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Abstract Inhibiting high-voltage-activated calcium channels (HVACCs; CaV1/CaV2) is therapeutic

for myriad cardiovascular and neurological diseases. For particular applications, genetically-

encoded HVACC blockers may enable channel inhibition with greater tissue-specificity and

versatility than is achievable with small molecules. Here, we engineered a genetically-encoded

HVACC inhibitor by first isolating an immunized llama nanobody (nb.F3) that binds auxiliary HVACC

CaVb subunits. Nb.F3 by itself is functionally inert, providing a convenient vehicle to target active

moieties to CaVb-associated channels. Nb.F3 fused to the catalytic HECT domain of Nedd4L (CaV-

ablator), an E3 ubiquitin ligase, ablated currents from diverse HVACCs reconstituted in HEK293

cells, and from endogenous CaV1/CaV2 channels in mammalian cardiomyocytes, dorsal root

ganglion neurons, and pancreatic b cells. In cardiomyocytes, CaV-ablator redistributed CaV1.2

channels from dyads to Rab-7-positive late endosomes. This work introduces CaV-ablator as a

potent genetically-encoded HVACC inhibitor, and describes a general approach that can be

broadly adapted to generate versatile modulators for macro-molecular membrane protein

complexes.

DOI: https://doi.org/10.7554/eLife.49253.001

Introduction
Inhibition of high-voltage-activated calcium channels (HVACCs) is an important prevailing or poten-

tial therapy for diverse cardiovascular (hypertension, cardiac arrhythmias, cerebral vasospasm) and

neurological diseases (epilepsy, chronic pain, Parkinson’s disease) (Zamponi et al., 2015). Small mol-

ecule HVACC inhibitors include CaV1 blockers (dihydropyridines, benzothiazepenes phenylalkyl-

amines) and venom peptides that target CaV2.1 (!-agatoxin), CaV2.2 (!-conotoxin), and CaV2.3

(SNX-482) channels. When introduced into an organism, small-molecule HVACC blockers are typi-

cally widely distributed leading to off-target effects that can narrow the therapeutic window and,

thereby, adversely impact therapy. Genetically-encoded HVACC inhibitors can circumvent off-target

effects because they can be selectively expressed in target tissues or cells; thus, they may be useful

alternatives or complements to small molecule therapy (Yang et al., 2013; Murata et al., 2004).

There are seven distinct HVACCs (CaV1.1 - CaV1.4; CaV2.1 - CaV2.3) which exist in cells as multi-

subunit complexes comprising pore-forming a1-subunits assembled with auxiliary proteins which

include b, a2-d, and g subunits (Zamponi et al., 2015; Buraei and Yang, 2010; Dolphin, 2012).

HVACCs are named according to the identity of the component a1 subunit (a1A-a1F; a1S) which also

contains the voltage sensor, selectivity filter, and channel pore. The various auxiliary subunits typi-

cally regulate HVACC trafficking, gating, and modulation, and are recognized as potential targets

for developing HVACC-directed therapeutics. For example, gabapentin, which is clinically utilized
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for treating epilepsy and neuropathic pain, targets HVACC a2-d subunits (Gee et al., 1996). Based

on the presumption that the association of a1 with b is obligatory for the formation of surface-tar-

geted functional HVACCs as indicated by heterologous expression experiments (Buraei and Yang,

2010), disruption of the a1-b interaction has been long pursued as a strategy to develop HVACC

inhibitors (Young et al., 1998; Findeisen et al., 2017; Chen, 2018; Khanna et al., 2019). To this

end, over-expression of peptides derived from the a1-interaction domain (AID) which contains the

amino acid sequence responsible for high-affinity a1-b association (Pragnell et al., 1994;

Van Petegem et al., 2004; Chen et al., 2004; Opatowsky et al., 2003), has been utilized by several

groups as putative genetically-encoded HVACC inhibitors (Findeisen et al., 2017; Yang et al.,

2019). However, the efficacy of this approach in vivo may be limited as recent data suggests that in

some adult tissue the a1-b interaction is not absolutely essential for surface trafficking of HVACCs

(Yang et al., 2019; Meissner et al., 2011).

Rad/Rem/Rem2/Gem/Kir (RGK) proteins are endogenous small Ras-like G-proteins that pro-

foundly inhibit all HVACCs when over-expressed in either heterologous cells or native tissue

(Béguin et al., 2001; Finlin et al., 2003; Chen et al., 2005; Xu et al., 2010). They form ternary com-

plexes with HVACCs via binding to constituent b subunits and inhibit currents via multiple mecha-

nisms including removal of surface channels and impairing gating (Yang and Colecraft, 2013;

Yang et al., 2010). Despite their efficacy, utility of RGKs as genetically-encoded HVACC inhibitors is

confounded by potential off-target effects since they interact with and regulate other binding part-

ners such as cytoskeletal proteins, 14-3-3, calmodulin, and CaM kinase II (Yang and Colecraft, 2013;

Correll et al., 2008; Royer et al., 2018; Béguin et al., 2005; Ward et al., 2004). A critical unmet

need is the development of genetically-encoded HVACC inhibitors that possess the high efficacy of

RGKs but lack the problematic interactions with other signaling proteins. Here, we achieve this by

fusing the homologous to the E6-AP carboxyl terminus (HECT) catalytic domain of the E3 ubiquitin

ligase, neural precursor cell developmentally down-regulated protein 4 (Nedd4-2 or hereafter

referred to as Nedd4L), to a CaVb-targeted nanobody. The resulting construct, termed CaV-ablator,

eliminated diverse HVACCs both in both reconstituted systems and native excitable cells, providing

a unique new tool for probing CaV1/CaV2 signaling and regulation in vivo, and potential develop-

ment into a therapeutic.

Results

Isolation and characterization of CaVb-targeted nanobodies
We sought to develop a nanobody targeted to CaVbs that would be incorporated into CaV channel

complexes but be functionally silent, to serve as a vehicle to potentially address distinct enzymatic

moieties or sensors to endogenous channels. We expressed CaVb1b and CaVb3 in HEK293 cells using

BacMam expression and purified the proteins using affinity purification, ion exchange, and size

exclusion chromatography (Figure 1a). Purified b1 and b3 (1 mg each) were used for llama immuniza-

tion, and successful serum conversion was confirmed by ELISA (not shown). Messenger RNA was

extracted from isolated lymphocytes, PCR-amplified and cloned into a plasmid vector (pComb3XSS)

to generate a VHHS phage library (Figure 1b). Putative nanobody binders were enriched from the

phage library using three rounds of phage display and panning (Pardon et al., 2014). We performed

a 96-well ELISA on enriched phage libraries and selected 14 positive clones for sequencing

(Figure 1c). We identified at least seven distinct classes of nanobody binders based on the unique

sequences within complementarity determining regions (CDR1-3), the major determinants of antigen

binding (Figure 1d,e).

We adopted a small-molecule-induced fluorescence co-translocation assay to simultaneously

determine whether: (1) individual nanobodies were well-behaved when expressed in mammalian

cells (i.e. do not aggregate), and (2) bound CaVbs. A tripartite construct consisting of individual

nanobodies fused to CFP and the C1 domain of PKCg was cloned into a CMV expression vector and

transiently co-transfected with YFP-tagged CaVbs into HEK293 cells. After pilot experiments, we

chose one nanobody clone, nb.F3, for in-depth characterization and development. Both nb.F3-CFP-

C1 and YFP-b1 were uniformly expressed in the cytosol of transfected HEK293 cells (Figure 1f).

Application of 1 mM phorbol-12,13-dibutyrate (PdBu) led to the rapid and dramatic redistribution of

nb.F3-CFP-C1 from the cytosol to the plasma and nuclear membranes (Figure 1f). Reassuringly,
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YFP-b1 concomitantly redistributed to the plasma and nuclear membranes, providing a convenient

visual confirmation that it associates with nb.F3 inside cells (Figure 1f). Similar experiments con-

ducted with the other CaVbs (b2-b4) showed that they all bind with nb.F3-CFP-C1 in cells (Figure 1f;

Figure 1—figure supplement 1), indicating the nanobody interacts with an epitope conserved

among CaVbs. Isothermal titration calorimetry using purified nb.F3 and CaVb2b indicated a high-affin-

ity (Kd = 13.2 ± 7.2 nM) interaction and a 1:1 stoichiometry (Figure 1g).

It was important to our overall strategy that nb.F3 incorporate into assembled HVACC complexes

without impacting channel function or subunit stability. We utilized a flow cytometry assay to assess
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Figure 1. Development of a pan-CaVb nanobody. (a) Size-exclusion chromatograph and Coomassie gel (inset) showing purified Cavb1 from baculovirus-

infected HEK293 GnTl- cells. (b) Flow-chart of nanobody generation. (c) Phage ELISA using CaVb1 as bait and periplasmic extracts from single infected

E. coli clones. Red bars represent clones that were selected for subsequent analyses; blue bar represents a negative control from an E. coli expressing

an anti-GFP nanobody. (d) Cartoon showing conventional IgG antibody (left) and camelid heavy-chain antibody (center). Right, a schematic

representation of the variable heavy chain (VHH or nanobody) of camelid heavy-chain antibodies. The three CDR loops which are the primary

determinants of antigen-binding are shown in red, green, and blue. (e) Sequence alignment of CDR3 from selected clones. (f) Left, schematic of co-

translocation assay to determine nanobody/CaVb interaction in HEK293 cells. Right, confocal images showing membrane co-translocation of CaVbX-YFP

and nb.F3-CFP-C1PKCg in response to treatment with 1 uM phorbol 12,13-dibutyrate (PdBu). (g) Left, exemplar isothermal titration calorimetry trace

using purified CaVb2b and nb.F3. Right, summary of ITC thermodynamic parameters. N, stoichiometry; Kd, dissociation constant; Ka, affinity constant;

DH, enthalpic change; DS entropic change. T = 298K.

