate whether a specific treatment 
(i.e. freezing, supplementation to IVF medium) could 
either positively or negatively affect sperm 
functionality. 
 

Concluding remarks 
 

Different approaches have been developed to 
carry out a wide and exhaustive analysis of sperm 
quality parameters. The information gained from the 
different approaches is of utmost importance for 
studying sperm physiology, function and intrinsic 
features. Different approaches using various techniques 
to assess specific functional moments of the sperm cell 
(i.e. capacitation, acrosome reaction) permit to elucidate 
various pathways underlying a specific function and to
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have a wider view on a specific event. Researchers 
usually look for the “on-off” parameters for specific 
events, but studies on spermatology during the last 
decades demonstrated that a multiparametric approach 
is preferable as some events of sperm life cannot be 
explicated by only one parameter. 

Finally, an important remark to be kept in 
mind: at present multiparametric analysis is not 
effective to predict in vivo male fertility in a reliable 
manner. Various parameters have been demonstrated to 
be more linked to sperm fertility (i.e. DNA integrity; 
motility features), but no definitive parameters have 
been determined and fixed as a golden standard to 
assess male fertility in vivo This could be one of the 
challenges for future studies in spermatology, to 
improve male reproductive performances in animals and 
also to permit an early diagnosis of infertility, also in 
man, thus giving the possibility to intervene 
precociously in treating such problems.  
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