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Abstract

DNA mutational events are increasingly being identified in autism spectrum disorder (ASD), but the potential additional role
of dysregulation of the epigenome in the pathogenesis of the condition remains unclear. The epigenome is of interest as a
possible mediator of environmental effects during development, encoding a cellular memory reflected by altered function
of progeny cells. Advanced maternal age (AMA) is associated with an increased risk of having a child with ASD for reasons
that are not understood. To explore whether AMA involves covert aneuploidy or epigenetic dysregulation leading to ASD in
the offspring, we tested a homogeneous ectodermal cell type from 47 individuals with ASD compared with 48 typically
developing (TD) controls born to mothers of $35 years, using a quantitative genome-wide DNA methylation assay. We
show that DNA methylation patterns are dysregulated in ectodermal cells in these individuals, having accounted for
confounding effects due to subject age, sex and ancestral haplotype. We did not find mosaic aneuploidy or copy number
variability to occur at differentially-methylated regions in these subjects. Of note, the loci with distinctive DNA methylation
were found at genes expressed in the brain and encoding protein products significantly enriched for interactions with those
produced by known ASD-causing genes, representing a perturbation by epigenomic dysregulation of the same networks
compromised by DNA mutational mechanisms. The results indicate the presence of a mosaic subpopulation of
epigenetically-dysregulated, ectodermally-derived cells in subjects with ASD. The epigenetic dysregulation observed in
these ASD subjects born to older mothers may be associated with aging parental gametes, environmental influences during
embryogenesis or could be the consequence of mutations of the chromatin regulatory genes increasingly implicated in
ASD. The results indicate that epigenetic dysregulatory mechanisms may complement and interact with DNA mutations in
the pathogenesis of the disorder.
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Introduction

Progress in understanding the genetic basis of ASD has been

substantial in recent years, with the development of microarray

technologies allowing the identification of copy number variants

associated with the disorder [1] and massively-parallel sequencing

focused on protein-coding exons allowing insights into smaller

mutational events disrupting gene function [2,3]. The emerging

picture is of rare rather than common genetic variants mediating

most of the risk [4]. Less progress has been made in understanding
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the mechanism by which environmental factors influence the risk

of ASD [5]. Epigenetic mediation of such environmental

influences has been proposed [6], but a clear association between

the phenotype and epigenetic dysregulation has proven elusive in

genome-wide studies [7]. Three recent studies have lent support to

an association of epigenetic dysregulation with ASD. One study

found indications of distinctive chromatin features in the ASD

brain [8], another tested peripheral blood leukocytes and found

DNA methylation differences to characterize monozygotic twins

affected by ASD compared with their unaffected twin [9], while a

third study tested brains from 19 subjects with ASD and 21

controls, also finding differential DNA methylation [10].

Interestingly, chromatin regulatory genes have been described

to be significantly enriched as targets of mutational events [11],

suggesting that epigenomic dysregulation secondary to mutational

events may mediate pathophysiological dysfunction in some

individuals with ASD. We were also interested in the parental

age effect in ASD, which for advanced paternal age appears to be

substantially attributable to mutational events in the male germline

[12,13]. The mechanism of the independent maternal age effect

on ASD prevalence [14] has substantially less evidence for such

underlying genetic events and remains mechanistically unclear. As

advanced maternal age (AMA) has long been associated with

increased rates of chromosomal non-disjunction [15], while

cellular aging in general is increasingly recognized to involve

epigenetic dysregulation [16], we therefore evaluated both of these

mechanisms as potential contributors to the increased risk of ASD

in a cohort of individuals born to older mothers.

A major component of the current study was the minimization

of the potential confounding effects now increasingly recognized to

affect epigenome-wide association studies (EWAS) [17,18]. We

therefore ensured that we reduced effects due to cell type and

subpopulation heterogeneity, chromosomal aneuploidy, copy

number variability, genetic polymorphism, age, sex and technical

influences, and defined differential DNA methylation using

advanced analytical approaches. Our intent was to perform a

study representing the best of current practices, maximizing our

chances of identifying epigenetic regulatory patterns associated

with a complex disorder like ASD.

Results

Minimizing the effects of confounding influences on the
DNA methylation data

The conclusions of our study are based on Co-methylation

Network Analysis approaches described later, but we also included

more mainstream analytical techniques to demonstrate that these

also yield information about differential DNA methylation

characterizing the ASD group. As a first pass analytical approach,

we performed on our preprocessed dataset the type of non-

parametric F-testing typically performed for Illumina 450 K DNA

methylation microarrays (IMA [19]), identifying 3,560 differen-

tially methylated CGs (p,0.001) discriminating ASD and TD

individuals. We were, however, concerned that this kind of

analysis would be subject to confounding influences and prove to

be misleading. Such confounding influences include subject age

[16,20,21], gender [20,22], and genetic sequence polymorphism at

the tested site or acting in cis [23–25]. We therefore sought to

understand the contribution of these covariates on our dataset. To

accomplish this, we adapted an approach used in conjunction with

principal components analysis [26]. We assessed all known

technical and biological covariates, and then further determined

ancestral haplotype of each individual by analyzing genotype data

from cohort subjects and applying the HAPMIX algorithm

(Figure 1, Supplemental Table S3). We then performed

linear regression of each principal component on each covariate,

to determine significant correlations (Figure 2). We found that

inter-array differences, reflected by bisulphite conversion and

DNA loading controls on the microarray, accounted for the

majority of confounding variation between samples, even after

applying stringent preprocessing algorithms. We also found that

subject age and ancestry contributed significantly to DNA

methylation variation.