DOI: https://doi.org/10.7554/eLife.49253.002

The following figure supplement is available for figure 1:

Figure supplement 1. Nb.F3 binds all four CaVb subunits in the cytosol of mammalian cells Left, schematic of phorbol ester 12,13-dibutyrate (PdBu)

translocation assay.

DOI: https://doi.org/10.7554/eLife.49253.003
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the impact of nb.F3 on recombinant CaV2.2 trafficking, subunit expression levels, and whole-cell cur-

rents, all of which are known to be regulated by CaVb (Figure 2) (Waithe et al., 2011). We used an

engineered a1B harboring two tandem high-affinity bungarotoxin-binding sites (2XBBS) in the extra-

cellular domain IV S5-S6 loop and a C-terminus YFP tag to enable simultaneous detection of surface

(Alexa647-conjugated bungarotoxin) and total (YFP fluorescence) channel populations in non-per-

meabilized cells (Figure 2a). We co-expressed BBS-a1B-YFP and CaVb either with or without nb.F3-

YFP

A
le

x
a
-6

4
7

CFP nb.F3

± nb.F3

Ca
V

YFP

1B
BBS

-bungarotoxin

Alexa-647

a b c d
A

le
x
a
-6

4
7

YFP

CFP nb.F3

± nb.F3

Ca
V

YFP

1B
BBS

-bungarotoxin

Alexa-647

e f g h

i j k l

6040-40 0-20 20

-50

-100

-150

0

6040-40 0-20 20

-50

-100

0

-50

-100

0

1 2 3

0 103 104 0 103 104

0

103

104

102

0 103 105 0 103 105

0

103

104

102

0 103 104102 0 103 104102

0 103 104102 0 103 104102 105
0

20

40

60

80

100

0

20

40

60

80

100

C
D

F
C

D
F

Alexa-647 YFP

Alexa-647 YFP

Voltage (mV) Voltage (mV) Voltage (mV)

I 
(p

A
/p

F
)

I 
(p

A
/p

F
)

I 
(p

A
/p

F
)

6040-40 0-20 20

-50

-100

-150

0

4

Voltage (mV)

I 
(p

A
/p

F
)

6040-40 0-20 20

1 2 3 4

0

1

F
lu

o
r.

 (
n

o
rm

)

647 YFP

F
lu

o
r.

 (
n

o
rm

)

0

1

1 2 3 4

647 YFP

1
n
A

10ms

Figure 2. Nb.F3 is functionally silent on reconstituted CaV2.2 channels. (a) Schematic of experimental strategy; BBS-a1B-YFP was transfected in HEK293

cells with a2d, CaVb and either CFP or nb.F3-P2A-CFP. (b) Exemplar flow cytometry dot plot of cells expressing BBS-a1B-YFP + CaVb1 + a2d-1 and either

CFP (left) or nb.F3-P2A-CFP (right). Approximately 100,000 cells are represented here and throughout. Horizontal and vertical lines represent the

threshold for YFP- and Alexa-647-positive cells, respectively, as determined with single color controls. (c) Cumulative distribution histogram of Alexa-

647 (left) or YFP fluorescence (right) from CFP (black) or nb.F3 (red) expressing cells. YFP-positive cells were selected for the analysis; dashed lines

represent thresholds for Alexa-647 and YFP fluorescence signals above background. (d) Summary flow cytometry data of surface (647, filled) and total

(YFP, patterned) levels of BBS-a1B-YFP. Data from nb.F3-expressing cells was normalized to CFP control group. n=>5,000 cells analyzed per

experiment, N=4 separate experiments, error bars, s.e.m. (e) Experimental strategy; HEK293 cells were transfected with BBS-a1B + CaVb-YFP + a2d-1. (f-

h) Same format as (b-d) for cells expressing BBS-a1B + CaVb-YFP+ a2d-1 ± nb.F3-P2A-CFP. (i) Exemplar whole-cell Ba2+ currents (top) and population I-V

curves (bottom) in HEK293 cells expressing a1B + CaVb1 + a2d-1 and either CFP (black) or nb.F3-P2A-CFP (red). (j-l) Same format as (i) for cells

expressing CaVb2 (j), CaVb3 (k), and CaVb4 (l). Scale bar 1 nA, 10 ms. Data are means ± s.e.m., n=10 for each point.

DOI: https://doi.org/10.7554/eLife.49253.004

The following figure supplements are available for figure 2:

Figure supplement 1. Exemplar flow cytometry data for BBS-a1B with YFP-CaVb2- CaVb4.

DOI: https://doi.org/10.7554/eLife.49253.005

Figure supplement 2. Nb.F3 is functionally silent on reconstituted CaV1.2 channels.

DOI: https://doi.org/10.7554/eLife.49253.006
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P2A-CFP and utilized flow cytometry to rapidly measure surface and total channel expression. In cells

expressing BBS-a1B-YFP and b1b, nb.F3 had no impact on Alexa647 or YFP fluorescence compared

to control (Figure 2b–d), indicating no disruption of channel trafficking or effect on a1B expression.

Similar results regarding the inertness of nb.F3 on a1B trafficking and stability were obtained when

CaV2.2 was reconstituted with the other CaVb (b2-b4) subunits (Figure 2d).

To examine a potential direct impact of nb.F3 on CaVb itself, we applied the flow cytometry assay

to cells expressing BBS-a1B + b-YFP ± nb .F3-P2A-CFP (Figure 2e). Not surprisingly, nb.F3 did not

impact the surface trafficking of BBS-a1B co-expressed with any of the four CaVb isoforms

(Figure 2f–h, Figure 2—figure supplement 1). The expression levels of b1-YFP and b4-YFP were

unaffected by nb.F3, whereas the levels of b2 and b3 were modestly reduced (although this effect

did not reach statistical significance), suggesting a possible slightly increased vulnerability of these

two isoforms to degradation when bound by the nanobody (Figure 2h). Similar observations regard-

ing the lack of effect of nb.F3 on channel trafficking and subunit expression levels were made in cells

expressing CaV1.2 channels reconstituted from BBS-a1C + b-YFP ± nb .F3-P2A-CFP (Figure 2—fig-

ure supplement 2).

Finally, we used patch-clamp electrophysiology to evaluate the impact of nb.F3 on whole-cell cur-

rents through recombinant CaV2.2 channels reconstituted in HEK293 cells. Cells expressing a1B +

b1b + a2d displayed robust whole-cell Ba2+ currents that were completely unaffected by nb.F3

(Figure 2i; Ipeak,0mV = �104.4 ± 22.0 pA/pF, n = 10 for CFP, and Ipeak,0mV = �103.5 ± 39.5 pA/pF,

n = 10 for nb.F3). A similar lack of effect of nb.F3 was observed on currents from either CaV2.2

reconstituted with the other b2-b4 subunits (Figure 2j-l), or CaV1.2 (a1C + b2a + a2d) channels (Fig-

ure 2—figure supplement 2).

Overall, these results indicate that nb.F3 binds b1-b4 subunits in cells, and is potentially assembled

into CaV channel complexes in a functionally silent manner, essentially acting as an unobtrusive pas-

senger. However, it was also possible that the apparent functional inertness of nb.F3 on CaV2.2 and

CaV1.2 channels had a more trivial explanation— that CaVbs assembled with pore-forming a1-subu-

nits are simply inaccessible to nb.F3. We could discriminate between these two possible scenarios

by determining whether nb.F3 could be used to target bioactive molecules to regulate assembled

channels, as we did next.

Potent functional effects of an F3-Nedd4L chimeric protein on CaV1/
CaV2 channels
We hypothesized that fusing the catalytic domain of an E3 ubiquitin ligase to nb.F3 would generate

a genetically-encoded molecule that inhibits Cav1/Cav2 channels by reducing their surface density

(Kanner et al., 2017). Accordingly, we generated a chimeric construct (nb.F3-Nedd4L) by fusing the

catalytic HECT domain of Nedd4L to the C-terminus of nb.F3. We also generated a catalytically

dead mutant of the chimeric construct (nb.F3-Nedd4L[C942S]) to distinguish between ubiquitina-

tion-dependent and independent effects. Both constructs were generated in a P2A-CFP expression

vector, enabling use of CFP fluorescence to confirm protein expression.

