
Published online 26 April 2022 Nucleic Acids Research, 2022, Vol. 50, Web Server issue W305–W311
https://doi.org/10.1093/nar/gkac289

ExPheWas: a platform for cis-Mendelian
randomization and gene-based association scans
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ABSTRACT

Establishing the relationship between protein-coding
genes and phenotypes has the potential to inform on
the molecular etiology of diseases. Here, we describe
ExPheWas (exphewas.ca), a gene-based phenome-
wide association study browser and platform that
enables the conduct of gene-based Mendelian ran-
domization. The ExPheWas data repository includes
sex-stratified and sex-combined gene-based associ-
ation results from 26 616 genes with 1746 pheno-
types measured in up to 413 133 individuals from
the UK Biobank. Interactive visualizations are pro-
vided through a browser to facilitate data exploration
supported by false discovery rate control, and it in-
cludes tools for enrichment analysis. The interactive
Mendelian randomization module in ExPheWas al-
lows the estimation of causal effects of a genetically
predicted exposure on an outcome by using genetic
variation in a single gene as the instrumental vari-
able.

GRAPHICAL ABSTRACT

INTRODUCTION

Uncovering the relationship between genes and phenotypes
is an important goal of genetics to help improve our un-
derstanding of molecular physiology and disease pathology.
Genetic variation provides a tool for predicting the causal
effects of altering the functions of a protein and is a valuable
approach to help in the validation of drug targets. Phenome-
wide association studies (PheWAS) are widely used to study
the association of genetic variants across multiple traits and
diseases (1,2). Many large databases of single common ge-
netic variant association results have now been made avail-
able, thanks to the democratization of genomic datasets and
the emergence of high-quality software and web services.
For example, PheWeb provides a user-friendly web inter-
face to query GWAS (genome-wide association studies) re-
sults, and many independent instances of the software can
now be found online (3). Other portals for common ge-
netic variants include PhenoScanner, the GWAS Catalog
and the Open Targets Genetics Platform (4–8). Recently, re-
sults from rare genetic variants captured by exome sequenc-
ing in a phenome-wide approach were also made available
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in portals such as genebass and the AstraZeneca PheWAS
Portal (9).

To date, most PheWAS have focused on the investi-
gation of individual common single-nucleotide polymor-
phisms (minor allele frequency >1%) or gene-level results
based on aggregated rare variants. Here, we fill the informa-
tion gap with an approach that provides gene-level informa-
tion based on common genetic variants. We used an associ-
ation test that relies on principal component analysis (PCA)
to aggregate common variants within gene regions (10,11).
In cases where multiple genetic variants with individually
small effect sizes underlie an association signal, such tests
are expected to have greater power than their single-variant
counterparts.

Genetic variation can be used to predict the causal effect
of intervening on a target exposure under the framework
of Mendelian randomization (MR) (12). For example, one
may be interested in predicting the effect of a one unit reduc-
tion in LDL (low-density lipoprotein) cholesterol on my-
ocardial infarction. This can be achieved, under causal and
statistical assumptions, by relating the effect of genetic vari-
ation on the exposure (i.e. LDL cholesterol) to their effect
on the outcome (i.e. myocardial infarction). Some online
tools and browsers have been developed to facilitate MR
studies, such as MR-Base that supports the use of different
estimators and provides access to a diverse set of summary
statistics that can be used to derive the MR estimates inter-
actively (13).

In this article, we present ExPheWas, a data repository of
gene–phenotype association results and a web-based tool
for data exploration and gene-based MR analyses (Fig-
ure 1). Importantly, ExPheWas also presents both sex-
combined and sex-stratified association results to enable the
conduct of research that is sensitive to differences between
the sexes. ExPheWas can be accessed using the web interface
or programmatically, through an application programming
interface (API).

