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Aims Chronic heart failure (CHF) is a systemic syndrome with a poor prognosis and a need for novel therapies. We
investigated whether whole blood transcriptomic profiling can provide new mechanistic insights into cardiovascular
(CV) mortality in CHF.
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Methods and
results

Transcriptome profiles were generated at baseline from 944 CHF patients from the BIOSTAT-CHF study, of whom
626 survived and 318 died from a CV cause during a follow-up of 21 months. Multivariable analysis, including
adjustment for cell count, identified 1153 genes (6.5%) that were differentially expressed between those that
survived or died and strongly related to a validated clinical risk score for adverse prognosis. The differentially
expressed genes mainly belonged to five non-redundant pathways: adaptive immune response, proteasome-mediated
ubiquitin-dependent protein catabolic process, T-cell co-stimulation, positive regulation of T-cell proliferation,
and erythrocyte development. These five pathways were selectively related (RV coefficients >0.20) with seven
circulating protein biomarkers of CV mortality (fibroblast growth factor 23, soluble ST2, adrenomedullin, hepcidin,
pentraxin-3, WAP 4-disulfide core domain 2, and interleukin-6) revealing an intricate relationship between immune
and iron homeostasis. The pattern of survival-associated gene expression matched with 29 perturbagen-induced
transcriptome signatures in the iLINCS drug-repurposing database, identifying drugs, approved for other clinical
indications, that were able to reverse in vitro the molecular changes associated with adverse prognosis in CHF.
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Conclusion Systematic modelling of the whole blood protein-coding transcriptome defined molecular pathways that provide a
link between clinical risk factors and adverse CV prognosis in CHF, identifying both established and new potential
therapeutic targets.
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Introduction
The prognosis of patients with chronic heart failure (CHF) remains
poor, despite substantial improvements in CHF diagnosis and
treatment. Several prognostic risk scores have been developed
for CHF,1,2 yet the precise mechanistic links between such clinical
risk scores and survival remain unclear. Furthermore, beyond
natriuretic peptides,3 several circulating protein biomarkers that
have been shown to be independently associated with prognosis
in CHF4–6 remain to have the underpinning molecular nature of
those relationships elucidated.

Whole blood transcriptomic profiling is a practical and power-
ful methodology to study genome-wide biology in large numbers
of patients. Despite CHF being a systemic syndrome, no study
has investigated whether whole blood transcriptomic profiles can
inform about the molecular processes underpinning the observed
relationships between clinical or protein biomarkers and cardiovas-
cular (CV) mortality in these patients. If the whole blood transcrip-
tome can be shown to reflect important drivers of mortality, then
modelling whole blood global gene expression may help identify
clinically relevant pathways to target therapeutics development.7

In this study, we report the first large-scale whole blood tran-
scriptomic profiles from patients with CHF. Our main aims were
to (i) contrast such profiles between patients who survived or
died, (ii) examine whether this provides new insights into molecular
mechanisms through which clinical and protein biomarkers associ-
ated with adverse outcome might affect prognosis, and (iii) explore
the utility of blood-based transcriptomic signatures as a novel tool
to aid in vitro drug-repurposing analysis in CHF.

Methods
Participants
This was a nested case–control study undertaken within the
BIOSTAT-CHF study.8 Briefly, BIOSTAT-CHF enrolled an index
cohort of 2516 patients from 69 hospital centres in 11 European
countries between 2010 and 2014. Patients were aged >18 years
with symptoms of new-onset or worsening CHF, confirmed either by
a left ventricular ejection fraction (LVEF) of ≤40% or B-type natri-
uretic peptide (BNP) level >400 pg/ml and/or N-terminal pro-B-type
natriuretic peptide (NT-proBNP) plasma levels >2000 pg/ml, treated
with either oral or intravenous furosemide ≥40 mg/day or equivalent
at the time of inclusion. After enrolment and obtaining a blood
sample, all participants had their heart failure medication optimized
to guideline-recommended or maximally tolerated doses. The median
follow-up of the cohort was 21 months, with an interquartile range of ..
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. 15 months. The study complied with the 2008 Declaration of Helsinki
and was approved by the relevant ethics committee in each centre. All
participants gave written informed consent to participate.