In experiments mimicking those described for nb.F3, we examined the impact of nb.F3-Nedd4L

and nb.F3-Nedd4L[C942S] on reconstituted CaV2.2 channel trafficking, subunit expression levels,

and whole-cell currents (Figure 3). Given the classical role of E3 ubiquitin ligases in mediating degra-

dation of target proteins, we first assessed if nb.F3-Nedd4L affected total CaVb expression

(Figure 3a,b). In cells expressing BBS-a1B + b1b-YFP + a2d, neither F3-Nedd4L nor F3-Nedd4L

[C942S] had any significant impact on b1b total expression as reported by the unchanged YFP fluo-

rescence compared to negative control cells (Figure 3a,b). Similar results were obtained when BBS-

a1B was reconstituted with YFP-tagged b2, b3, or b4 subunits, though there was a trend towards

lower fluorescence with b2a and b4 (Figure 3b). By contrast, nb.F3-Nedd4L significantly suppressed

surface density of BBS-a1B irrespective of the identity of the co-expressed YFP-tagged CaVb

(Figure 3c, red bars; Figure 3—figure supplement 1). The decreased BBS-a1B surface density was

not observed with nb.F3-Nedd4L[C942S] (Figure 3c, green bars), indicating it requires the catalytic

activity of the attached Nedd4L HECT domain. Similarly, in cells expressing BBS-a1C + bX-YFP, nb.

F3-Nedd4L strongly reduced CaV1.2 surface density in a ubiquitin-dependent manner (Figure 3—

figure supplement 2).

Given the striking effect of nb.F3-Nedd4L on surface population of channels without affecting

total levels Cavb, we next assessed whether there was any impact of nb.F3-Nedd4L on total a1B
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subunit expression. Similar to our observations for CaVb, nb.F3-NeddL had no significant impact on

the expression of BBS-a1B-YFP (Figure 3e, red bars) relative to either negative controls (black bars)

or cells expressing nb.F3-Nedd4L[C942S] (green bars). Not surprisingly, nb.F3-Nedd4L markedly

impaired surface trafficking of BBS-a1B-YFP co-expressed with any CaVb (Figure 3f).
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Figure 3. Functional impact of a chimeric nb.F3-Nedd4L protein (CaV-ablator) on reconstituted Cav2.2 channels. (a) Schematic of experimental design;

HEK293 cells were transfected with BBS-a1B + CaVb-YFP + a2d�1, and either nb.F3, nb.F3-Nedd4L, or nb.F3-Nedd4L[C942S]. (b) Exemplar histograms

(left) and summary data (right) of flow cytometry experiments measuring total (YFP) levels of CaVb1b-YFP. Each data set was normalized to a control

group that expressed CFP. n > 5,000 cells analyzed per experiment, N = 3 separate experiments, error bars, s.e.m. (c) Exemplar histograms (left) and

summary data (right) of flow cytometry experiments measuring surface (647) levels of BBS-a1B. White dashed line is the threshold for 647 signal above

background. (d) Experimental strategy; same format as in (a) except YFP was fused to BBS-a1B, enabling measurement of the total levels of the a1B

subunit. (e-f) Same format as in (b-d) for cells expressing BBS-a1B-YFP + CaVb + a2d-1. (g) Exemplar traces (top) and population I-V curves (bottom)

from whole-cell patch clamp measurements in HEK293 cells expressing a1B + CaVb1b + a2d-1 and nb.F3 (black, Ipeak, 0mV = -103.5 ± 39.5 pA/pF, n=10),

nb.F3-Nedd4L (red, Ipeak, 0mV = -3 ± 0.53 pA/pF, n=11), or nb.F3-Nedd4L[C942S] (green, Ipeak, 0mV = -117 ± 34.8 pA/pF, n=8). (h-j) Same format as (g) for

CaV2.2 channels reconstituted with CaVb2 (h), CaVb3 (i), and CaVb4 (j) with nb.F3 (black) or nb.F3-Nedd4L (red). Scale bar 1nA, 10ms. Data are means ± s.

e.m., n=10 for each point. *P < 0.05 compared with control, one-way ANOVA with Tukey’s multiple comparison test. †P < 0.01 compared with control,

unpaired, two-tailed Student’s t-test.

DOI: https://doi.org/10.7554/eLife.49253.007

The following figure supplements are available for figure 3:

Figure supplement 1. Exemplar flow cytometry data for CaV-ablation of BBS-a1B with YFP-CaVb2- CaVb4.

DOI: https://doi.org/10.7554/eLife.49253.008

Figure supplement 2. Functional impact of a chimeric nb.F3-Nedd4L protein (CaV-ablator) on reconstituted Cav1.2 channels.

DOI: https://doi.org/10.7554/eLife.49253.009
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Finally, we examined the functional impact of nb.F3-Nedd4L on reconstituted CaV2.2 whole-cell

currents. Remarkably, nb.F3-Nedd4L essentially eliminated CaV2.2 currents reconstituted from a1B +

a2d co-expressed with any of the four CaVbs (Figure 3g-j). Further, nb.F3-Nedd4L was equally effec-

tive in ablating whole-cell currents in reconstituted CaV1.2, CaV1.3, CaV2.1, and CaV2.3 channels

(Figure 4).

Given its exceptional efficacy in ablating whole-cell HVACC currents via a functionalized CaVb-tar-

geted nanobody, we named nb.F3-Nedd4L as CaV-ablator, and describe the process of HVACC cur-

rent elimination by this molecule as CaV-ablation.

CaV-ablation of endogenous CaV1.2 channels in cardiomyocytes
We next determined whether CaV-ablator could effectively inhibit HVACC currents in native cells

where the nano-environment around CaV1/CaV2 channels is typically more complex than in heterolo-

gous cells. Cultured adult guinea pig ventricular cardiomyocytes (CAGPVCs) provided an initial
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Figure 4. CaV-ablator inhibits distinct reconstituted HVACCs. (a) Population I-V curves from HEK293 expressing a1C + b1b + a2d�1 with either nb.F3

(black, Ipeak, 0mV = �48.4 ± 8.4 pA/pF, n = 12) or CaV-ablator (red, Ipeak, 0mV = �0.93 ± 0.16 pA/pF, n = 8). (b-d) Same format as (a) for cells expressing

reconstituted CaV1.3 (b), CaV2.1 (c), or CaV2.3 (d) channels. Data are means ± s.e.m.†p<0.01 compared with control, unpaired, two-tailed Student’s

t-test.

DOI: https://doi.org/10.7554/eLife.49253.010
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exceptional challenge because they have an intricate cyto-architecture and express CaV1.2 channels

that are predominantly targeted to specialized dyadic junctions. Moreover, as it has now been

shown that in adult cardiomyocytes binding of a1C to CaVb is not obligatory for substantive CaV1.2

channel trafficking to the surface sarcolemma (Yang et al., 2019; Meissner et al., 2011), the fraction

of CaVb-bound CaV1.2 channels contributing to the whole-cell L-type current (ICa,L) in ventricular

myocytes is ambiguous. We used adenovirus to express CaV-ablator or nb.F3-Nedd4L[C942S] in

CAGPVCs which retain the rod-shaped phenotype and overall cyto-architecture of freshly isolated

heart cells (Figure 5a). Control (non-infected) cardiomyocytes expressed ICa,L that peaked at a 0 mV

test pulse (Figure 5a,b; Ipeak,0mV = �6.5 ± 0.2 pA/pF, n = 8). By contrast, in contemporaneous

experiments, cardiomyocytes expressing CaV-ablator via adenovirus-mediated infection displayed

virtually no CaV1.2 currents, demonstrating an exceptional CaV-ablation efficiency in this system

(Figure 5a,b; Ipeak,0mV = �1.0 ± 0.3 pA/pF, n = 9). Cardiomyocytes expressing nb.F3-Nedd4L[C942S]

displayed ICa,L similar to control (Ipeak,0mV = �5.1 ± 0.6 pA/pF, n = 10), indicating that ubiquitination

is necessary for CaV-ablation in this system.

What is the mechanism of CaV-ablation in cardiomyocytes? We used immunofluorescence to

probe how CaV-ablator affected expression levels and sub-cellular localization of CaV1.2 a1C and b2
subunits, respectively, in cardiomyocytes. CaVa1C in uninfected cardiomyocytes presented with a

characteristic striated punctate distribution pattern that co-localized with that of ryanodine (RyR2)

receptors (Figure 5c), reflecting their well-known predominant localization at dyadic junctions

(Scriven et al., 2000; Bers, 2002). A similar distribution pattern for a1C was observed in cardiomyo-

cytes expressing nb.F3-Nedd4L[C942S], consistent with the lack of effect of this protein on ICa,L. In

cardiomyocytes expressing CaV-ablator, the signal intensity for punctate a1C staining was unchanged

from control cells (Figure 5—figure supplement 1), suggesting no impact of the presumed increase

in ubiquitination on the stability of the protein. However, there was a redistribution of a1C from

dyadic junctions, as reported by a dramatic loss of co-localization between a1C and RyR2

(Figure 5c). Rather, the punctate a1C signals in CaV-ablator-expressing cardiomyocytes coincided

with Rab7, but not Rab5 or LAMP1, immunofluorescence signals (Figure 5d; Figure 5—figure sup-

plement 1). Thus, the mechanism of CaV-ablator inhibition of ICa,L is redistribution of a1C from dyadic

junctions to intracellular compartments, specifically Rab7-positive late endosomes (Figure 5h)

(Rink et al., 2005).