MATERIALS AND METHODS

UK Biobank and genetic quality control

The UK Biobank is a longitudinal population cohort of
>500 000 individuals. All participants visited a recruit-
ment center between 2006 and 2010 and completed a
touchscreen-based questionnaire followed by a verbal inter-
view with a nurse allowing participants to self-report a wide
variety of diseases. Urine and blood samples were collected
allowing for the measurement of an extensive panel of bio-
chemical markers. Linkage to national cancer, hospitaliza-
tion and death records enables the algorithmic definition of
various health-related outcomes. Genetic data derived from
a genome-wide genotyping array were also collected and
imputed to ∼96 million genetic variants (14).

Because of the high-throughput nature of our study, we
conducted a strict genetic quality control to reduce the risk
of bias due to poor genotyping, low imputation quality or
population stratification. We excluded all variants and indi-
viduals with >2% of data values missing. To avoid bias due
to cryptic relatedness, we randomly selected one individual
from pairs predicted to be related using a kinship coefficient
corresponding to a third-degree relationship (0.0884) as a

threshold, and we included only individuals from the largest
genetically homogeneous population in the UK Biobank
corresponding to individuals of European ancestry. We ex-
cluded individuals from non-European ancestry based on
self-reported data and based on outliers from a manually
defined cluster in the genome-wide PCA plot. After these
steps, a total of 413 133 individuals remained for analysis.

Creation of gene-based PCs

We used the Ensembl 87 database as a reference for human
protein and lincRNA (long intergenic noncoding RNA)
genes. The rationale for including lincRNA genes was to
increase genomic coverage and to optimize the inclusion
of functional genes. In total, 26 616 genes were analyzed.
To create a compact representation capturing genetic vari-
ability within gene regions, we conducted PCA with genetic
variants of minor allele frequency ≥1% and an imputation
quality info score ≥0.6 at every locus. We used the Ensembl
gene boundaries and added a padding of 2.5 kb (1.5 kb up-
stream and 1 kb downstream) to coding genes, but not for
lincRNA genes. We extracted all additively encoded geno-
type dosages from the UK Biobank v3 imputed genotype
data release and conducted a PCA using the implementa-
tion from scikit-learn in the Python programming language
(15). The projection on the space spanned by the PCs re-
taining 95% of the variance was saved for all samples. In a
sensitivity analysis, we also considered retaining 99% of the
variance for a subset of genes and this choice had a limited
effect on the association test results, as seen in an earlier
version of ExPheWas (v0).

PheWAS

Phenotype definition. We included 362 self-reported dis-
eases recorded as part of the verbal interview with a nurse
at the baseline visit (variable #20002). We included 83 stan-
dardized continuous variables corresponding to anthropo-
metric measurements, and blood and urine biomarkers. De-
tails on transformations used to normalize the continuous
variables are provided in Supplementary Table S1. ICD10
codes from the hospitalization and death records were con-
verted to ‘Phecodes’, phenotypic categories that are clin-
ically meaningful and suitable for high-throughput asso-
ciation testing, resulting in 1280 phenotypes (2). Finally,
we manually defined 21 cardiovascular endpoints, includ-
ing myocardial infarction, angina, cardiovascular death and
revascularization procedures (see definitions in Supplemen-
tary Table S2).

Association testing. Different approaches have been pro-
posed to conduct association testing of common variants
at a gene locus (11,16,17). Because our PheWAS involves a
large number of tests, we used a dimensionality reduction
approach to reduce the computational burden and opted
for a PCA-based association model that was previously
described and that is also used in the MAGMA software
(10,11).

For continuous traits, an F-test is used to compare two
nested models as in MAGMA. First, a null model regresses
the outcome on covariates such as age, sex and genome-
wide PCs to adjust for confounding due to ancestry. The
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Figure 1. Summary of the ExPheWas analysis and browser functionality.

association test is based on the gain in goodness of fit (or
lack thereof) after adding gene-based PCs to the null model.
More formally, given two nested models with P1 and P2 rep-
resenting the set of parameters where P1 ⊂ P2, one can com-
pute the F-statistic given by

F =
(

RSS1 − RSS2

|P2| − |P1|
)

÷
(

RSS2

n − |P2|
)

, (1)

where RSSi and |Pi| are the residual sum of squares and
number of parameters of the ith model, respectively, and
n is the number of samples. This statistic follows an F-
distribution with (|P2| − |P1|, n − |P2|) degrees of freedom
under the null hypothesis that the second model does not
improve the residual sum of squares.