To strengthen the quality of our dataset further, we used our

genotype data to explore the presence of detectable mosaic

aneuploidy and copy number variation in the subjects. We applied

the Mosaic Alteration Detection (MAD) algorithm to test for

mosaicism for chromosome aneuploidy [27], finding no evidence

for such an event in our cases or controls. We were therefore able

to focus on the analysis of DNA methylation in the same samples

knowing that the results would not be confounded by AMA-

induced aneuploidy.

Identifying differentially methylated regions (DMRs)
To identify DNA methylation changes specific to the ASD

subjects, we used two approaches, the identification of differen-

tially methylated regions (DMRs) using the bump-hunting

approach [28], and, as we describe in the next section, Co-

methylation Network Analysis. DMR identification has the

advantage of being conceptually easy to understand and lends

itself to single locus verification studies, as it focuses on the

definition of discrete loci with DNA methylation differences.

Instead of interrogating individual sites, bump-hunting combines

probe information over short regions of hundreds of basepairs, and

therefore minimizes single locus false positives that can occur due

to polymorphism at individual CGs. Importantly, unlike ap-

proaches like IMA [19], bump-hunting considers the many

potential sources of confounding variation in epigenomic analysis

and includes analytical approaches to account for and remove

unwanted covariates. Bump-hunting was previously developed for

tiling microarray data [28]; our use of the algorithm for the

Infinium 450 K microarray platform represents an extension of

the approach that has proven successful in another study of ASD

Author Summary

Older mothers have a higher than expected risk of having
a child with an autism spectrum disorder (ASD). The reason
for this increased risk is unknown. The eggs of older
mothers are more prone to abnormalities of chromosome
numbers, suggesting this as one possible mechanism of
the increased ASD risk. Age is also associated with a loss of
control of epigenetic regulatory patterns that govern gene
expression, indicating a second potential mechanism. To
test both possibilities, we sampled cells from the same
developmental origin as the brain, and performed
genome-wide tests looking for unusual chromosome
numbers and DNA methylation patterns. The studies were
performed on individuals with ASD and typically develop-
ing controls, all born to mothers at least 35 years of age at
the time of birth. We found the cells from individuals with
ASD to have changes in DNA methylation at a number of
loci, especially near genes encoding proteins known to
interact with those already implicated in ASD. We conclude
that epigenetic dysregulation occurring in gametes or
early embryonic life may be one of the contributors to the
development of ASD.
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[10]. Applying the default 300 bp window [28], this allows ,27%

of the probes on the Infinium 450 K microarray to be informative.

Since we had confirmed effects of age and ancestry on DNA

methylation in our subjects, we included them as covariates in the

bump-hunting model, estimating ancestry as the percent of

European (CEU) and of African (YRI) alleles genome-wide.

Removing CGs that overlap known common SNPs from further

analysis is a commonly performed measure to reduce artifactual

effects of unrecognized sequence variants [29], but is insufficient to

account for genotype-driven differences, as recent studies have

demonstrated the ability of haplotypes in cis with tested CGs to

affect their methylation status [20,23,24]. Although we did not

observe significant variation due to sex, it was also included as a

covariate as a conservative precaution given its previously

documented effects [22]. We confirmed that bump-hunting

accounted for and removed all of the technical variation by

repeating our PCA and association analysis on the bump-hunting

output (Supplemental Figure S4).

We discovered 15 DMRs at 14 genes distinguishing the ASD

and TD samples (Supplemental Table S4). As it is known that

the incidence of genic copy number variation (CNV) is increased

in individuals with ASD [2], we used CNVision [30] to identify

large CNVs from our genotyping microarray data and to test

whether any of the 15 DMRs overlapped CNVs. Three DMRs

(one at the MAPK8IP3 gene and two at the CYP2E1 gene) were

found to overlap CNVs in multiple cases and/or controls. We

therefore excluded the individuals with CNVs at those loci and re-

ran the DNA methylation bump-hunting analysis. The two

candidate DMRs at CYP2E1 were no longer identified in this re-

analysis, indicating that the CYP2E1 DMR assignation was likely

due to the presence of the multiple CNVs.

As an extra layer of stringency, we then re-ran the data

preprocessing and analysis for a total of 4 iterations, testing to see

which of the remaining 13 loci remained stably predicted as DMRs.