For the current transcriptome analysis, participants were catego-
rized into two groups: survivors (those participants who survived dur-
ing the follow-up period without hospitalization), and non-survivors
(those participants who died from a CV cause). Cause of death (CV or
non-CV) was adjudicated by a senior clinician (A.A.V.) based on reports
of mortality events using previously reported criteria.9 There were 441

CV deaths (out of a total of 657 deaths), and 1437 participants sur-
vived without hospitalization. After the exclusion of participants with
no usable RNA samples, 332 who died and 1061 who survived, were
available to study. The two groups, those that survived or died, were
matched for age and sex with an approximate ratio of 1:2, to match
the number of arrays available (online supplementary Figure S1).

Generation of transcriptomic profiles
Whole blood was collected into PAXgene tubes (Qiagen) and
RNA was isolated using TRizol® (Life Technologies), dissolved in 20 μl
RNAse-free water and profiled using the Affymetrix Human Transcrip-
tomic Array 2.0 (HTA, Thermo Fisher Scientific) which contains ∼7
million probes to provide a comprehensive view of the transcriptome.
Samples were processed following the manufacturer’s protocol (Sutton
Bonington Array facility, University of Nottingham). Briefly, 250 ng of
RNA was processed to single-stranded sense fragmented DNA using
the WT PLUS Reagent Kit. Five μg of fragmented, end-labelled sense
stranded target cDNA was hybridized to each array, and scanned in
batches of 24, using a 30007G scanner. The running order used a ran-
dom list generator to ensure even distribution of cases and controls
during profiling. Full details of the processing of the arrays and quality
checks of the gene expression data are provided in online supplemen-
tary Appendix S1. A total of 944 samples were successfully profiled, of
whom 626 (66%) were survivors and 318 (34%) died of a CV cause.

Statistical and bioinformatics analysis
RNA expression values were derived for 17 748 protein-coding genes
(ENSG), then normalized and logarithm (base 2) transformed. We
applied a multivariable linear model analysis with group (survival and
non-survival), age, sex and estimates of major white cell populations
as covariates using the limma package in R, to identify differentially
expressed ENSGs. Estimated white cell proportions were derived by
applying ABIS,10 with absolute values being scaled to 100 prior to
further analysis (online supplementary Appendix S1). P-values were
adjusted using the Benjamini–Hochberg false discovery rate (FDR)
method; an FDR value of <5% was used. Gene ontology (GO) profiles
(Biological Processes) were assessed using Metascape,11 with the
detectable transcriptome used as the GO background to calculate
enriched pathway statistics.12 The main drivers to GO enrichment

© 2022 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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were identified by removing associated processes, using the topGO
hierarchical analysis package in R.

To assess whether there was a relationship between the observed
transcriptomic differences between survivors and non-survivors,
and clinical and biochemical risk factors associated with CHF prog-
nosis, we used a reproducible prognostic risk score for mortality
developed in BIOSTAT-CHF (BIOSTAT-CHF risk score, BRS).2 The
BRS model considered 42 clinical and biochemical variables, identi-
fying five variables (more advanced age, higher blood urea nitrogen
and NT-proBNP, lower haemoglobin, and failure to prescribe a
beta-blocker) as the strongest independent predictor of mortality
with a combined C-statistic of 0.73.2 We undertook linear correlation
analysis of gene expression with the BRS and compared the overlap of
this set of genes with those differentially expressed between survivors
and non-survivors. The effect of adjusting for the BRS on the latter
set of genes was also investigated.

To gain insight into potential protein drivers of the transcriptional
changes, we correlated the transcriptomic changes with plasma lev-
els of >150 circulating proteins available in the BIOSTAT-CHF cohort,
some of which have been reported to be associated with prognosis
in the cohort.5,6 The majority of proteins were measured using two
commercial platforms (Olink Proseek Multiplex and Alere Luminex
Panel), with a minority derived from routinely available hospital clin-
ical assays or bespoke assays. Specifically, fibroblast growth factor 23
(FGF23) data were generated using the c-terminal ELISA (Immutopics,
Inc., San Clemente, CA, USA) while hepcidin (HEPC) was measured
using the competitive ELISA developed by Kroot et al.13 To examine
the relationship between each of the non-redundant GO categories,
and the protein biomarkers, we estimated the RV coefficient, a mul-
tivariate generalization of the squared Pearson correlation coefficient.
Pearson correlation coefficients, adjusting for multiple testing (Bon-
ferroni correction), were also calculated for the significant associated
proteins and individual genes within the top-ranked GO categories. For
proteins most associated (RV coefficient>0.20) with at least one sig-
nificant GO, we examined the relationship with CV mortality, using a
Cox proportional hazards model.

