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Primary open-angle glaucoma (POAG) is a progressive optic neuropathy and its damage to
vision is irreversible. Therefore, early diagnosis assisted by biomarkers is essential.
Although there were multiple researches on the identification of POAG biomarkers, few
studies systematically revealed the transcriptome dysregulation mechanism of POAG from
the perspective of pre- and post-transcription of genes. Here, we have collected multiple
sets of POAG’s aqueous humor (AH) tissue transcription profiles covering long non-coding
RNA (lncRNA), mRNA and mircoRNA (miRNA). Through differential expression analysis,
we identified thousands of significant differentially expressed genes (DEGs) between the
AH tissue of POAG and non-glaucoma. Further, the DEGs were used to construct a
competing endogenous RNA (ceRNA) regulatory network and 1,653 qualified lncRNA-
miRNA-mRNA regulatory units were identified. Two ceRNA regulatory subnets were
identified based on the random walk algorithm and revealed to be involved in the
regulation of multiple complex diseases. At the pre-transcriptional regulation level, a
transcriptional regulatory network was constructed and three transcription factors
(FOS, ATF4, and RELB) were identified to regulate the expression of multiple genes
and participate in the regulation of T cells. Moreover, we revealed the immune desert status
of AH tissue for POAG patients based on immune infiltration analysis and identified a
specific AL590666.2-hsa−miR−339−5p-UROD axis can be used as a biomarker of
POAG. Taken together, the identification of regulatory mechanisms and biomarkers will
contribute to the individualized diagnosis and treatment for POAG.
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INTRODUCTION

Glaucoma is the main cause of irreversible blindness, which includes several subtypes such as
primary, secondary, angle-closure glaucoma and open-angle glaucoma (Weinreb and Khaw,
2004; Youngblood et al., 2019). Among them, primary open-angle glaucoma (POAG) is the
most common. The clinical manifestations of POAG include optic nerve damage and loss of
retinal ganglion cells, and high blood pressure and increased intraocular pressure are risk
factors for POAG. Since the symptoms of POAG appear at a relatively late stage and the
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blindness caused by it is irreversible, early diagnosis is
necessary (Weinreb et al., 2014). The identification of
biomarkers is helpful for the early diagnosis of POAG
patients (Kokotas et al., 2012). Although there were many
studies on the identification of biomarkers of POAG, the
limitations of the data have caused the limitations of the
experimental results. For example, although Liu et al.
found that hsa-miR-210-3p can be used as a biomarker of
POAG from peripheral blood (Liu et al., 2019), the gene
transcript also includes mRNA and long non-coding RNA
(lncRNA) and did not reveal the pathogenesis of hsa-miR-
210-3p.

With the progress of scientific research, the function of
non-coding RNA has been unveiled. LncRNA and miRNA, as
the two main types of non-coding RNA, have been shown to
play an important role in the chromatin reprograming
(Anastasiadou et al., 2018) and regulation of gene
transcription through the competing endogenous RNAs
(ceRNA) regulatory mechanism (Salmena et al., 2011). In
the ceRNA network, mRNA and lncRNA act as a miRNA
sponge to participate in ceRNA regulation determined by
miRNA response elements (MREs) (Zhang et al., 2021).
The ceRNA regulatory mechanism plays a role at the post-
transcriptional level and is an important method to explain
the dysregulation of transcript expression in diseases. For
POAG, the construction of ceRNA regulatory network will
assist in revealing its pathogenesis.

Over the past decade, the immune microenvironment has been a
hot area of biological research, which includes immune infiltration,
antigen presentation, immune cell exhaustion and immune cell
communication. The immune microenvironment is composed of
a variety of lymphocytes, such as T cells, B cells andmacrophages, etc.
Previous studies have shown that the neuroinflammatory response in
POAG patients was thought to be caused by a defective immune
response (Vernazza et al., 2020). For example, M1 polarization of
macrophages enhances the antigen presentation ability and tissue
inflammatory response (Yunna et al., 2020). Therefore, it is necessary
to reveal the immune landscape of POAG to reveal its
neuroinflammatory response mechanism.