We found four (at the KCNQ5, NRG2, LOC643802 and ZG16B

genes) to be predicted in only a subset of the iterative analyses, but

the other 9 DMRs to remain stably predicted, generating higher

confidence predictions for these 9 loci as a consequence. The

instability of prediction of certain loci is likely to be due to ComBat

generating slightly different outputs every time it is run, requiring

this kind of iterative analysis to test for stability of predictions.

The candidate DMRs from the genome-wide analysis were

associated with genes, of which many have already been

implicated in previous studies with ASD (Table 1). Of the 9

genes defined by the candidate DMRs in buccal epithelial cells, all

are expressed in the brain according to the Human Brain

Transcriptome (HBT) database [31]. Furthermore, 6 of the 9

genes were ascribed by the HBT to co-expression modules; all 6

belong to 2 modules involved specifically in post-natal synaptic

transmission [31]. This includes the OR2L13 gene, which, unlike

other olfactory receptor genes, is not located in the module

associated with olfactory function.

To confirm differential DNA methylation at these candidate

DMRs, we used bisulphite PCR, multiplexed robotic library

preparation and massively-parallel sequencing averaging .

15,0006 depth for each locus tested, with .99.99% bisulphite

conversion efficiency. We show in Figure 3 the concordance of

this massively-parallel bisulphite sequencing with the microarray

results for 2 of the 3 stably predicted DMRs, at the OR2L13 and

FAM134B genes, both showing decreased DNA methylation at

these promoter loci. Of these, OR2L13 has changes in DNA

methylation that reaches statistical significance (p,0.05) using a t

test comparing the group of CGs tested by bisulphite sequencing

in the region between the ASD and TD groups, with FAM134B

also showing the decrease in DNA methylation predicted by the

microarray study and trending towards but not reaching statistical

significance (p = 0.0957). Interestingly, OR2L13 has been found

in two previous studies to demonstrate either altered DNA

Figure 1. Principal components analysis (PCA) of ASD project genotypes with 1000 Genomes data and local ancestry
deconvolution across chromosome 5. (A) Autism Project Subjects: We show 78 out of 95 non-founders in the cohort, after removing
siblings for the PCA and keeping only one member per family. ASW: Americans of African Ancestry in SW USA; CEU: Utah Residents (CEPH) with
Northern and West European ancestry; CHB: Han Chinese in Beijing, China; CHS: Southern Han Chinese; CLM: Columbians from Medellin, Colombia;
FIN: Finnish in Finland; GBR: British in England and Scotland; IBS: Iberian population in Spain; JPT: Japanese in Tokyo, Japan; LWK: Luhya in
Webuye, Kenya; MXL: Mexican Ancestry from Los Angekes USA; PUR: Puerto Ricans from Puerto Rico; TSI: Toscani in Italia; YRI: Yoruba in Ibadan,
Nigeria. (B) The triangular color key denotes the color scheme used for genotype. Blue: Homozygous CEU; Green: Homozygous CHB+JPT; Red:
Homozygous YRI; Yellow: Heterozygous CEU/CHB+JPT; Orange: Heterozygous CHB+JPT/YRI; Purple: Heterozygous YRI/CEU.
doi:10.1371/journal.pgen.1004402.g001
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methylation in blood [9] or gene expression in brain [32] in

individuals with ASD.

We also explored the effect of the subjects’ age in more detail,

identifying 306 potential DMRs (Supplemental Table S6)

associated with the age of the individuals at the time of sample

collection (which in our study ranged from 1-28 years, Supple-
mental Table S1). Gene ontology analysis demonstrated that the

genes associated with these DMRs in buccal epithelium are

significantly enriched in pathways especially related to develop-

ment and differentiation but also include pathways involved in

neuronal development (Supplemental Figure S7). It is notable

that buccal epithelium should be informative for these patterns

and supports the use of this cell type as a surrogate for studies of

events occurring in the central nervous system.

Co-methylation network analysis
While DMR identification is useful for the reasons described

above, the exclusion from consideration of the majority of probes

on the microarray in a bump-hunting approach and the failure of

such approaches to consider that multiple dispersed loci may

change DNA methylation patterns concordantly prompted our

focus on a network-based analytical approach. Previous work has

demonstrated the utility of employing such a network-based

approach to detect expression and DNA methylation differences

potentially missed by conventional statistical difference testing

[32,33]. We therefore chose to use Weighted Gene Co-expression

Network Analysis (WGCNA) [34] as a complement to bump-hunting,

identifying instead of DMRs the patterns of co-methylation that

distinguish the ASD subjects. We found co-methylation modules

associated with all of our known biological covariates, including

age, gender, and percentage of local ancestry. We selected

modules significantly associated only with ASD case/control

status after stringent Bonferroni correction. We obtained two

modules that met these criteria; the full list of association p-values

is provided in Supplemental Table S7. The larger co-

methylation module significantly associated with ASD contained

116 CGs (Figure 4a). Genes in proximity to these CGs

(Supplemental Table S8) include NF1, whose dysfunction is

strongly associated with syndromic autism [35]. Ontology

analysis of these genes revealed significant enrichment for

functional categories including negative regulation of cell

migration, locomotion, cellular compartment movement and cell

proliferation, categories previously implicated in ASD subjects

[2]. However, because of the recent recognition that gene

ontology analysis can be biased towards genes with a greater

number of probes [36], we used the number of probes per gene

defined in the Illumina manifest to generate a weight for each

gene, and recalculated enriched gene ontologies using the R

package GOseq [37]. The p-values of the resulting candidate

ontology categories did not survive correction for multiple testing,

indicating that this kind of ontology analysis needs to be

interpreted with caution, and may prompt reanalysis of prior,

published gene ontological associations in ASD and other

phenotypes.