Cardiomyocytes expressing CaV-ablator also showed no difference in total CaVb2 levels as com-

pared to either uninfected or nb.F3-Nedd4L[C942S]-expressing cells (Figure 5—figure supplement

1). Hence, CaV-ablator-mediated redistribution of CaV1.2 in cardiomyocytes cannot be explained as

simply due to an absence of CaVb. An intriguing possibility was that though CaV-ablator is specifically

targeted to CaVb in channel complexes, it is also able to directly catalyze ubiquitination of a1 subu-

nits within the macro-molecular complex. Indeed, in pulldown experiments of recombinant CaV1.2

channels, CaV-ablator substantially increased ubiquitination of both a1C (Figure 5e,f) and CaVb1b
subunits (Figure 5g). Nevertheless, the overall levels of a1C expression was unchanged with CaV-

ablator despite the increased ubiquitination (Figure 5e). Taken together, our results suggest that

direct ubiquitination of a1C by CaV-ablator may underlie the redistribution of CaV1.2 channels from

dyads to Rab7-positive late endosomes (Figure 5h).

CaV-ablation in dorsal root ganglion (DRG) neurons and pancreatic b
cells
We next tested the efficacy of CaV-ablator to suppress HVACCs in murine dorsal root ganglion

(DRG) neurons which were of interest because they express multiple CaV1/CaV2 channel types

(Murali et al., 2015; McCallum et al., 2011), and also play a key role in the processing of noxious

signals including pain and itch (Han et al., 2013; Kim et al., 2016). We infected cultured DRG neu-

rons with adenovirus expressing either GFP, CaV-ablator, or nb.F3-Nedd4L[C942S]. Given their het-

erogeneous nature, we first used fura-2 to measure calcium influx into a population of DRG neurons

in response to depolarization with 40 mM KCl (Figure 6a,b). Recordings were done in the presence

of 5 mM mibefradil to block low-voltage-activated T-type calcium channels which are also prevalent

in these cells (Puckerin et al., 2018; Jagodic et al., 2008). In neurons expressing GFP or nb.F3-

Nedd4L[C942S], a substantial fraction of cells displayed large increases in fura-2-reported Ca2+ tran-

sients in response to 40 mM KCl, indicating the opening of CaV1/CaV2 channels (Figure 6a,b). By
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Figure 5. CaV-ablation of endogenous CaV1.2 in cardiomyocytes. (a) Confocal images (top) and exemplar traces from whole-cell recordings of

uninfected guinea pig cardiomyocytes (left), or infected with adenovirus expressing either CaV-blator (middle) or nb.F3-Nedd4L[C942S] (right). Scale bar

0.2nA, 10 ms. (b) Population I-V curves from cardiomyocytes expressing CaV-blator (red), nb.F3-Nedd4L[C942S] (green), or an uninfected control (black).

(c) Left, exemplar confocal images of cardiomyocytes fixed and immunostained with a1C (green) and ryanodine receptor (RyR2, magenta) antibodies.

Figure 5 continued on next page
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contrast, depolarization-induced Ca2+ influx was virtually eliminated in neurons expressing CaV-abla-

tor, demonstrating highly efficient CaV-ablation in this system (Figure 6a,b).

We used whole-cell patch clamp to further characterize the impact of CaV-ablator on calcium cur-

rents in DRG neurons. It was of particular interest to determine relative effects of CaV-ablator on

HVACCs and LVA T-type channels that are present in a subset of DRG neurons. We recorded fami-

lies of whole-cell currents evoked by test pulses (from �40 mV to +60 mV in 10 mV increments) from

a holding potential of either �90 mV or �50 mV to inactivate any T-type channel present

(Figure 6c). Cells expressing GFP (control) or F3-Nedd4L[C942S] displayed large IBa irrespective of

the holding potential (Figure 6c,d; Ipeak,-10mV = �173.9 ± 28.2 pA/pF, n = 6 for GFP, Ipeak,-

10mv = �206.7 ± 36.4 pA/pF, n = 5 for F3-Nedd4L[C942S]), though those recorded with a �50 mV

holding potential had a lower amplitude reflecting inactivation of T-type channels and also a fraction

of HVACCs. Cells expressing CaV-ablator displayed essentially no HVACC currents (Figure 6c,d;

Ipeak,-10mV = �14.3 ± 6.2 pA/pF), most evident as an absence of IBa recorded from a �50 mV holding

potential (Figure 6c, middle). Moreover, in these cells, when currents were recorded from a �90 mV

holding potential, they displayed fast inactivation kinetics characteristic of T-type channels

(Figure 6c). Overall, these results indicate CaV-ablator selectively eliminates HVACCs in DRG neu-

rons without impacting LVA T-type channels.

Finally, we tested whether CaV-ablator is also effective in murine pancreatic b-cells, which have

multiple CaV channel types (CaV1.2, CaV1.3, and CaV2.1) involved in insulin release (Yang and Bergg-

ren, 2006). We used adenovirus to infect digested islets isolated from transgenic mice expressing

tdTomato in pancreatic b-cells. Control cells expressing GFP or nb.F3-Nedd4L[C942S] displayed

robust glucose- or KCl-evoked fura-2-reported Ca2+ transients that were essentially abolished in cells

expressing CaV-ablator (Figure 6e-g). Altogether, these results reveal the exceptional activity of

CaV-ablator as a genetically-encoded HVACC inhibitor that is effective across diverse cellular

contexts.

Discussion
This work introduces CaV-ablator as a novel genetically-encoded molecule that potently inhibits

HVACCs by targeting auxiliary CaVb subunits. CaV-ablator combines the exquisite specificity of a

CaVb-targeted nanobody and the powerfully consequential catalytic activity of an E3 ubiquitin ligase.

We discuss four distinct aspects of this work, based on viewing CaV-ablator from different perspec-

tives; 1) as a unique tool to selectively erase HVACCs in cells, 2) as a method to probe mechanisms

of HVACC regulation and trafficking, 3) as a potential therapeutic, and 4) as a prototype engineered

protein that enables probing new dimensions of macro-molecular membrane protein signaling.

Ca2+ is a universal second messenger critical to the biology of virtually all cells. In excitable cells,

both LVACCs and HVACCs transduce electrical signals encoded in action potentials into changes in

intracellular Ca2+ that then drive many biological responses. In cells expressing both classes of chan-

nels, the physiological effects mediated specifically through LVACCs versus HVACCs in vivo can be

Figure 5 continued

Yellow box indicates region of high-zoom merge image.Right, co-localization between a1C and RyR in uninfected cardiomyocytes (gray,

PCC = 0.47 ± 0.02, n = 15), and those expressing either CaV-ablator (red, PCC = 0.24 ± 0.02 n = 19), or nb.F3-Nedd4L[C942S] (green, PCC = 0.50 ± 0.01,

n = 17). (d) Left, exemplar confocal images of fixed cardiomyocytes immunostained with a1C (green) and Rab7 (magenta) antibodies. Yellow box

indicates region of high-zoom merge image. Right, colocalization between a1C and Rab7 in uninfected cardiomyocytes (gray, PCC = 0.29 ± 0.02,

n = 16), and those expressing either CaV-ablator (red, PCC = 0.42 ± 0.02, n = 18), or nb.F3-Nedd4L[C942S] (green, PCC = 0.30 ± 0.03, n = 16). (e)

Pulldown of a1C in HEK293 cells expressing a1C, b1b and either CFP, nb.F3, CaV-ablator, or nb.F3-Nedd4L-[C942S]. Top, probing pulldown with a1C

antibody. Bottom, same blot stripped and re-probed with ubiquitin antibody. (f) Quantification of four separate experiments, as performed in (e). Data

are means ± s.e.m for each point. *p<0.05 compared to control, one-way ANOVA with Tukey’s multiple comparison test. (g) Pulldown of CaVb1b, as in

(e). Left, probing with CaVb1b. Right, same blot stripped and re-probed with ubiquitin antibody. (h) Cartoon illustrating CaV-ablator-induced relocation

of CaV1.2 from dyads to Rab7-positive late endosomes in cardiomyocytes.

DOI: https://doi.org/10.7554/eLife.49253.011

The following figure supplement is available for figure 5:

Figure supplement 1. CaV-ablator does not redistribute a1C to Rab5 early-endosomes or lysosomes, nor decrease total levels of a1C or b2.