Finally, to explore the potential of our approach to identify new
drug treatments, we utilized the CMap-L1000v17 in vitro drug signa-
ture database (https://clue.io/) as previously described.14 Briefly, to
represent the prognosis-related transcriptomics signature, we used the
60 most upregulated and 60 most down-regulated genes that were
also present in the CMap-L1000v1 database. Choice of 60/60 genes is
empirical and informed by our recent work on insulin resistance drug
repurposing14 that yielded a drug list composed of ∼50% true-positive
drug classes and/or drug targets. The matching score was calculated
by aggregating the transcriptional pattern across nine independent cell
lines for >2500 compounds, many of which include Food and Drug
Administration approved drugs.14 For each matching drug, the known
protein targets were identified using PubChem and the small molecule
suite.15 A network of significant pathway interactions was derived using
metascape.org, using the CHF survival associated genes and the top
ranked known protein target of each drug as input values, and the
detectable transcriptome as background.

Results
Subjects
The two groups (survivors and non-survivors) were, by design,
closely matched for age and sex (Table 1 and online supplementary ..
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.. Figure S1). Patients were predominantly Caucasian; there was
no difference in hypertension but there was a higher prevalence
of both type 2 diabetes mellitus (T2DM) and CHF of ischaemic
aetiology, in the non-survivor group. Baseline use of CHF med-
ication was similar in both groups, except for a greater use of
beta-blockers in the survivor group. The echo-estimated LVEF
was similar between groups (≈31%) as was heart rate. However,
patients that died had worse symptoms, lower systolic and diastolic
blood pressure and higher plasma concentrations of natriuretic
peptides, and lower estimated glomerular filtration rate (eGFR),
haemoglobin and body mass index (BMI), at baseline.

Whole blood transcriptomic differences
between survivors and non-survivors
Laboratory-measured total leucocyte count did not differ between
those that survived or died (Table 1). However, counts modelled
for individual blood cell types using specific gene expression mark-
ers (see Methods) identified significant reduction in T-cells (−17%,
p<1 ×10−10) and B-cells (−11%, p< 1 × 10−3) in the non-survivor
group, and an increase in neutrophils (+5%, p<1 × 10−5) and
basophils (+14%, p< 1 × 10−3; online supplementary Figure S2A).
After including the estimated cell subtypes as covariates in the
analysis together with age and sex, we found that 1153 genes
(6.5%) were differentially expressed (FDR<5% and>5% difference,
557 up-regulated and 596 down-regulated) between survivors and
non-survivors (Figure 1A and online supplementary Table S1). Up-
and down-regulated genes often belonged to the same biological
pathways (online supplementary Figure S2B) and mapped to several
interrelated biological pathways (Figure 1B and online supplemen-
tary Table S2). The processes most responsible for the GO results
were identified by removing the redundant topological features of
the GO structure (online supplementary Figure S3). This identified
five main ‘driver’ GO categories, each with a robust fold enrich-
ment (FE) and low FDR: adaptive immune response (FE = 2.3,
FDR<0.1%), proteasome-mediated ubiquitin-dependent protein
catabolic process (UPP; FE = 1.7, FDR<3%), T-cell co-stimulation
(FE = 3.9, FDR<0.1%), positive regulation of T-cell proliferation
(FE = 3.0, FDR<0.1%), and erythrocyte development (FE = 4.3,
FDR<0.1%).

The differentially expressed genes in each of these pathways are
shown in Figure 2. Overall, the pattern of changes in gene expres-
sion indicates an impairment of the adaptive immune response,
down-regulation of T-cell co-stimulation and disruption of posi-
tive regulation of T-cell proliferation in non-survivors. In contrast,
the UPP pathway and the erythrocyte development pathway were
both activated in non-survivors (see Discussion).

BIOSTAT-CHF prognostic risk score
and transcriptomic changes
Linear regression analysis of gene expression versus the BRS2 iden-
tified 1086 correlated genes, and these predominantly belonged to
the same pathways as the genes differentially expressed between
survivors and non-survivors (online supplementary Figure S4). On
an individual gene level basis, 390 genes were common to both lists.