Figure 2. Biological and technical confounders contribute to methylation value variation. The heat map displays the –log10 p-values of
the linear regressions of the top ten principal components onto each known covariate. The color key shows corresponding numeric values, with red
indicating increased significance. The majority of variation is accounted for by experimental influences, with age and ancestry also contributing
significantly to variation.
doi:10.1371/journal.pgen.1004402.g002
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As a different means of assessing the functional significance of the

ASD-associated co-methylation modules, we tested whether they were

functionally and non-randomly connected to known ASD risk genes.

Using data from only the more stringent protein physical interaction

databases [38], we created a protein-protein interaction network using

the genes from the two significant WGCNA modules and a reference

list of known ASD genes [39]. Figure 4b displays the resulting highly

interconnected network, demonstrating that many of our module

genes directly interact with genes previously found to be mutated in

ASD. To test whether this degree of interaction was non-random, we

performed the Degree-Aware Disease Gene Prioritization (DADA)

approach [40] previously used to study associations of sporadic gene

mutations with ASD [12]. We found that our module genes were

significantly enriched in ranking (Mann Whitney U = 7.161023),

indicating the non-random selection of epigenetically-dysregulated

genes for those within pathways previously implicated in ASD.

Discussion

Despite using a surrogate ectodermal cell type, this study

revealed a pattern of altered DNA methylation at genes expressed

in the brain, encoding proteins enriched for the post-natal synaptic

transmission functions previously implicated in the pathogenesis of

ASD, and significantly interactive with proteins encoded by genes

previously described to be mutated in subjects with ASD. These

findings combine with those of other recent studies to support a

contribution of epigenetic dysregulation to the pathogenesis of

ASD [8,9].

A current concern with the EWAS approach is that the

generally small changes in DNA methylation found [17] may not

be substantially in excess of the noise introduced by technical or

biological effects influencing DNA methylation that have no

relationship to the phenotype being tested. We have an increasing

Table 1. Genes associated with the DMRs identified by bump-hunting.

Gene Protein function

Methylation
difference
(b, ASD-TD)

Cytogenetic
band Evidence for role in ASD

OR2L13 G-protein coupled olfactory receptor,
involved in initializing neuronal
response to odorants.

28.0% 1q44 Recurrent CNVs (16 reports) 1q44
implicated in linkage study [53]

Down-regulated in initial cohort,
upregulated in replication cohort [32]

Hypermethylated in ASD using probes on
the Illumina 27K array [9]

PAX8 Transcription factor, particularly involved
in developing thyroid, CNS, and kidney.

27.5% 2q13 Recurrent CNVs (14 reports)

GPC1 Glypican integral membrane heparan sulfate
proteoglycan.

28.6% 2q37.3 Recurrent CNVs (14 reports)

ADRA2C G-protein coupled adrenergic receptor, mediates
presynaptic sympathetic and noradrenergic
neurotransmitter release in
heart and CNS.

211.9% 4p16.3 Recurrent CNVs (10 reports)

FAM134B Cis_golgi transmembrane protein, implicated
in survival of autonomic and nocioceptive ganglion
neurons.

27.8% 5p15.1 Recurrent CNVs (6 reports) Down-regulated
in ASD brains [32]

CREB5 cAMP response element binding protein 5,
transcription factor.

7.6% 7p15.1 Recurrent CNVs (5 reports)

NOS1 Neuronal nitric oxide synthase 1, synthesis
nitric oxide, an important mediator with
neurotransmitter-like activity in the brain.

8.6% 12q24.22 Rare variants implicated in ASD and
schizophrenia [54]

MAPK8IP3 Animal studies suggest this protein
functions as a neuronal scaffold,
involved in axonal synaptic vesicle transport.

9.0% 16p13.3 Recurrent CNVs (10 reports) 16p13.3
implicated in linkage studies [55]

HOOK2 Hook proteins bind to microtubules and are
involved in vesicular trafficking, endocytosis,
and centrosome maintenance.

27.9% 19p13.2

NRG2 (3/4) Neuregulin 2, a growth and differentiation
factor interacting with the ERBB family of
receptors to induce the growth and differentiation
of epithelial, neuronal, glial, and other types of cells.