A similar approach for generalized linear models has
been described based on the difference in deviance and was
termed the analysis of deviance (18). The difference between
the deviances of the nested models follows a χ2 distribution
with |P2| − |P1| degrees of freedom under the null hypoth-
esis. This extension can be used in the context of logistic
regression as implemented in our analyses. In this setting,
an equivalent approach based on the likelihood ratio test
was also previously suggested (10).

The F-test and analysis of deviance-based methods are
available in R under the ‘anova’ function that takes fitted
models as parameters (i.e. output from the lm or glm func-
tions). Because of the large number of tests in our analysis,
we used the optimized fastglm (v0.0.1) package when fit-
ting logistic regression models for binary outcomes (github.
com/jaredhuling/fastglm). This package uses the Cholesky
decomposition to optimize the iterative reweighted least
squares algorithm that drastically reduced the time required
for logistic regressions. The phenotype coding and statisti-
cal tests are implemented in UKBPheWAS, a tool we devel-
oped specifically for this analysis (github.com/legaultmarc/
ukbphewas).

False positive control. In the PheWAS study, we conducted
∼140 million association tests. We used a false discovery
rate (FDR) approach to control for false positive results
attributable to multiple hypothesis testing, on a per gene

and per phenotype basis. Specifically, we used the test P-
values to compute corresponding q-values designed so that
if all q-values ≤0.05 are considered significant, then 5% of
the significant tests will be false discoveries on average (19).
For example, when browsing results for a gene of interest,
the displayed q-values will be based on 1746 tested pheno-
types. Browsing the same results by ‘outcome’ will result
in q-values based on all tested genes. The uncorrected P-
value and the Bonferroni corrected P-value are also pro-
vided with each result. When browsing association results
for a selected gene, a quantile–quantile (QQ) plot of as-
sociation P-values is also displayed on the results browser
along with the λ inflation factor corresponding to the ra-
tio of the median observed association statistic to the me-
dian expected association statistic under the null. The infla-
tion factor is a quantitative estimate of the deviation of the
statistic distribution from the null and high λ (>1) values are
characteristic of genes that contribute to many phenotypes
(i.e. pleiotropic loci). For example, the HLA-DQB1 gene is
notoriously pleiotropic and has λ = 2.48.

Browser and API

Implementation. The PheWAS results are accessible via an
API and through a web-based results browser, both devel-
oped using the Python programming language (v3.8) and
Flask web framework (v1.1.1). We used the SQLAlchemy
(v1.3.13) object relational mapper and SQL engine to
build the results database and the publicly available in-
stance uses PostgreSQL (v10.19). The code for the database
models, API endpoints, web browser endpoints and the
JavaScript frontend are publicly available online (github.
com/pgxcentre/ExPheWAS). Interactive visualizations inte-
grated in the web application were developed using D3.js
(d3js.org).

To ensure long-term availability, the service is hosted on
the Compute Canada Cloud service (computecanada.ca/
home).

Enrichment analyses. We integrated enrichment analysis
utilities to the API and results browser. For any selected
phenotype, it is possible to test whether the associated genes
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are enriched in drug targets. To achieve this, we used the
ChEMBL database to map drug target genes to Anatom-
ical Therapeutic Chemical (ATC) classification codes rep-
resenting drug classes (20). The ATC codes are structured
hierarchically in a five-level system where the first level in-
dicates the anatomical group (e.g. C represents drugs act-
ing on the ‘cardiovascular system’) and the fifth level repre-
sents individual drugs (e.g. C07AB07 represents bisoprolol,
a specific beta-blocker molecule). For enrichment analyses,
we used Fisher’s exact test of the 2 × 2 contingency table
of the number of genes associated with the phenotype and
drug class at a q-value ≤0.05 level.