© 2022 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 1 Demographic, clinical and laboratory variables for study groups

Variable Survivor (n = 626) Non-survivor (n = 318) p-value
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Demographics
Male sex 75.7 (474) 74.5 (237) 0.748
Age (years) 71 (10.7) 71.4 (11) 0.584
BMI (kg/m2) 27.7 (6.2) 26.6 (7.3) 0.206

Clinical profile
NYHA class <0.001

I 2.9 (18) 0.9 (3)
II 44.2 (277) 22.6 (72)
III 41.2 (258) 58.5 (186)
IV 8.6 (54) 14.2 (45)

LVEF (%) 31.6 (9.9) 31.3 (12.4) 0.747
Heart rate (bpm) 79.2 (20.2) 80.4 (19.4) 0.386
Systolic blood pressure (mmHg) 128.0 (21.7) 121.1 (22.3) <0.001

Diastolic blood pressure (mmHg) 76.6 (13.7) 71.7 (12.3) <0.001

HF history
Ischaemic aetiology 61.2 (340) 70.3 (206) 0.01

HF hospitalization in previous year 22.7 (142) 42.8 (136) <0.001

Medical history
Hypertension 65.2 (408) 63.2 (201) 0.599
Diabetes mellitus 28.3 (177) 39.0 (124) 0.001

Medication at baseline
ACE inhibitors or ARB 74.8 (468) 69.2 (220) 0.081

Beta-blockers 84 (526) 77 (245) 0.011

Mineralocorticoid receptor antagonist 51.3 (321) 50.9 (162) 0.977
Laboratory measurements

Haemoglobin (g/dl) 13.4 (1.8) 12.6 (1.8) <0.001

Erythrocytes (million cells/μl) 4.5 (0.6) 4.4 (0.9) 0.31

Leucocytes (×109/L) 7.8 [6.6, 9.3] 7.8 [6.4, 9.6] 0.908
eGFR (ml/min/1.73 m2; CKD-EPI) 62.0 [46.9, 76.7] 52.3 [34.8, 69.4] <0.001

BNP (pg/ml) 174.7 [78.3, 371.1] 338.1 [176.2, 652] <0.001

NT-proBNP (ng/L) 2005 [949, 4642] 4121 [2332, 9275] <0.001

Values are expressed as % (n), mean (standard deviation), or median [interquartile range].
ACE, angiotensin-converting enzyme; ARB, angiotensin II receptor blocker; BMI, body mass index; BNP, B-type natriuretic peptide; CKD-EPI, Chronic Kidney Disease
Epidemiology Collaboration equation; eGFR, estimated glomerular filtration rate; HF, heart failure; LVEF, left ventricular ejection fraction; NT-proBNP, N-terminal pro-B-type
natriuretic peptide; NYHA, New York Heart Association.

Inclusion of the BRS as a covariate in the analysis of the expres-
sion differences between survivors and non-survivors removed all
but one of the gene expression differences between groups. This
suggests that the observed variation in the blood transcriptome is
strongly related to clinical factors associated with prognosis.

Transcriptomic changes and circulating
protein biomarkers
To examine whether circulating proteins represented potential
drivers of the transcriptomic changes, and therefore potential
intermediaries between the clinical prognostic variables and the
observed gene expression differences, we modelled the relation-
ships between >150 circulating proteins, and the five top-ranked
GO categories. While most demonstrated limited association
(online supplementary Table S3), seven proteins demonstrated
an RV coefficient of 0.2 or greater, with at least one of the
five GOs (Table 2). These were, in order of association: FGF23, ..
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. soluble ST2 receptor (sST2), adrenomedullin (ADM), HEPC,

pentraxin-3 (PTX3), WAP 4-disulfide core domain 2 (WFDC2) and
interleukin-6 (IL-6). Notably, six of these proteins positively covar-
ied with each other, while HEPC demonstrated a negative cor-
relation, especially with FGF23 (online supplementary Figure S5).
These seven proteins also demonstrated a significant univariate
association with mortality in the present nested case–control sam-
ple (Table 2), as previously reported for some of these proteins
in the full BIOSTAT-CHF cohort.5,6 Notably, although T2DM was
more common in non-survivors at baseline, we did not observe
any pathway-level association with glycated haemoglobin (online
supplementary Table S3).