In this study, we collected multiple sets of transcription
profiles of aqueous humor (AH) tissues for POAG patients.
Through the integrated analysis of the ceRNA competition
network and the transcriptional regulatory network, we
revealed the mechanism of the transcriptome dysregulation of
POAG and the physiological functions that it affects. Immune
infiltration analysis revealed the immune landscape of POAG.
Additionally, potential biomarkers of POAG were identified
based on machine learning algorithms.

METHODS

Data Acquisition and Pre-Processing
The mRNA and long non-coding RNA (lncRNA) expression
profiles of primary open-angle glaucoma (POAG) were
downloaded from the Gene Expression Omnibus (GEO)
database (accession number: GSE101727 (Xie et al., 2019),
platform: GPL21827, Agilent-079487 Arraystar Human
LncRNA miarray V4, Table 1). The raw annotation of
GPL21827 only supported the sequence data format and not
the gene symbol. Therefore, we mapped the sequences of
GPL21287 probes to the human genome annotation file
release GRCH37 in GENCODE (Harrow et al., 2012) using
the R package “Rsubread” (Liao et al., 2019). Next, the average
of standardized signal intensities was used to indicate mRNA/
lncRNA expression intensity when multiple probes were mapped
to the same mRNA/lncRNA. The miRNA expression profile was
also obtained from the GEO database (accession number:
GSE105269 (Drewry et al., 2018), platform: GPL24158,
NanoString nCounter Human v3 miRNA Assay). The
normalized miRNA expression matrix was used directly for
the analyses (Table 1).

Differential Expression Analysis of mRNA,
lncRNA, and miRNA
Differentially expressed RNAs (mRNAs, lncRNAs, and miRNAs)
were identified using the Linear Models for Miarray Data
(Limma, v3.44.3) package in R (Ritchie et al., 2015). We
considered the RNAs with |log2FC| > 1.5 and p-value < 0.01 as
the differentially expressed RNAs (DEmRNAs, DElncRNAs, and
DEmiRNAs).

Constructing the POAG Associated
Competing Endogenous RNA Network
To identify the POAG associated ceRNA relationships, we first
recognized the candidate targets of DEmiRNAs based on the
experimentally validated miRNA interaction relationships in
lncACTdb v2.0 (http://www.bio-bigdata.net/LncACTdb/)
(Wang et al., 2019), mirtarbase v2020 (http://miRTarBase.
cuhk.edu.cn/) (Chou et al., 2018), and starbase v3.0 (https://
starbase.sysu.edu.cn/) (Li et al., 2014). Next, according to the
differentially expressed levels, the opposite changing trends
between the expression levels of DEmiRNA-DEmRNA/
DElncRNA pairs were retained in the AH (down-regulated
miRNAs and up-regulated mRNAs/lncRNAs or up-regulated
miRNAs and down-regulated mRNAs/lncRNAs). Furthermore,

TABLE 1 | Expression datasets in the study.

GEO accession
number

Platform Type Tissue Samples of
POAG

Samples of
non-glaucoma

GSE101727 GPL21827 LncRNA and mRNA Aqueous humor (AH) 10 10
GSE105269 GPL24158 miRNA Aqueous humor (AH) 12 11
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we calculated the rho between the expression levels of
DElncRNAs and DEmRNAs. The raw p-values (Pr) were
adjusted by multiple hypotheses using a permutation method.
For each mRNA, the expression value was held consistently, and
1,000 random lncRNAs were used to perform the same
Spearman’s correlation test, generating a set of 1,000
permutation p-values (Pp). Finally, an empirical p-value (Pe)
was corrected using the following formula (which introduces a
pseudo-count of 1), i.e.