7.6% 5q31.2 Recurrent CNVs (6 reports) Up-regulated in
cell lines from patients with ASD due to
fragile X mutation of 15q duplication [56]

KCNQ5 (1/4) Voltage-gated potassium channel
differentially expressed in brain and skeletal muscle.

7.7% 6q13 Recurrent CNVs (3 reports)

ZG16B (1/4) Zymogen granule protein 16 homolog B precursor,
secretory protein involved in extracellular
carbohydrate binding.

10.1% 16p13.3 Recurrent CNVs (10 reports) 16p13.3
implicated in linkage studies [55]

LOC643802 (3/4) u3 small nucleolar ribonucleoprotein protein
MPP10-like.

28.9% 16q12.2 Recurrent CNVs (6 reports)

CNV: copy number variant.
doi:10.1371/journal.pgen.1004402.t001
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appreciation of the types of influences on DNA methylation in

studies of human subjects, allowing us to design and execute

studies more rigorously now than was appreciated to be necessary

in the past. The current study represents the largest epigenome-

wide analysis to date testing a single cell type in ASD. The use of

such an homogeneous cell type in this study should minimize the

problems recognized to be associated with samples of mixed

cellularity [18]. Our parallel SNP genotyping allowed not only the

detection and elimination of CNVs and mosaic aneuploidy as

influences, it also allowed us to map within chromosomes the

ancestral haplotype in which each site tested for DNA methylation

was located, helping to control for genetic influences on DNA

methylation. Analytically, we accounted for these sources of

variability and used the SVA approach [41] from within bump-

hunting [28] to identify and account for known influences (age [16]

and sex [22]) as well as additional, otherwise unrecognized

Figure 3. Massively-parallel bisulphite sequencing testing of candidate differentially methylated regions. Differences in DNA
methylation between ASD and TD cohorts are shown for (a) FAM134B and (b) OR2L13. Absolute methylation values are displayed in the top panels,
with the –log10 p-values as determined by bump-hunting (dmrFind). Differences in microarray mean b value (ASD-TD) and massively-parallel
bisulphite sequencing data (ASD-TD) show concordance for decreased DNA methylation in the ASD subjects at both loci (middle panels). The Illumina
450 K Probes track displays CGs tiled by probes on the microarray. While the trends of DNA methylation changes were confirmed by the sequencing-
based approaches, statistical significance testing was positive (p,0.05) for the OR2L13 locus, with a trend towards significance at the FAM134B locus
(split violin plots, lower panels). Of all the subjects tested, a CNV was found in only one individual at OR2L13, otherwise neither locus had CNVs
present that could potentially affect interpretation of results.
doi:10.1371/journal.pgen.1004402.g003
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influences. The analysis also included iterative use of the data

preprocessing and analysis steps prior to using bump-hunting to

highlight the DMRs that are stably predicted, and gene ontology

studies that address the newly-recognized concern that the number

of microarray probes representing the gene can influence the

outcome of analysis [36]. These measures, which were preceded

by stringent pre-processing of the microarray data, appear to

represent the currently necessary level of stringency for EWAS

studies.

The partial changes in DNA methylation that are typical of

EWAS imply an underlying property of the cell populations being

studied. Unlike gene expression, which can vary quantitatively in

an individual cell, DNA methylation is either present or absent on

an allele, so that small changes of DNA methylation reflect allelic

(presumably cellular) subpopulation mosaicism for the epigenetic

changes. Our finding of limited changes in DNA methylation in

buccal epithelium suggests a model for an early embryological

event in ectodermal cells, perturbing the epigenome of a

subpopulation of these cells, detectable postnatally in buccal

epithelium but potentially also occurring as a mosaic cell

subpopulation in other ectodermally-derived tissues including the

brain. Mosaicism for chromosomal abnormalities has been

associated with ASD [42–44], indicating that problems affecting

only subsets of cells in the brain can lead to this condition, as also

suggested in a recent review of somatic mosaicism in neurological

disorders [45].

The characteristics of the genes at which the DNA methylation

changes are occurring in the ASD cohort lend support to our

model linking epigenetic disturbances with the pathogenesis of

ASD. Despite studying non-neuronal cells, the differentially-

methylated genes are those expressed in the brain, enriched for

post-natal synaptic transmission function. Network approaches

have proven to be an informative means of understanding the

diversity of mutational events in ASD [32], prompting us to apply

the same approaches to explore DNA methylation changes at the

genes identified by WGCNA. We found that the genes in the most

significant WGCNA modules are non-randomly enriched for

interactions with genes already implicated in ASD. The model that

results is of mosaic epigenetic dysregulation affecting the same

networks and pathways targeted by mutational mechanisms,

creating comparable deleterious effects on neuronal function.

The results will need to be replicated to increase confidence in the

conclusions, requiring independently-collected buccal epithelial

samples from comparable subjects with ASD and suitable control

individuals. As this currently represents an unusual source of

clinical material, such a resource is not yet available, requiring that

study replication will need to be addressed as the next phase of this

project.