Co-expression analysis
To further delineate the inter-relationships between genes within
each of the five GO categories and their relationship with the
protein biomarkers, and how these might relate to prognosis,

© 2022 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 1 Differential gene expression and biological process gene ontology analysis. (A) A volcano plot of the differential gene
expression pattern between groups, calculated using limma and the following model: ENSG ∼ Age+ Sex + log(sum T-cells)+ log(sum
B-cells)+ log(neutrophils)+ log(basophils)+ group. (B) Global gene ontology (biological processes) analysis carried out using Metascape and
the list of 1153 differentially regulated genes. The 17 748 detected protein-coding genes were used as the background and the pre-analysis
settings were: threshold >2.0 and non-adjusted p-values threshold p< 0.0001. The plot x-axis is p-values (log base 10) while the displayed
categories had a false discovery rate of 1.4% or better (see online supplementary Table S2).

we created Pearson correlation heatmaps for each category,
for survivors and non-survivors separately (Figure 3 and online
supplementary Figure S6). To facilitate identification of altered
co-expression relationships between survivors and non-survivors
we also created differential co-expression plots (online supple-
mentary Figures S7 and S8). The direction of gene co-expression
was largely conserved between survivors and non-survivors, partly
speaking to the robustness of the methodologies utilized. However,
these analyses highlighted several individual examples of altered
gene co-expression, e.g. the iron transporter, transferrin receptor
was upregulated in non-survivors (Figure 2) and correlated to ..
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.. IL6ST (gp130) expression only in non-survivors (Figure 3B and
online supplementary Figure S8B). Gene expression within the UPP
pathway was subject to numerous shifts in the correlative struc-
ture (Figure 3 and online supplementary Figure S7B) with genes like
HECTD3 (up-regulated in non-survivors) becoming more posi-
tively co-expressed with other members of the pathway (except
for SMURF2 and RNF216). Likewise, the correlations between
the seven protein biomarkers (FGF23, sST2, ADM, HEPC, PTX3,
WFDC2 and IL-6) tended to be stronger in non-survivors, except
for IL-6 (Figure 3A vs. online supplementary Figure S3B). The
correlation between the seven individual proteins and individual

© 2022 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 2 Individual gene expression responses within the topol-
ogy adjusted top-ranked gene ontology categories. Differential
gene expression is presented across the five topology adjusted
gene ontology categories identified using weighted Fisher’s exact
test, fold enrichment calculations and BH correction of Fisher’s
test statistics using the R package topGO. FC, fold change.

genes varied substantially (online supplementary Figures S7 and S8)
and this provided insight into some likely connections between
the transcriptome profile and survival (see Discussion).

Using mortality-related transcript
patterns to identify new drug targets
A search, using the combined 60 most up-regulated and 60 most
down-regulated genes between survivors and non-survivors that ..
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.. mapped to the iLINCS database, against >2500 in vitro drug sig-
natures, found 45 matching compounds (online supplementary
Table S4). This included 29 that reversed the mortality associated
gene expression pattern, and these drugs had 47 known protein
targets (<1 μM potency). Combined pathway analysis of the drug
targets and the top regulated mortality associated genes estab-
lished that the 47 proteins mapped to biological processes iden-
tified by the CHF mortality related transcriptome. This included
the ‘immune response-activating cell receptor signalling’ and ‘lym-
phocyte activation’ pathways (Figure 4).

Discussion
Whole blood transcriptomic profiling is a potentially powerful
methodology to study genome-wide biology directly in patients.
Here, in the first prospective study of this type in heart failure, we
provide novel insights into molecular processes associated with
adverse CV prognosis. Specifically, we show that such profiles
differ at baseline between those patients with CHF who died of
a CV cause (over a median follow-up of 21 months) compared
to those that survived, with more than 1 in 20 of the detectable
protein-coding transcriptome showing a difference. Although the
overall fold differences in gene expression between survivors
and non-survivors were small, these differences are likely to be
driven by a subset of immune cells and therefore the fold change
values would be ‘diluted’ by other cell types contributing to the
global RNA profile. Thus, the magnitude of the measured differ-
ences should not be equated with their biological significance.
Indeed, the differences could be mapped to specific biological
pathways, several of which have been postulated to be disrupted
in CHF. Importantly, we show that the differentially regulated
transcriptome is strongly related to clinical and protein predictors
of survival. While these findings are correlative, they highlight
potential mechanisms and intermediaries through which the risks
related to clinical factors are mediated. Finally, we provide initial
evidence that the mortality-associated RNA pathways in CHF can
be reversed in vitro by drugs, some already approved for clinical
use, identifying them – and their targets – as being potentially
relevant to drug development for CHF.