DOI: https://doi.org/10.7554/eLife.49253.012
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difficult to decipher. CaV-ablator now presents as a tool that can be deployed in target cells to virtu-

ally erase all HVACCs while leaving LVACC actions intact. The closest existing proteins that can simi-

larly eliminate HVACCs are RGK GTPases which are capable of potently inhibiting CaV1/CaV2

channels when over-expressed in target cells (Murata et al., 2004; Chen et al., 2005; Xu et al.,

2010; Puckerin et al., 2018; Bannister et al., 2008). However, a distinct disadvantage of RGKs is

their propensity for off-target effects due to their known interactions with, and regulation of, cyto-

skeletal proteins and other signaling molecules including 14-3-3, calmodulin, and CaM kinase II

(Yang and Colecraft, 2013; Correll et al., 2008; Royer et al., 2018; Béguin et al., 2005). Over the
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Figure 6. CaV-ablation of HVACCs in DRG neurons and pancreatic b-cells. (a) Exemplar Fura-2 traces of murine DRG neurons infected with GFP (left),

F3-Nedd4L (middle), F3-Nedd4L[C942S] (right), with confocal images in inset. The orange bars represent depolarization with 40 mM KCl. (b) Summary

of maximum responses from neurons infected with GFP (Peak response = 1.25 ± 0.04, n = 84), F3-Nedd4L (1.04 ± 0.01, n = 77), and F3-Nedd4L[C942S]

(1.30 ± 0.05, n = 92) in response to 40 mM KCl. Peaks were normalized to the baseline, defined as 1 min prior to the addition of KCl. (c) Exemplar traces

of DRG neurons infected with GFP (left), F3-Nedd4L (middle), F3-Nedd4L[C942S] (right). Traces were collected at both a holding potential of �90 mV

(top) and �50 mV (bottom). Notably, CaV-ablator-infected neurons still show robust T-type current when held at �90 mV. (d) Population I-V curves from

DRG neurons infected as in (a). Measurements were made at a holding potential of �90 mV. Symbols are mean currents calculated from 15 to 20 ms of

a 20 ms test pulse. Data are means ± s.e.m. (e) Exemplar fura-2 traces from dispersed pancreatic islets infected with CaV-ablator (left) or F3-Nedd4L

[C942S] (right) challenged with 16.8 mM glucose (blue bars) and 40 mM KCl (orange bars). (f) Summary of maximum responses from pancreatic b-cells

infected with GFP (Peak response = 1.22 ± 0.02, n = 53), F3-Nedd4L (Peak response = 1.04 ± 0.01, n = 62), and F3-Nedd4L[C942S] (Peak

response = 1.18 ± 0.01, n = 122) in response to 16.8 mM glucose. (g) Summary of maximum responses from pancreatic b-cells infected with GFP (Peak

response = 1.25 ± 0.02, n = 77), F3-Nedd4L (Peak response = 1.04 ± 0.01, n = 62), and F3-Nedd4L[C942S] (Peak response = 1.21 ± 0.01, n = 122) in

response to 40 mM KCl. Data are means ± s.e.m. *p<0.05 compared to control, one-way ANOVA with Tukey’s multiple comparison test.

DOI: https://doi.org/10.7554/eLife.49253.013
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last two decades, several groups have sought to disrupt the a1-CaVb interaction with either small

molecules or by over-expressing the AID peptide as a CaVb sponge (Findeisen et al., 2017;

Chen, 2018; Khanna et al., 2019; Yang et al., 2019). While this approach has shown some efficacy

in certain instances, the potency of HVACC inhibition falls well short of that achieved here with CaV-

ablator. Indeed, over-expressing the AID peptide in adult cardiac myocytes is not effective in inhibit-

ing CaV1.2 channels (Yang et al., 2019), because in this context a1C binding to CaVb is not abso-

lutely required for channel trafficking to the surface (Yang et al., 2019; Meissner et al., 2011).

Nevertheless, the ability of CaV-ablator to essentially eradicate ICa,L in adult cardiomyocytes indicates

that under normal physiological conditions essentially all a1C subunits are associated with a CaVb in

ventricular heart cells.

CaV1/CaV2 channels and other surface membrane proteins spend a significant portion of their life

cycles in intracellular compartments reflecting their biogenesis, recycling, and ultimate destruction.

The signals regulating HVACC degradation and trafficking among compartments are arcane and

poorly understood, but likely prominently involve post-translational modifications of channel subu-

nits. Here, we show that targeted ubiquitination of a1C/b2 complexes in cardiomyocytes with CaV-

ablator specifically arrests CaV1.2 channels in Rab7-positive late endosomes. CaV-ablator possesses

the catalytic HECT domain of Nedd4L which is known to principally catalyze the addition of K63-link-

age polyubiquitin chains to target proteins (Kim and Huibregtse, 2009; Scheffner and Kumar,

2014). Thus, our results suggest that K63-ubiquitin chains on a1C/b2 subunits may be a key signal

directing CaV1.2 channels to late endosomes. We further found that targeted ubiquitination of

HVACC a1 subunits with CaV-ablator did not lead to their enhanced degradation either in heterolo-

gous cells or cardiomyocytes. By contrast, using a GFP nanobody to target the Nedd4L HECT

domain to YFP-tagged KCNQ1, a known substrate of endogenous Nedd4L, resulted in reduced

expression of this K+ channel pore-forming a1 subunit (Kanner et al., 2017). Hence, the impact of

Nedd4L HECT domain on the stability of membrane proteins is likely substrate-dependent. We spec-

ulate that arming nb.F3 with the catalytic domains of other types of E3 ligases that catalyze forma-

tion of different polyubiquitin chains will elucidate the precise signals dictating CaV1/CaV2 channel

degradation and trafficking among distinct compartments. Beyond ubiquitination, the approach

could also be potentially used to elucidate functional consequences and mechanisms of other post-

translational modifications such as phosphorylation/dephosphorylation on CaV1/CaV2 channels, as

well as to localize sensors that report on signals within HVACC nano-domains in live cells.

Blocking the activity of specific HVACCs with small molecules is a prevailing or potential therapy

for many cardiovascular and neurological diseases including; pain, hypertension, cardiac arrhythmias,

epilepsy, and Parkinson’s disease (Zamponi, 2016). A limitation of small molecule or toxin blockers

for HVACCs is the propensity for off-target effects due to their inevitable widespread distribution

when administered to a patient. In some circumstances such off-target effects may limit the thera-

peutic window sufficiently to adversely affect treatment efficacy. Genetically-encoded HVACC inhibi-

tors have great potential to be useful therapeutics with the advantage that their expression can be

restricted to target tissues/cell types, or even to spatially discrete channels within single cells

(Murata et al., 2004; Makarewich et al., 2012). Given its potency in silencing HVACC activity, CaV-

ablator could be a lead molecule for future development into a gene therapy for particular applica-

tions where a genetically-encoded HVACC inhibitor is warranted. For this purpose, it may be desir-

able to generate CaV-ablator versions whose time course and extent of action could be tuned by

either a small molecule or light. Indeed, this is a focus of ongoing work.

Finally, an exciting prospect is the potential of CaV-ablator as a prototype that can be further

developed to engineer proteins that regulate CaV1/CaV2 channel complexes with new dimensions of

specificity. For example, a prevailing idea is that CaV1/CaV2 channels of a particular type (e.g.

CaV1.2 channels in cardiomyocytes) may yet form discrete signaling units with different functional

outputs in single cells based on their incorporation into divergent macro-molecular complexes

(Shaw and Colecraft, 2013). There are tantalizing hints that different CaVb isoforms could be a

node of signal diversification by promoting formation of molecularly distinct HVACC macro-molecu-

lar complexes (McEnery et al., 1998; Brice and Dolphin, 1999; Campiglio and Flucher, 2015).

Hence, the ability to inhibit specific CaV channel macro-molecular complexes based on the identity

of the constituent CaVb is biologically important, yet not rigorously addressable with conventional

knockout/knockdown approaches. However, this capability may be readily achieved with CaV-

ablators directed towards particular CaVb isoforms. A challenge to realize this possibility is the
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development of CaVb isoform-specific nanobodies which should be feasible given that there is

sequence divergence among CaVbs outside the conserved src homology 3 (SH3) and guanylate

kinase (GK) domains (Buraei and Yang, 2010). In a broader context, the phenomenon of ion channel

pore-forming a1 subunits assembled with diverse auxiliary subunits in individual cells is common

throughout biology (O’Malley and Isom, 2015; Copits and Swanson, 2012; Trimmer, 2015).