We conclude that of the two mechanisms we originally

proposed for AMA causing ASD, covert aneuploidy occurring at

detectable levels ($20%) [46] is not as likely to be involved as

epigenetic dysregulation. The use of mixed cell types in prior

Figure 4. Methylation of CGs in WGCNA modules associated with ASD status. (A) The heat map reflects unsupervised clustering of
methylation values of CGs in the ‘‘light green’’ module significantly associated with ASD alone. Clear segregation of ASD (orange) and TD (blue)
individuals can be seen in these CGs. The bottom panel shows the corresponding eigengenes for each individual. (B) Known ASD genes (red) and
those from each of the two WGCNA modules (green shades) with connecting genes (grey) showing extensive interactions, and the linking of
separated ASD gene groups by those identified in the current study.
doi:10.1371/journal.pgen.1004402.g004
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epigenetic studies of ASD [7] may have limited the ability to detect

such subpopulation effects, although it is encouraging that, in a

recent study of monozygotic twins, DNA methylation differences

were also observed, implicating a gene that we also found to be

targeted for epigenetic dysregulation, OR2L13 [9]. This gene

appears to be especially labile in ASD in terms of DNA

methylation and expression – mixed leukocytes from the

monozygotic twins study shows increased DNA methylation at

this locus, whereas there is decreased DNA methylation in the

ectodermal cells we studied, and expression of this gene is

significantly upregulated in the Brodmann Area (BA) 44/45 and

downregulated in the BA9/41 regions of the brain [32]. Whether

this olfactory receptor gene is a contributor to the distinctive

olfaction in subjects with ASD [47,48] remains to be determined,

although it should also be noted that the Human Brain

Transcriptome (HBT) studies categorized this gene, alone among

all olfactory receptor genes, into a post-natal synaptic transmission

co-expression module [31], indicating unique transcriptional

properties for this gene among those encoding olfactory receptors.

This gene merits further studies as being unusually prone to

dysregulation in ASD.

Epigenetic changes observed in our cohort of subjects born to

mothers with AMA may be due to aging of the oocyte, but there

are additional potential mechanisms. Spermatozoa from the

generally older fathers of the ASD subjects may also have

epigenetic changes with aging. Epigenetic dysregulation in ASD

could be due to as-yet unrecognized environmental influences

during development. Furthermore, an emerging property of the

genes in which mutations or sequence variants occur in subjects

with ASD is that of chromatin and epigenetic regulatory properties

[11], which may be occurring in ASD subjects born to older

mothers as a consequence of the generally older paternal age of

such individuals and the increased risk of mutational events with

age in the male germline [12,13]. The epigenetic dysregulation we

observe may therefore represent a common outcome of the effects

of mutations in such genes, making epigenetic changes an event

secondary to genetic mutations within cohorts of subjects with

ASD. Combined genetic and epigenetic analyses of the same

subjects will be needed to test these possibilities.

Materials and Methods

Cohorts and sample collection
All patient recruitment and sample collection was performed

with the appropriate human subjects protocol approval from the

Institutional Review Board at the Albert Einstein College of

Medicine. All adult subjects provided written informed consent

and a parent or guardian of any child participant provided written

informed consent on their behalf. We enrolled two groups of

subjects: individuals with a diagnosed autism spectrum disorder

(ASD), born to mothers aged 35 and older, and a control group of

typically developing (TD) individuals born to mothers aged 35 and

older. Of these, we selected 50 ASD and 50 TD subjects for

genotyping analysis, of which we took 47 and 48 from each group,

respectively, for methylation analysis. The characteristics of the

ASD and TD cohorts are summarized in Supplemental Table
S1.

We collected buccal epithelium using exfoliative brushing,

choosing this accessible cell type for two major reasons. Firstly, as

ectodermal in origin, these cells have been found to represent a

better surrogate for the brain than other tissues when relating

cognitive impairment with tissue-specific levels of mosaic trisomy

21 [49]. Secondly, exfoliative buccal brushing harvests squamous

epithelial cells homogeneously, confirmed by microscopy of

samples in this study (Supplemental Figure S1), avoiding the

potentially confounding effects of heterogeneous cell subtypes on

epigenomic profiling [18]. DNA from the buccal epithelial

samples was extracted with a modification of the protocol for

the Qiagen Gentra Puregene Buccal Cell Kit. We randomized

samples between arrays as a precaution against batch effects and

ran them on the Illumina HumanOmni2.5-8 BeadChip geno-

typing platform and the Illumina Infinium HumanMethyla-

tion450 Beadchip methylation platform (Supplemental Table
S2).

Chromosomal mosaicism analysis
Stringent genotype data preprocessing included filtering for

poor quality arrays and probes, as well as probe missingness and

allele frequency (Text S1). After this preprocessing, we used the

Mosaic Alteration Detection (MAD) algorithm [27] to assess the

prevalence of chromosomal mosaicism. We confirmed the ability

of MAD to detect mosaicism in samples from 4 individuals with

known chromosomal mosaicism (three cell line and one buccal

epithelial samples, Supplemental Figure S2).