The drug target enrichment analysis results are displayed
on the ExPheWas browser results page as an interactive tree
with collapsible nodes. A color scale is used to represent en-
richment P-value. For every ATC node, the fill color rep-
resents the node’s enrichment P-value and the stroke color
represents the minimum P-value in the subtree rooted at the
current node.

Enrichment analyses with the g:Profiler API are con-
ducted automatically if over five genes are significantly asso-
ciated with a phenotype (at FDR 5%) (21). The enrichment
results are displayed for KEGG pathways, Gene Ontology
and Human Phenotype Ontology terms.

Mendelian randomization

MR is used to estimate the causal effect of an exposure (X)
on an outcome (Y) using genetic variation as an instrumen-
tal variable. The popular inverse variance weighted (IVW)
estimator combines the causal estimates from different ge-
netic instruments by their precision (1/se(β̂Yk)2), in a man-
ner inspired by fixed-effect meta-analysis methodology (22).
Concretely, the IVW estimator for k genetic instruments is

β̂IVW =
∑

k β̂Xkβ̂Ykse(β̂Yk)−2∑
k β̂2

Xkse(β̂Yk)−2
, (2)

where β̂Xk and β̂Yk are estimated coefficients for the effect
of the kth instrument on the exposure and outcome, respec-
tively. In ExPheWas, we use a gene’s PCs as the k instru-
mental variables in this estimator. By default, PCs not as-
sociated with the exposure (P > 0.05) are removed from
the IVW analysis to satisfy the relevance assumption (see
Supplementary Data). To further help users validate this as-
sumption, we also display the association P-value between
the selected gene and the exposure. We provide a discussion
of the instrumental variable assumptions and specific rec-
ommendations in the Supplementary Data

Because the MR estimates are based only on a single gene
of interest, they can be interpreted within the cis-MR frame-
work (23) (see Supplementary Data). Because we do not
have access to direct measurements of the gene products in
this study, users should select exposures that are biologically
or mechanistically related to their gene of interest. For ex-
ample, if one was to conduct a cis-MR based on the PCSK9
gene, a protein involved in the recycling of the LDL recep-
tor, levels of LDL cholesterol would be a good choice of
proxy phenotype for PCSK9 function.

Figure 2. Interactive visualizations on the ‘gene’ pages. The example is for
the angiotensin I converting enzyme (ACE). (Left) A QQ plot representing
deviation from the expected distribution of P-values under the null hypoth-
esis. The statistical inflation as measured by λ is 1.22 in this example (shown
on the website). (Right) A radial plot of median expression in GTEx v8 tis-
sues, which can be used to contextualize association results.

RESULTS AND DISCUSSION

PheWAS

To test the association between genes and multiple pheno-
types, we used a PheWAS approach (1,2). We tested the
association between 26 616 protein-coding and lincRNA
gene regions and 1746 phenotypes in the UK Biobank.
We included phenotypes spanning a large proportion of
the phenome and defined from different data sources avail-
able in the UK Biobank. We used Phecodes based on the
hospitalization and death records to capture many clini-
cally meaningful phenotypes, as well as continuous mea-
surements from the blood or urine assays, anthropometric
measurements, self-reported traits or manually defined car-
diovascular outcomes.

All analyses were also conducted in male-only and
female-only subgroups that were genetically determined ac-
cording to X and Y chromosomes. The availability of sex-
stratified results allows for the detection of associations be-
tween genes and phenotypes that have sex-specific effects
and supports the conduct of sex-specific causal analyses us-
ing the MR module.

Browser

The web-based browser (exphewas.ca) was developed to en-
hance the dissemination of results from the gene-based Phe-
WAS analysis and to facilitate interpretation of the results.
The interface was designed to be user friendly while sup-
porting programmatic access, as the website itself uses the
publicly available API to access all of its data. The browser
is thoroughly documented and offers three main modules.