Hence, CaV-ablator-inspired molecules and approaches might be expected to elucidate functional

dimensions of ion channel macro-molecular complex signaling that, to date, have remained refrac-

tory to analyses.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Gene
(rat)

CACNA1B NM_147141

Gene
(rabbit)

CACNA1C NM_001136522

Gene
(rat)

CACNB1 NM_017346

Gene
(human)

CACNB2 NM_201590

Gene
(rat)

CACNB3 NM_012828.2

Gene
(rat)

CACNB4 NM_
001105733.1

Gene
(human)

CACNA2D1 NM_
000722.4

Gene
(human)

NEDD4L NM_
001144965.2

strain, strain
background
(Escherichia coli)

Rosetta DE3 Millipore
Sigma

Cell line
(Human)

HEK293 Other RRID: CVCL_0045 Laboratory of Dr.
Robert Kass

Recombinant
DNA reagent

nb.F3-CFP-
PKCg

This paper Made by PCR,
see molecular
biology and
cloning

Recombinant
DNA reagent

nb.F3-P2A-
CFP

This paper Made by PCR,
see molecular
biology and
cloning

Recombinant
DNA reagent

nb.F3-Nedd4L-P2A-CFP This paper Made from pCI
HA Nedd4L
(Addgene #27000);
see molecular
biology and
cloning

Recombinant
DNA reagent

nb.F3-Nedd4L [C942S]-P2A-
CFP

This paper Made by
site-directed mutagenesis

Recombinant
DNA reagent

BBS-a1B PMID:
20308247

Recombinant
DNA reagent

BBS-a1C PMID:
20308247

Antibody Anti-a1C Alomone Cat#:
ACC-003

1:1000 WB/IF

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-a1C NeuroMab Clone: N263/31 1:200 IF

Antibody Anti-CaVb1 NeuroMab Clone: N7/18 1:500 WB

Antibody Anti-CaVb2 Alomone Cat#:
ACC-105

1:200

Antibody Anti-Rab5 Cell Signaling
Technology

Cat#: 3547 1:200

Antibody Anti-Rab7 Cell Signaling
Technology

Cat#: 9367 1:200

Antibody Anti-LAMP1 Developmental
Studies
Hybridoma
Bank at the
University of
Iowa

RRID:
AB_528127

1:100

Antibody Anti-RyR Thermo Fisher
Scientific

Cat#: MA3-916 1:1000

Antibody Anti-actin Sigma Cat#: A5060 1:1000

Antibody Anti-ubiquitin,
VU-1

LifeSensors Cat#: VU101 1:500

Antibody RFP-trap
agarose beads

Chromotek Cat#: rta-20

Antibody Anti-FLAG
affinity gel

Sigma-Aldrich Cat#: A2220

Peptide,
recombinant
reagent

FLAG peptide Sigma-Aldrich Cat#: F3290

Peptide,
recombinant
reagent

Ni-NTA agarose Qiagen Cat#: 30210

Peptide,
recombinant
reagent

Protein A/G
sepharose
beads

Rockland

Peptide,
recombinant
reagent

a-bungarotoxin,
Alexa Fluor
647 conjugate

Life
Technologies

Peptide,
recombinant
reagent

Fura-2 AM Life
Technologies

Cat#: F1221

chemical
compound,
drug

Phorbol 12,13-
dibutyrate

Sigma-
Aldrich

Cat#: P1269

commercial
assay or kit

AdEasy
Adenoviral
Vector Systems

Stratagene

commercial
assay or kit

QuikChange
Lightning
Site-Directed
Mutagenesis Kit

Stratagene

software,
algorithm

FlowJo RRID: SCR_008520

software,
algorithm

PulseFit HEKA

software,
algorithm

EasyRatioPro HORIBA

software,
algorithm

GraphPad
Prism

RRID: SCR_002798
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Protein purification
We used the BacMam expression system to purify CaVb1B and CaVb3 (Goehring et al., 2014). Briefly,

full-length CaVb1b and CaVb3 were cloned into a modified pEG BacMam vector with a C-terminal

FLAG tag using BamHI and EcoRI sites. BacMam virus was subsequently generated in Sf9 cells and

harvested after three rounds of amplification. 100 mL of BacMam virus was used to infect 1 L of

HEK293 GnTI- cells (N-acetylglucosaminyltransferase I-negative) and kept shaking at 37˚C. After 18

hrs the cells were stimulated with 10 mM sodium butyrate and harvested 72 hrs later. Cells were

lysed using an Avestin Emulsiflex-C3 homogenizer in buffer containing 50 mM Tris, 150 mM KCl,

10% sucrose, 1 mM PMSF (phenylmethylsulfonyl fluoride), and EDTA-free Complete protease inhibi-

tor cocktail (Roche), pH 7.4. Lysate was spun down at 35,000 g for 1 hr. CaVb was subsequently iso-

lated from supernatant with anti-FLAG antibody (M2) affinity chromatography, and eluted with 100

mg/mL FLAG peptide (Sigma Millipore) in 50 mM TrisHCl, 150 mM KCl, pH 7.4. The protein was

then applied to an ion exchange column (MonoQ, GE) and eluted with a linear KCl gradient of 50

mM to 1M. Peak fractions were collected and subjected to size exclusion chromatography (Superdex

200, GE) in a buffer containing 20 mM Tris, 150 mM KCl, pH 7.4. Proteins were brought to 20% glyc-

erol, flash frozen, and stored at �80˚C.

For isothermal titration calorimetry experiments, both CaVb2b and nb.F3 were cloned via Gibson

assembly (Gibson et al., 2009) into an IPTG (isopropyl b-D-1-thiogalactopyranoside) inducible, kana-

mycin-resistant pET derived plasmid (Novagen, Madison, Wisconsin), with an N-terminal deca-histi-

dine tag (His10) and transformed into Rosetta DE3 E. coli (Millipore Sigma), following manufacturers’

instructions. Cells were grown at 37˚C in 1L 2xTY media supplemented with 50 ug/mL carbenicillin

and 35 mg/mL chloramphenicol and shook at 225 rpm. Protein expression was induced with 0.2 mM

IPTG when the cells reached an OD of 0.6–0.8. The cells were then grown overnight at 22˚C.

Nb.F3 was purified as previously described (McMahon et al., 2018): briefly, cells were harvested

and resuspended in 100 mL buffer containing (mM) 500 sucrose, 200 Tris (pH 8), 0.5 EDTA and

osmotically shocked with the addition of 200 mL water with stirring. The lysate was brought to a con-

centration of (mM) 150 NaCl, 2 MgCl2, and 20 imidazole and centrifuged at 20,000 g, 4˚C for

30 min. The supernatant was combined with 2 mL Ni-NTA Sepharose resin (Qiagen) in batch,

washed with 70 mM imidazole, and eluted with 350 mM imidazole. The eluant was dialyzed into a

buffer containing 150 mM NaCl, 10 mM HEPES, pH 7.4 and purified with an S200 size exclusion col-

umn (GE Healthcare).

For the purification of CaVb2b, cells were pelleted and resuspended in a buffer containing (mM)

300 NaCl, 20 Tris HCl, 10% glycerol, pH 7.4, 0.5 PMSF, and EDTA-free Complete protease inhibitor

cocktail (Roche). Cells were lysed using an Avestin Emulisflex-C3 homogenizer and spun at 35,000 g

for 30’. The solubilized protein was applied to Ni-NTA Sepharose (Qiagen) and purified as nb.F3.

Nanobody generation
One llama was immunized with an initial injection of 600 mg purified CaVb1b and CaVb3, with four

boosters of 200 ug each protein administered every other week (Capralogics Inc, Hardwick, MA). 87

days after the first immunization, lymphocytes were isolated from blood and a cDNA library with

ProtoScript II Reverse Transcriptase (New England Biolabs). Nanobodies were isolated as previously

described (Pardon et al., 2014), using a two-step nested PCR. Amplified Vhh genes were cloned

into the phagemid plasmid pComb3xSS, a gift from Carlos Barbas (Andris-Widhopf et al., 2000)

(Addgene plasmid # 63890). A phage display library was created using electrocompetent TG1 E. coli

cells (Lucigen). Three rounds of phage display were performed as previously described

(Pardon et al., 2014), using 100 nM biotinylated CaVb3 as bait on neutravidin-coated Nunc-Immuno

plates (Thermo Scientific). Clones of interest were subsequently cloned into mammalian expression

systems for further study (see below).

Isothermal titration calorimetry
Isothermal Titraction calorimetry measurements were performed using an MicroCal Auto iTC 200

(Malvern Panalytical) at 25˚C. Samples were dialyzed into 300 mM NaCl, 20 mM HEPES, 5% glycerol,

pH 7.5 and filtered beforehand. Injections of 2 mL nb.F3 into 400 mL of CaVb2b. Data were processed

with MicroCal Origin 7.0.
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Molecular biology and plasmid construction
Potential nbs were PCR amplified with primers flanking their conserved framework (FW) FW1 and

FW4 regions and inserted into the mammalian expression plasmid pcDNA3 (Invitrogen) using HindIII

and EcoRI sites. An additional GSG linker was included in the PCR and the insert was ligated

upstream of an enhanced CFP and C1 domain of human PKCg (residues 51–180).

Rat CaVb1b, a kind gift from Dr. Jian Yang (Columbia University), was PCR amplified for subse-

quent overlap PCR with YFP, inserting a GSG linker between the two proteins. The resulting CaVb1b-

GSG-YFP sequence was digested with BamHI and NotI and ligated into a PiggyBac CMV mammalian

expression vector (System Biosciences). A similar cloning strategy was used for CaVb3 and CaVb4. Rat

CaVb2a was PCR amplified with an N-terminal YFP to prevent palmitoylation of the b2a subunit

(Chien et al., 1996) and inserted with a similar strategy.