Altered biological pathways
and prognosis in heart failure
In cross-sectional analysis, lymphopenia has been associated with
more severe NYHA class and poorer outcomes in CHF.16,17

Our study provides further detailed evidence that CHF patients
with a poorer prognosis not only have fewer T- and B-cell, but
they also have an altered immune cell phenotype. Specifically,
T-cell receptor (TCR) signal-transducing molecules such as CD3
epsilon and gamma, as well the co-stimulatory receptor CD28,
are down-regulated in non-survivors. Further, a number of genes
encoding protein adaptors of TCR signals (such as Lck, Zap70,
PKC-θ, ITK and SKAP1), as well as genes that act to amplifying
TCR signals such as CD618 were all down-regulated (Figure 2).
Many of these ‘adaptative immune response’ pathway members,

© 2022 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Table 2 Top ontologies and RV coefficient estimates with circulating protein biomarkers

GO pathway (no. of genes) FGF23 sST2 ADM HEPC PTX3 WFDC2 IL-6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adaptive immune response (56) 0.20 0.25 0.20 0.04 0.22 0.21 0.20
T-cell co-stimulation (14) 0.16 0.23 0.21 0.01 0.22 0.20 0.18
Positive regulation of T-cell

proliferation (18)
0.25 0.25 0.22 0.08 0.21 0.19 0.18

Erythrocyte development (11) 0.17 0.09 0.13 0.18 0.04 0.04 0.04
Proteasome-mediated

ubiquitin-dependent protein
catabolic process (47)

0.30 0.18 0.21 0.22 0.10 0.09 0.09

Univariate association with
survival (HR)

1.64 1.70 1.92 0.84 1.57 1.88 1.43

p<1 ×10−34 p<1 × 10−20 p<1 ×10−22 p<1 ×10−4 p< 1 × 10−9 p<1 ×10−28 p<1 ×10−12

They are listed in rank order from the RV analysis as follows: ADM, adrenomedullin; FGF23, fibroblast growth factor 23; HEPC, hepcidin; IL-6, interleukin 6; sST2, soluble ST2
receptor (decoy receptor for IL-33); PTX3, pentraxin-3; WFDC2, WAP 4-disulfide core domain 2. The table presents the RV coefficients – calculated between the expression
of all genes identified within each of the top-ranked gene ontology pathways and the levels of plasma protein biomarkers – for those proteins that demonstrated at least a 0.2
or> relationship with one of the five top-ranked gene ontology pathways (all p< 0.001). The number of genes in each gene ontology pathway is listed in brackets. FE is the
fold enrichment over the gene ontology database.

and those involved in TCR signalling in particular, were nega-
tively correlated (Figure 3) with both arginase gene transcripts
(ARG1 and ARG2); which were 14%–16% more abundant in those
that subsequently died (online supplementary Table S1). Arginase
degrades arginine and decreased arginine, preceded by a mea-
surable increase in arginase activity, is associated with poorer
6-month outcomes in patients with ST-elevation myocardial infarc-
tion.19 Arginase gene expression, induced by lactate production
consequent to hypoxia, can limit T-cell proliferation.20 A nega-
tive association between ARG2 and the pro-survival IL-7 receptor
(IL7R/CD127) was observed in survivors (Figure 3A) potentially
linking arginine metabolism and IL7R signalling role in T-cell survival
and memory responses.21 These observations provide support for
altered metabolism contributing to the altered T-cell molecular
profile, which our transcriptome-wide analysis indicates is a central
feature of those patients that died.

Increased net catabolic activity has long been associated with
poorer prognosis in heart failure22 and our transcriptomics
approach also identified that up-regulation of the UPP pathway
occurs in circulating blood cells (Figure 2). Siah E3 ubiquitin protein
ligase 2 (SIAH2) was one of the most up-regulated genes in the
non-survivor group (28%, p = 9 × 10−7) and it mediates degrada-
tion of heme oxygenase-1,23 a cardioprotective enzyme involved
with immunomodulation.24 HECTD3 – which has a role in both
cardiac hypertrophy25 and T helper-17 development26 – was
expressed to a greater extent in those that died, showing a
stronger (positive) co-expression (online supplementary Figure
S7B) with other members of the activated UPP pathway (Figure 2).
In contrast SMURF2 and RNF216 (two down-regulated genes
in those that died) were negatively associated with HECTD3
(Figure 3B). This is interesting as SMURF2 is a E3 ubiquitin ligase
targeting degradation of pro-inflammatory TGFB/SMAD signalling,
while RNF216 contributes to ubiquitin-mediated protein degra-
dation of TLR4.27 Presumably targeted acceleration of protein
degradation, through UPP, is required to facilitate proinflammatory ..
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.. processes and these more specific events may represent more