Pe �
num(Pp ≤Pr) + 1

1001
(1)

The mRNA-lncRNA pairs with the rho> 0.6 and Pe < 0.01
were treated as the co-expressed mRNA-lncRNA pairs. Finally,
we constructed the ceRNA triplets relationships in POAG by
integrating the miRNA-mRNA/lncRNA pairs and the co-
expressed mRNA-lncRNA pairs (Wang et al., 2015). ceRNA
network was visualized using the Cytoscape (Shannon et al.,
2003).

Network-Based Prioritization of
POAG-Related ceRNA Relationships
Discovery
To identify the hub nodes in our ceRNA network, we employed
the random walk with restart (Köhler et al., 2008). The POAG-
related genes contained in the DisGeNet (Piñero et al., 2020) were
considered as the seed genes. Performed random walk on the
ceRNA network, with a restart probability of 0.7 using the
function random walk in the R package RWOAG (Köhler
et al., 2008). The nodes with top 30 visitation probabilities
were treated as the hub nodes of the network. The ceRNA
triplets consisting of hub nodes were considered as the critical
ceRNAs relationships.

Construction of Transcriptional Regulatory
Network
First, the immunosuppressive-related genes were collected from
DisGeNET (Piñero et al., 2017) (http://www.disgenet.org) and
HisgAtlas v1.0 (Liu et al., 2017) (http://biokb.ncpsb.org/
HisgAtlas/). In addition, we searched for the keyword
“immunosuppressive agents” in the Drugbank (Wishart et al.,
2018) database (https://www.drugbank.ca/) and obtained
311 immunosuppressive-related drugs. In total, the
1,332 immunosuppressant-related genes were obtained from
the above three databases. Next, the immunosuppressive-
related genes in differentially expressed protein coding genes
(PCGs) were extracted for the construction of transcriptional
regulatory network. Moreover, the regulation data of
transcription factors (TF) and target gene for human were
downloaded from the TRRUST v2.0 (Han et al., 2018)
(https://www.grnpedia.org/trrust/) and ORTI (Vafaee et al.,
2016) databases (http://orti.sydney.edu.au/about.html). The TF
target gene relationship pairs related to the immunosuppressive-
related DEmRNAs were extracted. Further, the Spearman’s

correlation coefficient (rho) between the genes of each pair
was calculated and the cutoff of the p-value and rho were set
to 0.05 and 0.5. Then, we constructed the TF-target network using
Cytoscape software. We then analyzed the topological properties
of the network and extracted the top 3 genes of degree as key drive
factors.

Functional Enrichment Analysis
To annotated the potential biology functions of differentially
expressed genes and ceRNA triplets, we performed functional
enrichment analysis on the mRNAs using Metascape (http://
metascape.org/gp/index.html) (Zhou et al., 2019). For the mRNA
list, pathway and process enrichment analysis have been carried
out with the following ontology sources: KEGG Pathway, GO
Biological Processes, Reactome Gene Sets, and Canonical
Pathways.

Immune Infiltration Analysis
The pre-processed expression matrix of PCGs for the GSE101727
series was used for immune infiltration analysis using
CIBERSORT (Newman et al., 2015). CIBERSORT is a method
to characterize the cellular composition of complex tissues from
gene expression profiles.

Statistical Analysis
The ROC curves were performed using the R package pROC. The
gene sets enrichment analysis using the Fisher’s exact test. All
statistical analysis was performed using the R (v 3.6.2).