A customized bicistronic vector (xx-P2A-CFP) was synthesized in the pUC57 vector, in which cod-

ing sequence for P2A peptide was sandwiched between an upstream multiple cloning site and

enhanced cyan fluorescent protein (CFP) (Genewiz). The xx-P2A-CFP fragment was amplified by PCR

and cloned into the PiggyBac CMV mammalian expression vector (System Biosciences) using NheI/

NotI sites. To generate nb.F3 -P2A-CFP, we PCR amplified the coding sequence for nb.F3 and

cloned it into xx-P2A-CFP using NheI/AflII sites. A similar backbone was created in the PiggyBac

CMV mammalian expression vector in which CFP-P2A-xx contained a multiple cloning site down-

stream of the P2A site (Genewiz). Nb.F3 was PCR amplified and ligated into the vector with BglII/

AscI sites. The HECT domain of human Nedd4L (Gao et al., 2009) (a gift from Joan Massague,

Addgene plasmid # 27000) consisting of residues 594–974 was PCR amplified and inserted down-

stream of nb.F3 using AscI/AgeI sites. Mutagenesis of C942S was accomplished using site-directed

mutagenesis.

a1B-BBS, harboring two tandem 13 residue bungarotoxin-binding sites (SWRYYESSLEPYPD) in the

domain IV S5-S6 extracellular loop, was a kind gift from Dr. Steven Ikeda (NIAAA). a1C and a1C-BBS,

and a1C-BBS-YFP have been described previously (Yang et al., 2010; Kanner et al., 2017).

Cell culture and transfection
Human embryonic kidney (HEK293) cells were a kind gift from the laboratory of Dr. Robert Kass

(Columbia University). Cells were mycoplasma free, as determined by the MycoFluor Mycoplasma

Detection Kit (Invitrogen, Carlsbad, CA). Low passage HEK293 cells were cultured at 37˚C in DMEM

supplemented with 5% fetal bovine serum (FBS) and 100 mg/mL of penicillin–streptomycin. HEK293

cell transfection was accomplished using the calcium phosphate precipitation method. Briefly, plas-

mid DNA was mixed with 7.75 mL of 2 M CaCl2 and sterile deionized water (to a final volume of 62

mL). The mixture was added dropwise, with constant tapping to 62 mL of 2x Hepes buffered saline

containing (in mM): Hepes 50, NaCl 280, Na2HPO4 1.5, pH 7.09. The resulting DNA–calcium phos-

phate mixture was incubated for 20 min at room temperature and then added dropwise to HEK293

cells (60–80% confluent). Cells were washed with Ca2+-free phosphate buffered saline after 4–6 hr

and maintained in supplemented DMEM.

Isolation of adult guinea pig cardiomyocytes was performed in accordance with the guidelines of

Columbia University Animal Care and Use Committee. Prior to isolation, plating dishes were pre-

coated with 15 mg/mL laminin (Gibco). Adult female Hartley guinea pigs (Charles River) were eutha-

nized with 5% isoflurane, hearts were excised and ventricular myocytes isolated by first perfusing in

KH solution (mM): 118 NaCl, 4.8 KCl, 1 CaCl2 25 HEPES, 1.25 K2HPO4, 1.25 MgSO4, 11 glucose,. 02

EGTA, pH 7.4, followed by KH solution without calcium using a Langendorff perfusion apparatus.

Enzymatic digestion with 0.3 mg/mL Collagenase Type 4 (Worthington) with 0.08 mg/mL protease

and. 05% BSA was performed in KH buffer without calcium for six minutes. After digestion, 40 mL of

a high K+ solution was perfused through the heart (mM): 120 potassium glutamate, 25 KCl, 10

HEPES, 1 MgCl2, and. 02 EGTA, pH 7.4. Cells were subsequently dispersed in high K+ solution.

Healthy rod-shaped myocytes were cultured in Medium 199 (Life Technologies) supplemented with

(mM): 10 HEPES (Gibco), 1x MEM non-essential amino acids (Gibco), 2 L-glutamine (Gibco), 20

D-glucose (Sigma Aldrich), 1% vol vol�1 penicillin-streptomycin-glutamine (Fisher Scientific),. 02 mg/

mL Vitamin B-12 (Sigma Aldrich) and 5% (vol/vol) FBS (Life Technologies) to promote attachment to

dishes. After 5 hr, the culture medium was switched to Medium 199 with 1% (vol/vol) serum, but
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otherwise supplemented as described above. Cultures were maintained in humidified incubators at

37˚C and 5% CO2.

Murine dorsal root ganglion (DRG) neurons were kindly provided by the laboratory of Dr. Ellen

Lumpkin (Columbia University). DRG neurons were isolated as previously described

(Albuquerque et al., 2009). DRG neurons were plated onto glass coverslips coated with 15 mg/mL

laminin (Corning) and maintained in Neurobasal media (Thermo Fisher Scientific) supplemented with

1x B-27 (Thermo Fisher Scientific), 100 mg mL�1 penicillin/streptomycin (Fisher Scientific), 0.29 mg/

mL L-glutamine (Gibco), 50 ng mL�1 NGF (Sigma Aldrich), 2 ng mL�1 GDNF (Sigma Aldrich), and 10

mM cytosine b-D-arabinofuranoside (Sigma Aldrich).

Pancreatic beta cell isolation and culture
Murine pancreatic b-cells from Rip-Cre (Jackson Laboratories Stock #003573) mice crossed with

Rosa26-tdTomato (Jackson Laboratories Stock #007909) mice were kindly provided by the labora-

tory of Dr. Domenico Accili (Columbia University). Islets were isolated as previously described

(Stull et al., 2012), dispersed with 0.05% trypsin EDTA (Gibco) and plated onto 35 mm glass bottom

dishes with 10 mm microwells (Cellvis) pre-coated with 10 mg/mL fibronectin (Sigma Aldrich). Islets

were maintained in RPMI 1640 media (Corning) supplemented with 15% FBS and 100 mg mL�1 peni-

cillin/streptomycin. Islets were imaged 24–48 hr after adenoviral infection.

Adenoviral generation
Adenoviral vectors expressing GFP and CFP-P2A-nb.F3-Nedd4L[C942S] were generated using the

pAdEasy system (Stratagene) according to manufacturer’s instructions as previously described

(Kanner et al., 2017; Subramanyam, 2013). Plasmid shuttle vectors (pShuttle CMV) containing

cDNA for CFP-P2A-nb.F3-Nedd4L[C942S] were linearized with PmeI and electroporated into

BJ5183-AD-1 electrocompetent cells pre-transformed with the pAdEasy-1 viral plasmid (Stratagene).

PacI restriction digestion was used to identify transformants with successful recombination. Positive

recombinants were amplified using XL-10-Gold bacteria, and the recombinant adenoviral plasmid

DNA linearized with PacI digestion. HEK cells cultured in 60 mm diameter dishes at 70–80% conflu-

ency were transfected with PacI-digested linearized adenoviral DNA. Transfected plates were moni-

tored for cytopathic effects (CPEs) and adenoviral plaques. Cells were harvested and subjected to

three consecutive freeze-thaw cycles, followed by centrifugation (2,500 � g) to remove cellular

debris. The supernatant (2 mL) was used to infect a 10 cm dish of 90% confluent HEK293 cells. Fol-

lowing observation of CPEs after 2–3 d, cell supernatants were used to re-infect a new plate of

HEK293 cells. Viral expansion and purification was carried out as previously described

(Colecraft et al., 2002). Briefly, confluent HEK293 cells grown on 15 cm culture dishes (x8) were

infected with viral supernatant (1 mL) obtained as described above. After 48 hr, cells from all of the

plates were harvested, pelleted by centrifugation, and resuspended in 8 mL of buffer containing (in

mM) 20 Tris HCl, 1 CaCl2, one and MgCl2 (pH 8). Cells were lysed by four consecutive freeze-thaw

cycles and cellular debris pelleted by centrifugation. The virus-laden supernatant was purified on a

cesium chloride (CsCl) discontinuous gradient by layering three densities of CsCl (1.25, 1.33, and

1.45 g/mL). After centrifugation (50,000 rpm; SW41Ti Rotor, Beckman-Coulter Optima L-100K ultra-

centrifuge; 1 hr, 4˚C), a band of virus at the interface between the 1.33 and 1.45 g/mL layers was

removed and dialyzed against PBS (12 hr, 4˚C). Adenoviral vector aliquots were frozen in 10% glyc-

erol at �80˚C until use. Generation of CFP-P2A-nb.F3-Nedd4L was performed by Vector Biolabs

(Malvern, PA).

Flow cytometry assay of total and surface calcium channels
Cell surface and total ion channel pools were assayed by flow cytometry in live, transfected HEK293

cells as previously described (Kanner et al., 2017; Aromolaran et al., 2014). Briefly, 48 hr post-

transfection, cells cultured in 12-well plates were gently washed with ice cold PBS containing Ca2+

and Mg2+ (in mM: 0.9 CaCl2, 0.49 MgCl2, pH 7.4), and then incubated for 30 min in blocking

medium (DMEM with 3% BSA) at 4˚C. HEK293 cells were then incubated with 1 mM Alexa Fluor 647

conjugated a-bungarotoxin (BTX647; Life Technologies) in DMEM/3% BSA on a rocker at 4˚C for 1

hr, followed by washing three times with PBS (containing Ca2+ and Mg2+). Cells were gently har-

vested in Ca2+-free PBS, and assayed by flow cytometry using a BD Fortessa Cell Analyzer (BD
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Biosciences, San Jose, CA, USA). CFP- and YFP-tagged proteins were excited at 407 and 488 nm,

respectively, and Alexa Fluor 647 was excited at 633 nm.