tractable therapeutic targets.
It is plausible that one driver of the catabolic profile in those

that died was disrupted iron homeostasis. As discussed below,
altered iron regulatory protein, HEPC (which regulates ferroportin
capacity28) and induction of erythrocyte development revealed a
number of key observations. For example, there was a strong
positive association with the up-regulated transferrin receptor
(which imports iron into cells) and up-regulated APFL (aprataxin
PNK-like factor) – a ubiquitous DNA damage response enzyme29

potentially responding to inappropriate iron accumulation.30 These
observations indicate that molecular processes associated with
cachexia in CHF, previously identified in cardiac and peripheral
tissues,22 are also evident in the whole blood transcriptome where
a pervasive role for disrupted iron homeostasis appears across
several of the altered pathways.

Do the mortality-associated protein
biomarkers drive the transcriptional
responses to chronic heart failure?
As the seven protein biomarkers associated with the transcrip-
tomic changes co-varied with each other (online supplementary
Figure S5), it is more challenging to identify which proteins are
directly linked to the transcriptome differences, particularly as
most have plausible mechanistic roles in CHF. For example, PTX3
can skew T-cell differentiation towards the IL-17 producing pheno-
type31 while ADM has a positive impact on the endothelial integrity
and anti-inflammatory properties.32 FGF23, a protein secreted
that regulates calcium and phosphate homeostasis,33 is produced
by osteocytes and cardiac cells, and promotes hypertrophy and
fibrosis in a calcineurin-dependent manner.34 WFDC2 (also known
as HE4) suppresses osteopontin and promotes cell survival in an
osteopontin- and interferon-γ-dependent manner.35 WFDC2 is
also linked to increased ARG1 activity and immune suppression.36

© 2022 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 3 Top gene ontology pathway gene and protein biomarkers inter-relationships. Gene expression was correlated with the top
protein biomarkers using Pearson correlation coefficients for the two largest significant pathways ‘adaptative immune response’ and
‘proteasome-mediated ubiquitin-dependent protein catabolic process’ – the other three top ranked gene ontology pathways are presented in
online supplementary Figure S6. The protein values are enclosed by a black oblong box. Data are plotted separately (grey boxes) for survivors
(n = 626) and non-survivors (n = 318). Correlation values are represented by colour and are plotted for significant correlations (Bonferroni
corrected threshold, p< 1.5 ×10−4).

© 2022 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.



Whole blood transcriptomics in heart failure 1017

Figure 4 Pathway level overlaps between survival-related genes and the protein targets of drugs that reverse the survival-related gene
expression signature in vitro. A network of significant pathways (p = 10−18 –10−4) was derived using metascape.org. The input genes were the
120 chronic heart failure (CHF) survival-associated genes used to identify drugs that regulate the CHF signature in vitro (https://clue.io/) and
the 47 protein targets of the 29 drugs (identified using PubChem and the small-molecule suite) that reverse the CHF signature in vitro. There
are two identical plots. The large plot, on the left-hand side, presents the significant pathways for this combined gene list. Edges represent
connected gene ontology biological processes (>0.3), and nodes within each cluster are coloured/named by their most statistically enriched
gene ontology term, scaled in size by the total number of terms represented. The smaller plot, on the right-hand side, is same network structure
but now colour coded by input list membership. This identifies if the drug targets appear within CHF survival-associated pathways (pathways
common to Figure 2) or whether the drug target falls within a pathway more indirectly connected with the patient transcriptomic signature.
Each node is presented as a pie-chart, with the ‘slices’ coloured and scaled to indicate which gene list the terms originate from, and what
proportion the lists contribute to the ontology groupings.

Exploration of single transcript and protein biomarker rela-
tionships does, however, provide several clues as to the order
of events, particularly for the altered T-cell biology and iron
homeostasis (Figure 3 and online supplementary Figure S6). For
example, HEPC links to both altered UPP activity and altered ..