RESULTS

Differential Expression Analysis Depicts the
Transcriptional Features of POAG
In the regulation of gene expression, transcription is an initial
step and one of the most critical steps (Prieto and McStay, 2005).
To explore the changes in gene expression of POAG patients at
the transcriptional level, the limma algorithm was used to identify
genes that were significant differentially expressed in the AH of
POAG compared to non-glaucoma. For GSE101727 series, 789
mRNAs were recognized to be down-regulated and 1,487mRNAs
were recognized to be up-regulated in AH (Figure 1A). In
addition to considering the expression of protein-coding gene
(PCG), the expression of non-coding gene that has been proven
to play an important role in the activities of cell (Bridges et al.,
2021) was also our focus. Further, there were 576 down-regulated
and 614 up-regulated lncRNAs in AH (Figure 1B), which
identified in GSE101727 series. Differentially expressed genes
were used as features to identify non-glaucoma and POAG
samples. We found that non-glaucoma samples and POAG
samples can be distinguished and there are significant
differences between the two groups (Figure 1C), indicating
that the identified DEmRNAs and DElncRNAs can be used as
the signature of POAG patients. In the ceRNA competition
mechanism, miRNA is a crucial part (Smillie et al., 2018).
Therefore, we specifically collected GSE105269 series data to
identify DEmiRNA in AH of POAG. We found that 8
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miRNAs (3 down-regulated and 5 up-regulated) were
significantly differently expressed in AH of POAG
(Figure 1D). Moreover, it is necessary to explore which
physiological mechanisms these differentially expressed genes
affect. The PCGs up-regulated in AH of POAG were used for
functional enrichment analysis by Metascape tool. We found that
the up-regulated PCGs are significantly enriched in protein
synthesis and immune regulation (Figure 1E). Among them,
the function of the top enrichment is the regulation of the
expression of SLITs and ROBOs, which has been shown to be
involved in the migration and positioning of neuronal precursor
cells and the growth of neuronal axons (Tong et al., 2019). All
these indicate that the neurons and immune microenvironment
of AH in POAG patients have been changed.

The ceRNA Network Reveal the Mechanism
of Gene Expression Variations
The ceRNA regulatory mechanism plays an important role in
the post-transcriptional regulation of genes. Using the ceRNA

network to reveal the regulatory mechanisms of differentially
expressed genes in AH tissue was conducive to the pathogenesis
of POAG. Through the screening of genes involved in ceRNA
regulation (see methods), we have identified 4 miRNAs that can
bind to 13 lncRNAs and regulate their expression. Furthermore,
the 4 miRNAs can regulate the expression of 333 mRNAs and
then constitute 1,653 lncRNA-miRNA-mRNA regulatory units
(Figure 2A). Through functional enrichment analysis, we found
that the genes involved in ceRNA regulation are significantly
enriched in cellular responses to stress, regulation of mRNA
metabolic process and mRNA catabolic process (Figure 2B),
indicating that the ceRNA mechanism in AH tissue of POAG
could affect specific physiological mechanisms by regulating
gene expression. Further, the hub nodes in the ceRNA network
were identified by restarting the random walk algorithm (see
methods). The ceRNA triad composed of hub nodes constitutes
two ceRNA subnets. The ceRNA subnet_1 consists of 7
lncRNAs, 2 miRNAs and 10 mRNAs (Figure 2C). Among
them, hsa-miR-21-5p as a ceRNA has been proven to play an
important role in multiple complex diseases (Xiong et al., 2020;

FIGURE 1 | The differentially expressed genes in AH of POAG. (A,B) The DEmRNAs and DElncRNAs between the two groups of AH tissue for POAG (GSE101727)
and non-glaucoma are displayed by volcano map. The vertical dotted line is 1.5, and the horizontal dotted line is 2. These marked genes are identified in the following
hub-subnets of ceRNA network. (C) The expression profile of differentially expressed genes (mRNA and lncRNA) is displayed with heat map. The column label shows the
sample type. (D) The expression profile of the DEmiRNAs between the two groups of AH tissue for POAG (GSE105269) is displayed with heat map. The column
label shows the sample type. (E) Functional enrichment results of DEmRNAs calculated by Metascape tool are displayed by bar plot. The darker the color, the more
significant the enrichment function.
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Jiang et al., 2020). The ceRNA subnet_2 consists of 5 lncRNAs, 1
miRNA and 5 mRNAs (Figure 2D). We found that FBN1
regulated by hsa-miR-339-5p is the causative gene of a
variety of genetic diseases, including fibrinopathy and Marfan
syndrome (Sakai et al., 2016). The genetic polymorphism of
HSPA1B was closely related to the disorder of neuroregulation
(Bosnjak Kuharic et al., 2020). Taken together, these suggest
that the ceRNA regulatory mechanism plays an important role
in AH tissue of POAG.