First, the gene page (summarized in Figure 2) allows
users to search for and select a gene of interest and to ac-
cess the PheWAS page reporting association results with all
phenotypes. Interactive visualizations on the gene pages in-
clude the gene expression data from GTEx showing median

http://exphewas.ca
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Figure 3. Overview of the enrichment analyses presented on ‘phenotype’
pages. The example is for the ‘essential hypertension’ (401.1) phenotype.
(Top) Results from a drug target enrichment analysis using Fisher’s exact
test. (Bottom) Enrichment analyses for the Gene Ontology molecular func-
tions (GO:MF), cellular components (GO:CC) and biological processes
(GO:BP), the KEGG pathways and the Human Phenotype Ontology. En-
richment results are fetched dynamically from g:Profiler when enough sig-
nificantly associated genes are available for analysis (at FDR 5%).

expression across tissues that can inform users of the bio-
logical plausibility of the association results as well as a QQ
plot that can help diagnose statistical inflation due to latent
confounding or polygenicity.

Second, the phenotype page (summarized in Figure 3) al-
lows users to search for phenotypes and access a page show-
ing all gene association results. The phenotypes are catego-
rized into four data types: Phecodes, algorithmically defined
cardiovascular endpoints, self-reported diseases and contin-
uous variables. This page also includes enrichment analyses
with drug targets of different drug classes defined accord-
ing to the ATC classification. For example, in ExPheWas,
the genes associated with self-reported heart attacks (phe-
notype #1092) are enriched for genes that encode drug tar-
gets for ‘lipid modifying agents’ (ATC code #C10A) and
the Fisher’s exact test P-value is 0.011. When five or more
genes are associated with a selected phenotype at an FDR
threshold of 0.05, the g:Profiler is automatically used to test
for enrichment within the KEGG pathways, Gene Ontology
and the Human Phenotype Ontology terms (21).

Finally, to allow users to conduct a deeper interpretation
of the PheWAS results, we implemented a cis-MR module
(Figure 4). This module allows users to estimate the causal
effect (under the instrumental variable assumptions) of an
exposure on a phenotype where the exposure is a selected
phenotype modulated by genetic variation at a gene of inter-

Figure 4. Overview of the cis-MR analysis module. The example shows
the estimated causal relationship for a one standard deviation reduction in
LDL cholesterol through a genetic disruption of the PCSK9 gene on the
odds of ‘coronary atherosclerosis’ (411.4). Smaller points (near the dashed
vertical line) represent PCs with a null effect (P > 0.05) on the exposure
that were excluded from the IVW estimate in order to satisfy the relevance
assumption. The slope of the red line corresponds to the IVW estimate.

est. This module provides an answer to research questions
such as ‘What would be the effect of a one standard devi-
ation reduction in LDL cholesterol levels derived from ge-
netic variants encoding the protein targeted by statins (the
HMGCR gene) on myocardial infarction?’.

A versioning system is used to ensure that results accessed
through the browser remain stable. The interface/software
is versioned separately from the data analysis version. The
current data release dates from 13 October 2021 and is la-
beled ‘v1’. Even though the home page corresponds to the
latest data release, the previous data release remains avail-
able under a stable URL: exphewas.ca/v0. Browser versions
are indicated in the top right corner of the web page and are
composed of a major, a minor and a micro version digit.
We reserve major digit version changes for API breaking
changes (e.g. a change in data release), minor digit changes
for significant new features or critical bug fixes, and the
micro digit for smaller changes. The data and browser are
hosted on the Compute Canada Cloud service platform.