Electrophysiology
Whole-cell recordings of HEK293 cells were conducted 48 hr after transfection using an EPC-10

patch clamp amplifier (HEKA Electronics) controlled by Pulse software (HEKA). Micropipettes were

prepared from 1.5 mm thin-walled glass (World Precision Instruments) using a P97 microelectrode

puller (Sutter Instruments). Internal solution contained (mM): 135 cesium-methansulfonate

(CsMeSO3), 5 CsCl, 5 EGTA, 1 MgCl2, 2 MgATP, and 10 HEPES (pH 7.3). Series resistance was typi-

cally between 1–2 MW. There was no electronic resistance compensation. External solution con-

tained (mM): 140 tetraethylammonium-MeSO3, 5 BaCl2, and 10 HEPES (pH 7.4). Whole-cell I-V

curves were generated from a family of step depolarizations (�60 mV to +80 mV from a holding

potential of �90 mV). Currents were sampled at 20 kHz and filtered at 5 kHz. Traces were acquired

at a repetition interval of 10 s. Leak and capacitive transients were subtracted using a P/4 protocol.

Whole-cell recordings of cardiomyocytes and DRG neurons were performed 48 hr after infection.

HEK cell internal and external solutions were used for DRG experiments. Whole-cell recordings for

guinea pig cardiomyocytes used internal solution comprised of (mM): 150 CsMeSO3, 10 EGTA, 5

CsCl, MgCl2, 4 MgATP, and 10 HEPES. For formation of gigaohm seals and initial break-in to the

whole-cell configuration, cells were perfused in Tyrode solution containing (mM): 138 NaCl, 4 KCl, 2

CaCl2, 1 MgCl2, 0.33 NaH2PO4, and 10 HEPES (pH 7.4). Upon successful break-in, the perfusing

media was switched to an external solution composed of (mM): 155 N-methyl-D-glucamine, 10 4-

amino-pyridine, 1 MgCl2, 5 BaCl2, and 10 HEPES (pH 7.4). Currents were sampled at 20 kHz and fil-

tered at 5 kHz. Leak and capacitive transients were subtracted using a P/4 protocol.

Immunofluorescence staining
Approximately 48 hr after adenoviral infection, guinea pig cardiomyocytes were fixed in 4% parafor-

maldehyde (wt/vol, in PBS) for 20 min at RT. Cells were washed twice with PBS and then incubated

in 0.1M glycine (in PBS) for 10 min at RT to block free aldehyde groups. Fixed cells were then per-

meabilized with 0.2% Triton X-100 (in PBS) for 20 min at RT. Non-specific binding was blocked with

a 1 hr incubation at RT in PBS solution containing 3% (vol vol�1) normal goat serum (NGS), 1% BSA,

and 0.1% Triton X-100. Cells were then incubated with primary antibody in PBS containing 1% NGS,

1% BSA, and 0.1% BSA overnight at 4˚C. Cells were washed three times for 10 min each with PBS

with 0.1% Triton X-100 and then stained with secondary antibody for 1 hr at RT. Antibody dilutions

were prepared in PBS solution containing 1% NGS, 1% BSA, and 0.1% Triton X-100. The cells were

then washed in PBS with 0.1% Triton X-100 and imaged in the same solution. Primary antibodies and

working dilutions were as follows: a1C: Alomone, 1:1000; UC Davis/NIH NeuroMab Facility, clone

N263/31, 1:200. RyR: Sigma Aldrich, 1:1000. CaVb2: Alomone, 1:200. Rab7: Cell Signaling Technol-

ogy, 1:100. Rab5: Cell Signaling Technology, 1:200. Lamp1: Developmental Studies Hybridoma

Bank, created by the NICHD of the NIH and maintained at The University of Iowa, Department of

Biology, Iowa City, IA 52242, 1:100. Secondary antibodies (Thermofisher) were used at a dilution of

1:1000.

Confocal microscopy
Cells were plated onto 35 mm MatTek imaging dishes (MatTek Corporation). Images were captured

on a Nikon A1RMP confocal microscope with a 40x oil immersion objective (1.3 N.A.). CFP, Alexa-

488, YFP, and Alexa-647 were imaged using 458, 488, 514 and 639 nm laser lines, respectively.

Pulldown assays
Transfected HEK293 cells cultured in 60 mm dishes were harvested in PBS, centrifuged at 2,000 g (4˚

C) for 5 min, and the pellet resuspended in RIPA lysis buffer containing (mM): 150 NaCl, 20 Tris HCl,

1 EDTA, 0.1% (wt vol�1) SDS, 1% Triton X-100, 1% sodium deoxycholate, and supplemented with

protease inhibitor mixture (10 mL mL�1, Sigma Aldrich), 1 PMSF, 2 N-ethylmaleimide,. 05 PR-619

deubiquitinase inhibitor (LifeSensors). Cells were lysed on ice for 1 hr with intermittent vortexing and

centrifuged at 10,000 g for 10 min (4˚C). The soluble lysate collected and protein concentration

determined with the bis-cinchonic acid protein estimation kit (Pierce Technologies).
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For CaVb1b pulldowns, lysates were precleared with 10 mL of protein A/G sepharose beads (Rock-

land) for 1 hr at 4˚C and then incubated with 2 mg anti-CaVb1 antibody (UC Davis/NIH NeuroMab

Facility, clone N7/18) for 1 hr at 4˚C. Equivalent amounts of protein were then added to spin col-

umns with 25 mL equilibrated protein A/G sepharose beads and rotated overight at 4˚C. Immunopre-

cipitates were washed a total of five times with RIPA buffer and then eluted with 30 mL elution buffer

(50 mM Tris, 10% (vol vol�1) glycerol, 2% SDS, 100 mM DTT, and 0.2 mg mL�1 bromophenol blue)

at 55˚C for 15 min. For a1C pulldowns, lysates were added to spin columns containing 10 mL of equil-

ibrated RFP-trap agarose beads, rotated at 4˚C for 1 hr, and then washed/eluted as described

above. Proteins were resolved on a 4–12% Bis Tris gradient precast gel (Life Technologies) in MOPS-

SDS running buffer (Life Technologies) at 200 V constant for ~1 hr. Protein bands were transferred

by tank transfer onto a polyvinylidene difluoride (PVDF, EMD Millipore) membrane in transfer buffer

(25 mM Tris pH 8.3, 192 mM glycine, 15% (vol/vol) methanol, and 0.1% SDS). The membranes were

blocked with a solution of 5% nonfat milk (BioRad) in Tris-buffered saline-tween (TBS-T) (25 mM Tris

pH 7.4, 150 mM NaCl, and 0.1% Tween-20) for 1 hr at RT and then incubated overnight at 4˚C with

primary antibodies (CaVb1, UC Davis/NIH NeuroMab Facility. Actin, Sigma Aldrich) in blocking solu-

tion. The blots were washed with TBS-T three times for 10 min each and then incubated with sec-

ondary horseradish peroxidase-conjugated antibody for 1 hr at RT. After washing in TBS-T, the blots

were developed with a chemiluminiscent detection kit (Pierce Technologies) and then visualized on a

gel imager. Membranes were then stripped with harsh stripping buffer (2% SDS, 62 mM Tris pH 6.8,

0.8% ß-mercaptoethanol) at 50˚C for 30 min, rinsed under running water for 2 min, and washed with

TBST (3x, 10 min). Membranes were pre-treated with 0.5% glutaraldehyde and re-blotted with anti-

ubiquitin (VU1, LifeSensors) as per the manufacturers’ instructions.

Calcium imaging
DRG neurons were washed twice in basal solution containing (mM): 145 NaCl, 5 KCl, 2 CaCl2, 1

MgCl2, one sodium citrate, 10 HEPES, 10 D-glucose, pH 7.4, and incubated in the same solution

containing 5 uM fura-2 with 0.05% Pluronic F-127 detergent (Life Technologies) for 1 hr at 37˚C, 5%

CO2. Afterwards, cells were washed twice in same solution and placed on an inverted Nikon Ti-

eclipse microscope with a Nikon Plan fluor 20x objective (0.45 N.A.). Fura-2 measurements were

recorded at excitation wavelengths of 340 and 380 nm using EasyRatioPro (HORIBA Scientific). DRG

neurons were depolarized with a solution in which NaCl was reduced to 110 mM and KCl increased

to 40 mM.

Pancreatic b-cells were imaged with a similar protocol. Cells were maintained in a basal KRBH

solution composed of (mM): 134 NaCl, 3.5 KCl, 1.2 KH2PO4, 0.5 MgSO4, 1.5 CaCl2, 5 NaHCO3, 10

HEPES, 2.8 D-glucose, pH 7.4. Stimulation solutions included either 16.8 mM glucose or 40 mM KCl,

with NaCl concentrations adjusted accordingly to balance osmolarity with KRBH solution.

Data and statistical analysis
Data were analyzed off-line using FloJo, PulseFit (HEKA), Microsoft Excel, Origin and GraphPad

Prism software. Statistical analyses were performed in Origin or GraphPad Prism using built-in func-

tions. Statistically significant differences between means (p<0.05) were determined using Student’s t

test for comparisons between two groups or one-way ANOVA for three groups, with Tukey’s post-

hoc analysis. Data are presented as means ± s.e.m.
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