Key Factors Driving the Progress of POAG
The TFs regulate the initiation and intensity of transcription
of specific genes, which is an important driving factor in life
activities (Lambert et al., 2018). To identify the driving factors
that play an important role in POAG, a transcriptional
regulatory network was constructed based on differentially
expressed PCGs in GSE101727 series. By combining the

previous research data and the correlation analysis of gene
expression, 181 TF-target gene units were identified and the
transcriptional regulatory network was constructed
(Figure 3A). The network contained 73 TFs and 116 target
genes. Further, functional enrichment analysis was used to
explore the physiological mechanism involved in this
transcriptional regulatory network. We found that the
genes in this transcriptional regulatory network are
significantly enriched in the regulation of myeloid cell
differentiation and cell proliferation (Figure 3B), indicating
that the specific expression of TF drives the expression of
target genes and affects the immune microenvironment of
POAG. Moreover, we identified the top 3 TFs (FOS, ATF4, and
RELB) of degree as a key driver in the transcriptional
regulatory network (Figures 3C-E). The FOS and RELB
were significantly down-regulated and ATF4 was
significantly up-regulated (Figure 3D) in AH of POAG.

FIGURE 2 | Construction of ceRNA regulatory network. (A) The POAG-related ceRNA triplets’ network in AH tissue. The yellow nodes represent the miRNAs. The
red nodes represent the lncRNAs. The purple nodes represent the mRNAs. (B) Fuctional enrichment results of mRNAs in ceRNA networks are displayed by the bar plot.
Three different colors represent three function sets. (C,D) The hub POAG-related ceRNA triplets’ sub-network in AH tissue. The yellow nodes represent the miRNAs. The
red nodes represent the lncRNAs. The purple nodes represent the mRNAs.
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Studies have shown that RELB plays a key role in the
development of T cells and controls the proliferation of
T cells, indicating that changes in RELB expression may be
related to variations of the immune microenvironment for
POAG (Zhou et al., 2020). Besides, we found that CDKN1A
has the highest correlation with RELB at the transcript level
(Figure 3F), and CDKN1A encodes cyclin which is regulated
by kinase inhibitors (El-Deiry, 2016), indicating that RELB
may control the proliferation of T cells by regulating the
expression of CDKN1A. All these indicate that there are
several driving factors that play an important role in the
changes in the physiological mechanism of POAG.

Immune Infiltration Characteristics of POAG
The dynamics of the immune microenvironment is an important
feature of the occurrence and development of diseases (Makowski
et al., 2020). Identifying the immune characteristics is conducive to
enriching the exploration of the pathogenesis of POAG. Therefore,
the CIBERSORT tool was used to calculate the immune cell
composition of each AH samples of POAG and non-glaucoma
samples through the deconvolution algorithm. After preprocessing
the immune cell fractionmatrices, the consensus clustering algorithm
was used to identify the distance between samples including AH of
POAG and non-glaucoma samples. We found that POAG and non-
glaucoma individuals can be distinguished by immune cell