..
..

..
..

..
..

. T-cell biology. HEPC demonstrated a strong association with
the UPP and ‘erythrocyte development’ pathways (Figure 3 and
online supplementary Figure S6). Notably, the association between
HEPC protein and expression of genes from the UPP pathway
was more striking in the non-survivors (Figure 3B, e.g. GCLC,

© 2022 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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PSME4, SIAH2, TBL1XR1, YOD1 and ZER1). In contrast, mucol-
ipin (MCOLN1) was negatively associated with HEPC and one
of the few up-regulated genes in the ‘adaptive immune response’
pathway. MCOLN1 has an important role in calcium-mediated car-
diac remodelling37 and is also implicated in iron homeostasis.38

Together, these examples, and those listed above, imply that alter-
ations in iron status may be a key integrator for the immune-related
changes in transcriptome and catabolic pathway activation. sST2
was also up-regulated in those that died, consistent with its rela-
tionship with outcome following myocardial infarction, where it
subdues IL-33 signalling.39 sST2 levels were positively correlated
with the up-regulated erythrocyte development pathway and of
note, in the non-survivor group, the increased ‘erythropoiesis
development’ signature was accompanied by reduced haemoglobin
(p< 1 ×10−6) and iron (Table 1). IL-33 can be cardioprotective
and is released upon tissue damage, stimulating T-helper type
1 (Th1), Th2 and pro-inflammatory Th17 cells,40 such that loss
of IL-33 through increased sST2 may help explain the observed
immune-related transcriptome profile. Overall, our analysis indi-
cates that each of these seven survival-related proteins could
drive the transcriptome response, coupling immunological and iron
homeostasis together with clinical risk factors.

Using mortality-related transcript
patterns to identify new drug treatments
Not all circulating protein biomarkers or regulated genes make rel-
evant therapeutic targets. For instance, despite being modulated
in CHF, targeting tumour necrosis factor-α or IL-6 pathways has
not led to improved outcomes in heart failure, or been found
to reduce major CV events.41 Notably, the present analysis did
not rank either of these cytokines as being a dominant feature
of the mortality-related pathways. Instead, our analysis indicates
that antagonizing FGF23 signalling and/or down-regulating sST2
expression (or its binding to IL-33) represent more enticing tar-
gets. Beyond these individual proteins, use of transcriptome sig-
natures represents a promising alternative strategy to discover
therapeutics and pathways that can modulate diseases.7,14,42 In
fact, many of the protein targets of the 29 drugs that reversed
the mortality-related transcriptome in vitro, are not regulated in
patients, but rather represent members of the same pathways reg-
ulated in those that died (Figure 4). Notably, several positively acting
drugs are known to target heart failure-related molecular pro-
cesses (online supplementary Table S4), and several have in vivo
support for their potential utility in CHF, including a monoamine
oxidase inhibitor which can be cardioprotective,43 forskolin which
elevates cAMP and cardiac function,44 and the experimental epige-
netic drug, chaetocin (a histone lysine methyltransferase inhibitor),
which appears to be cardioprotective.45 Our findings encourage a
further appraisal of the potential benefit in CHF of some of these
drugs and pathways.

Limitations
Our study has several limitations. Despite being the largest whole
blood genome-wide transcriptomics study in CHF conducted in ..
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.. a very well-characterized cohort, further large scale independent
transcriptomic studies are required to validate our observations.
An important component of our strategy was to adjust for
differences in cell counts between survivors and non-survivors.
We modelled changes in individual white cell subtypes using the
transcriptomics data and studies using fresh blood samples from
patients with CHF are needed to fully explore the changes we
predicted. Most patients in BIOSTAT-CHF had heart failure with
reduced ejection fraction and whether our findings extend to
those with preserved ejection fraction remains to be determined.
Finally, our results are correlative and experimental studies are
required to confirm the direct involvement of the various pathways
we have identified in adverse prognosis in CHF.

Conclusion
In conclusion, our analysis provides evidence that whole blood
transcriptomics can identify molecular pathways that associate
with CV mortality in CHF. These reflect clinical factors that are
associated with poor prognosis and may be driven by specific
intermediary protein factors. We demonstrate the potential utility
of such transcriptomic profiling for identifying novel therapeutic
targets for CHF.

Supplementary Information
Additional supporting information may be found online in the
Supporting Information section at the end of the article.
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