Local ancestry deconvolution
We used the HAPMIX [50] software to annotate genomic

ancestry genome-wide. Since our population comprised individ-

uals with 3-way admixture, we simulated mixed parental ancestry

and calculated probabilities of each potential genotype at every

probe. We assigned ancestry only when the local probability

exceeded 0.5 (Supplemental Table S3).

Differential methylation analysis
Arrays were subjected to stringent preprocessing to correct for

technical (probe type, detection p-value), and batch artefacts

(Supplemental Figure S3). Due to inclusion of both males and

females in our cohort, we removed the sex chromosomes from our

dataset and conducted analysis on autosomes only. Detailed

information on the pre-processing procedures is included in the

Supplementary Information.

After preprocessing, we then performed principal components

analysis (PCA) on the M values (logit-transformed Illumina-

defined beta values) obtained. We accounted for the possible

known confounding influences, including technical (date of DNA

extraction, microarray chip, position on chip), microarray-based

(all categories of control probes designed by Illumina) and

biological (ASD status, age, gender, and ancestry percentage).

Ancestry percent was calculated as the proportion for each

population of all allele genotyping positions called by HAPMIX.

We identified the significant confounding covariates and corrected

for them prior to all subsequent analysis.

To identify differentially methylated regions (DMRs), we used

the bump-hunting approach, specifically the dmrFind algorithm

within the charm package [28]. Based on our PCA data, we input

age, gender, percent CEU (European) and percent YRI (African)

ancestry as known biological covariates. Those loci called as

significant by the dmrFind algorithm were defined as candidate

DMRs. Stability of DMR prediction was tested by re-running the

bump-hunting on the data a total of 4 times. Additional loci

identified through bump-hunting are illustrated in Supplemen-
tal Figure S5.

Copy number variant (CNV) calling
We utilized the CNVision algorithm [30] to detect copy number

variants in all individuals. We removed samples with CNVs

overlapping called DMRs and re-ran bump-hunting to confirm
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that the DMR was not solely due to the presence of CNVs in the

region.

Weighted gene co-expression network analysis (WGCNA)
We used the Weighted Correlation Network Analysis framework

WGCNA [34] for our DNA methylation analysis, as has previously

been performed [33] to identify networks of co-methylated CG

dinucleotides associated with ASD status. As input, we used the CG

values generated from the Surrogate Variable Analysis (SVA)

algorithm called in the dmrFind function performing bump-hunting,

thus correcting for all known technical artifacts. We used the

WGCNA package in R and built an unsigned co-methylation

network. Correlation matrices were raised to the power of 5, as

calculated by the scale-free topology criterion on data subsets, and

thresholds were set of minimum module connectivity (kME) of

greater than 0.7, and minimum height for module merging of 0.1

[32]. We ran the algorithm with block sizes of 40,000 CGs.

We assessed module relevance to case/control status with a t-

test (two tailed, unequal variance) of module eigengene values with

case/control and gender categories. For relationship with the

continuous variables of age and percent of YRI and CEU

ancestry, we used Pearson correlation coefficients and their

Student asymptotic p-values.

For analysis of methylation changes associated with ASD, we

selected the 2 modules (‘‘light green’’, and ‘‘dark olive green2’’)

that showed significant correlation only with ASD status and not

with any other covariate, to avoid introducing confounding effects.

The genes associated with the dark olive green2 module are listed

in Supplemental Table S9.

Functional analysis
The nature of the enriched pathways involved in the list of genes

associated with DMRs was investigated using a Cytoscape plugin

for Biological Network Gene Ontology Enrichment, BiNGO [51].

The reference set used was set as the whole annotation from Homo

sapiens and Biological Processes from Gene Ontology were queried,

with a significance level set to a false discovery rate (FDR)

corrected value of 0.05.

To assess the functional impact of our WGCNA ASD-associated

co-methylated gene modules, we interrogated the genes’ relevance

in protein-protein interaction (PPI) networks. We combined the

genes in the light green and dark olive green 2 modules with a list of

previously curated known ASD risk genes, with the addition of

exome sequencing candidates (KATNAL2 and CHD8) [39]. We used

GeneMania [38] to build a PPI network of this combined list, using

only data from physical protein interaction databases. We visualized

this network in Cytoscape. To test for bias due to probe number

differences at each gene, we use the GoSeq package written in R [37]

with weighting of genes defined by the number of probes assigned to

each gene in the Illumina 450 K microarray manifest. A PPI

analysis showing interactions with intellectual disability (ID) genes is

shown in Supplemental Figure S8.

To test the significance of these PPI connections, we performed

Degree Aware Disease Gene Prioritization (DADA) [40]. We used

the ASD seed list mentioned previously, a combined candidate list

of the genes related to the ASD-associated WGCNA CGs, and the

physical interaction database from the Human Protein Reference

Database (HPRD) available through GeneMania. We evaluated if

our genes were significantly enriched in ranking using the Mann-

Whitney test.