FIGURE 3 | Construction of transcriptional regulatory network. (A) The POAG-related transcriptional regulatory network in AH. The square represents the TF and
target gene, the diamond represents TF, and the circle represents the target gene. Red color means up-regulation of gene expression, blue color means down-
regulation. (B) Function enrichment results of mRNAs in transcriptional regulatory networks are displayed by the circle plot. The right side of the panel represents the
function, and the left side represents the genes enriched in the function. (C–E) The expression of 3 TF (FOS, ATF4, and RELB) between AH tissue of POAG and
non-glaucoma is shown by boxplot. (F) The correlation between the 3 TF (FOS, ATF4, and RELB) and its target genes. The color changes with the variation of the
correlation coefficient.
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components and POAG individuals are in an immune desert state
(Figure 4A). Further, the statistical test was used in the analysis of the
difference between the immune cell components of the AH of POAG
and non-glaucoma sample. From the perspective of the fold changes
of immune cell components, the CD8+ T cell, CD4+ memory T cell,
monocytes, macrophages, M1 and dendritic cell components of
POAG individuals are significantly different from those of non-
glaucoma individuals (Figure 4B). Besides, the Wilcoxon rank sum
test was used to test the significance of differences in immune cell
components between the two groups. We found that monocytes, γδ
T cells, Tregs, CD8+ T cells and memory B cell components are
significantly different between POAG and non-glaucoma individuals
(Figure 4C). Monocytes, as a kind ofmyeloid cells, play an important
role in presenting antigens in the organism and their fraction was
significantly down-regulated in POAG, which may be an important

sign of POAG patients. POAG is a neurodegenerative disease and
neuroinflammation occurs during its pathogenesis (Weinreb and
Khaw, 2004; Evangelho et al., 2019), which may be related to the lack
of Treg. Taken together, these suggest that the AH of POAG is in an
immune desert state and the significant down-regulation of specific
immune cell components can be used as the marker of POAG.

Biomarkers of POAG
The identification of biomarkers of POAG is helpful for its clinical
diagnosis and treatment. Therefore, we collected important genes in
the ceRNA regulatory subnet and drive factors identified above. For
the two ceRNA regulatory subnet, the genes in each lncRNA-
miRNA-mRNA unit were used as features to distinguish POAG
from non-glaucoma individuals and the ROC curve was used to
evaluate the stability of the feature. The AL590666.2-

FIGURE 4 | The landscape of immune cell infiltration for POAG. (A) The fraction of immune cells in the AH tissue of POAG and non-glaucoma is shown by heatmap.
The column label shows the sample type. (B) The fold change of the fraction of immune cells between the AH tissue of POAG and non-glaucoma. The two vertical dashed
lines represent 1 and -1 respectively. (C) The fraction of immune cells in the AH tissue of POAG and non-glaucoma is shown by boxplot. Wilcoxon rank sum test is used
to calculate the statistical difference between the two groups.
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hsa−miR−339−5p-UROD axis was recognized to be able to stably
distinguish between POAG and non-glaucoma individuals. Among
them,UROD has the highest AUC value of 0.98 compared to 0.77 of
AL590666.2 and 0.78 of hsa−miR−339−5p (Figures 5A–C).
Uroporphyrinogen decarboxylase encoded by UROD was an
important element in hemoglobin synthesis, which is significantly
up-regulated in POAG (Figure 5D). Studies have shown that patients
with POAG have red blood cell backlog and high plasma specific
viscosity (Wang et al., 2004; Xu et al., 2020), indicating that the up-
regulation ofURODmay be an important cause of blood deformation
in POAG patients. Further, we found that AL590666.2 and UROD
have a strong correlation (Figure 5E), suggesting that AL590666.2

may be an important biomarker of POAG. For the top three TFs
identified above, the AUC values of ATF4, FOS, and RELBwere 0.91,
0.91, and 0.74, respectively (Figure 5F). All these suggest that these
genes can be used as biomarkers of POAG for clinical diagnosis and
treatment.

DISCUSSION

In this work, we have integrated multiple sets of transcript data
(mRNA, lncRNA, miRNA) and revealed important functional
subnets and driving factors of POAG through ceRNA

FIGURE 5 | Machine learning was used to identify POAG biomarkers. (A–C) The potential of has-miR-339-5p, AL590666.2, and UROD in identifying POAG
diseases is depicted by the ROC curve. The AUC values are calculated. (D) The expression of has-miR-339-5p, AL590666.2, and UROD in AH tissues of POAG and
non-glaucoma. Wilcoxon rank sum test is used to calculate statistical differences. (E) The correlation between AL590666.2 and UROD in expression. (F) Same as in
(A–C) but for the ATF4, FOS, and UROD.
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competition network and transcriptional regulatory network
analysis. Through statistical testing, thousands of genes
(DEmRNA, DElncRNA, DEmiRNA) differentially expressed in
POAG’s AH tissue have been identified. We have identified 1,653
lncRNA-miRNA-mRNA regulatory units and two functional
subnets in AH tissue, which will help reveal the pathogenesis
of POAG. Further, the transcriptional regulatory network was
constructed based on differentially expressed genes and 3 TFs
were recognized to play an important role in the transcriptome
disorder of the POAG’s AH tissue. We have used the
CIBERSORT tool and transcription profile of AH tissue to
reveal the immune landscape of POAG. We found that the
components of immune cells in AH tissue of POAG were
globally down-regulated compared to non-glaucoma.
Additionally, a ceRNA regulatory axis (AL590666.2-
hsa−miR−339−5p-UROD) and 3 TFs (ATF4, FOS, and RELB)
have been identified as potential biomarkers for POAG patients.

POAG is the most common form of glaucoma disease, which
is a disease of the optic nervous system and causes irreversible
blindness (Li et al., 2016). The identification of POAG’s
biomarkers is the direction of the efforts of many researchers.
For example, Liu et al. identified hsa-miR-210-3p in peripheral
blood as a biomarker of POAG based on miRNA expression
profile (Liu et al., 2019). However, polygene dysregulation and
interaction were the inherent causes of POAG. We have revealed
the regulatory relationship of dysregulated genes and the
pathogenesis of POAG through multi-network integration
analysis. The hsa-miR-21-5p and FBN1 were the key genes in
the ceRNA regulatory subnet that we have identified, which play
an important role in multiple complex diseases.

For our identified driving factor ATF4, it has been confirmed
in previous studies that it can cause glaucoma by promoting ER
client protein load (Kasetti et al., 2020) and regulating trabecular
meshwork remodeling (Zhao et al., 2020). In addition to common
transcriptome analysis, Liu et al. identified F-box protein (FBOX)
and vaccinia-associated kinase 2 (VRK2) that may interact with
tumor protein p53 (TP53) to regulate apoptosis and play a
negative role in POAG from the perspective of genetic lineage
(Liu et al., 2012). Among them, FBOX and TP53were target genes
of the key TF ATF4 and FOS identified in this work. Moreover,
several potential biomarkers of POAG were revealed through
integrated network analysis in this work.

Among identified protein-coding genes that are significantly
differentially expressed in the AH tissue of POAG, RELB and
CDKN1A were a pair of important transcriptional regulatory
units. The RELB has been confirmed in previous studies to
regulate the proliferation of T cells (Zhou et al., 2020) and the

expression of its target gene CDKN1A was closely related to the
cell cycle (El-Deiry, 2016). Therefore, the down-regulation of
CDKN1A expression mediated by RENL may be an important
reason for the decreased level of T cell infiltration. Red blood cell
backlog and high plasma specific viscosity were an important
physiological manifestation of POAG. This trait may be related to
the up-regulation of UROD expression.

CONCLUSION

In conclusion, we integrated multi-network analysis to identify
important functional subnets and driving factors, which will help
advance the research on the pathogenesis of PAOG. Immune
infiltration analysis and feature recognition reveal the immune
desert state and the biomarkers of POAG. Taken together, our
research provides theoretical guidance for the clinical diagnosis
and treatment for POAG.
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