Verification of differential methylation
We bisulphite converted 500 ng of DNA using the Zymo EZ-96

Methylation-Lightning Kit. After separate PCR amplification of

target regions (primers shown in Supplemental Table S5), we

pooled the amplicons in averaged equal ratios and generated

Illumina libraries using Tecan automation. Two sets of 48 libraries

each were multiplexed on the MiSeq. Using bsmap (Bisulphite

Sequencing Mapping Platform) [52] we checked for bisulphite

conversion efficiency (CRT in CH contexts) and quantified the

percent methylation for each person at every CG in the amplicons.

Additional loci tested by this bisulphite sequencing approach are

shown in Supplemental Figure S6.

Data access
All microarray data generated are deposited into the Gene

Expression Omnibus (GEO) database under accession number

GSE50759.

Supporting Information

Figure S1 H&E staining of buccal epithelial samples. The

buccal brushings yielded the expected squamous epithelial cells

(a.i-a.vi) with very small proportions of possible contaminant cells

types (b) of different sizes (b.i-b.iv) or nuclear characteristics (b.v).

Counts of 25 individual cells per sample showed high purity in

both ASD and TD groups (c).

(PDF)

Figure S2 B allele frequency plots of known mosaic cases.

The MAD output correctly highlights an abnormality along

chromosomes; analysis of BAF patterns allows determination of

the source of error. The pattern in AG13074 results from

meiosis I non-disjunction, and F44 P110 demonstrates a

meiosis II non-disjunction with mosaic UPD. The lack of

array probes on the p arm of chromosome 13 precludes

definitive assessment of the meiotic source of the GM00503

error (I or II); the pattern of GM00682 could result from a

variety of situations.

(PDF)

Figure S3 Preprocessing of Illumina 450 K data. The

colors in the density plots correspond to different chips

(microarrays), each run to contain 12 samples. The normal-

ization procedures correct for both intra-array and inter-array

differences.

(PDF)

Figure S4 Associations between principal components and

known covariates. Heat map of –log10 P-values for the association

of each principal component with each known covariate

demonstrates that variation due to technical artifact has been

removed, while variation due to known biological covariates has

been preserved for subsequent analysis.

(PDF)

Figure S5 Stable DMRs defined by the bump-hunting algorithm.

DNA methylation values are displayed along with -log10 p-values

for each probe. Left column, from top to bottom, gene names:

ADRA2C, GPC1, CREB5, HOOK2. Right column, top to bottom:

PAX8, NOS1, MAPK8IP.

(PDF)

Figure S6 Results of massively-parallel bisulphite sequencing of

the NOS1 and KCNQ5 DMRs. The p values were calculated using t

tests combining all of the loci tested in the putative DMR and

comparing between the ASD and TD groups.

(PDF)

Figure S7 Gene ontology analysis of genes associated with age-

related DMRs. Panel A shows connectivity of the gene ontology
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categories significantly enriched for genes related to age-associated

DMRs, plotted by corrected p-value in Panel B.

(PDF)

Figure S8 PPI Network of candidate genes and intellectual

disability (ID) genes. Purple nodes indicate genes from a

curated list of previously implicated genes in ID. Light green

and dark green nodes refer to genes from our WGCNA

analysis of ASD-associated CpGs. Grey defines intermediate

genes.

(PDF)

Table S1 Characteristics of study subjects. Age metrics reflect

the mean age in years per group and the standard deviation,

with the range included in parentheses. Maternal and paternal

age refer to the age of the parents at the time of the subject’s

birth. All maternal ages are included, while information for

paternal age was only available for ,50% of subjects. Subject

age refers to age when the sample was collected. Percent genetic

ancestry based on subjects with quality filtered genotype data;

47 ASD and 46 TD genotypes were included. ASD: Autism

Spectrum Disorder. TD: Typically Developing. CEU: Utah

residents with Northern/Western European ancestry from the

CEPH collection (European) YRI: Yoruba in Ibadan, Nigeria

(African).

(PDF)

Table S2 Experimental batches of microarrays.

(PDF)

Table S3 HAPMIX local ancestry probability calculation.

(PDF)

Table S4 DMRs Associated with ASD from Bump-Hunting.

Unstable DMRs are shaded in gray.

(PDF)

Table S5 Primers for bisulphite-converted DNA.

(PDF)

Table S6 Age-associated candidate DMRs. The table shows the

results of the dmrFind algorithm. DMR positions are shown in the

chr/start/end co-ordinates, with probe indices and numbers

represented by indexStart, indexEnd and nprobes, and area_raw

the significance calculation following permutation analysis,

allowing ranking of these DMRs by significance, as shown.

(PDF)

Table S7 Bonferroni-corrected p-values of association between

modules and known covariates.

(PDF)

Table S8 Genes in light green module associated with ASD.

(PDF)

Table S9 Genes in dark olive green module associated with ASD.

(PDF)

Text S1 A file containing all supplementary figures and tables,

with details on analytical approaches and including software

allowing re-analysis of data.

(PDF)
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