Example applications

Investigation of atrial fibrillation genes. Atrial fibrillation
is a common cardiac arrhythmia of the atria that can lead to
severe complications, including stroke, cardiomyopathy and
heart failure (24,25). We used PheWAS analysis results (data
release v1.0) that included 18 474 UK Biobank participants
with atrial fibrillation established based on hospitalization
and death records (Phecode #427.2, ‘atrial fibrillation and
flutter’). There were 400 genes associated with atrial fibrilla-

https://exphewas.ca/v0/
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tion with a q-value ≤0.05. The automated g:Profiler-based
enrichment tool found enrichment for supraventricular ar-
rhythmia (Human Phenotype Ontology, HP:0005115; Padj

= 1.2 × 10−6), cardiac muscle contraction (Gene Ontol-
ogy biological process, GO:0060048; Padj = 3.9 × 10−6) and
Z disk (Gene Ontology cellular component, GO:0030018;
Padj = 1.7 × 10−4), among other relevant terms.

The enrichment of atrial fibrillation-associated genes in
drug targets based on the ChEMBL database (20), as im-
plemented in ExPheWas, found enrichment for class Ia
and class Ib antiarrhythmics corresponding to ATC codes
C01BA and C01BB, respectively. The Fisher’s exact test en-
richment P-values for these classes were 0.032 for both. This
finding is concordant with pharmacological treatment for
atrial fibrillation suggesting genetic support for these drug
targets.

We further explored gene associations that were not pre-
viously reported in the GWAS Catalog. Notably, myotilin
encoded by the MYOT gene was associated with heart rate
(P = 2.9 × 10−32) and atrial fibrillation (P = 2.2 × 10−16)
in our PheWAS. This region is located in a long LD block
spanning multiple genes (Supplementary Figure S1). Other
credible genes that could drive the association signal in this
region are FAM13B (atrial fibrillation, P = 1.3 × 10−14),
PKD2L2 (P = 1.4 × 10−14), WNT8A (P = 8.8 × 10−17)
and NME5 (P = 4.6 × 10−9). The two top genes accord-
ing to our analysis are MYOT and WNT8A, which have
P-values two to three orders of magnitude smaller than the
others. However, WNT8A is not expressed in heart tissues in
GTEx, whereas MYOT is expressed in the heart. Myotilin
is a component of the sarcomeric Z disk, a structure im-
plicated in muscle contraction, and rare mutations in my-
otilin cause myofibrillar myopathy, which often co-occurs
with cardiomyopathy [OMIM:604103 (26,27)]. In single-
cell RNA sequencing analysis, MYOT was found to be ex-
pressed in left atrial and right ventricular cardiomyocytes
in line with atrial fibrillation pathophysiology (28). Even
though it was located nearby, we did not consider KLHL3
as leading the association signal observed with MYOT, as
it showed an independent association signal through step-
wise conditional analysis (Supplementary Figure S1). After
two stages of the forward conditional stepwise analysis, no
further variants remained associated (Supplementary Fig-
ure S1).

CONCLUSION

We have presented ExPheWas, a data repository of gene–
phenotype association results and a web-based tool for data
exploration and gene-based MR analyses. ExPheWas can
be accessed using the web interface or programmatically,
through an API. Both sex-combined and sex-stratified as-
sociation results are provided to support the conduct of re-
search that is sensitive to differences between the sexes.

ExPheWas can be used in multiple applications, including
for follow-up of GWAS findings and for drug target valida-
tion. The gene-based approach can provide more statistical
power than single-variant analysis, and facilitates biological
interpretation through easier integration with gene-level an-
notations such as ontological terms. Importantly, the pro-

vided MR platform supports the investigation of the causal
relationship between selected phenotypes.

The analytical approach behind ExPheWas does have
some limitations worth mentioning. First, overlapping
genes within the boundaries of a protein-coding gene and
linkage disequilibrium may result in spurious attribution
of gene–phenotype associations. Information on the func-
tional characteristics of genetic variants would be needed to
help untangle such associations. Additionally, to avoid bias
due to population stratification and to maximize statistical
power, we conducted our analysis in the largest homoge-
neous subgroup of individuals in the UK Biobank compris-
ing participants of European ancestry. This selection may
hamper the transferability of association results to popula-
tions with different ancestries.

To conclude, the ExPheWas browser and platform con-
tributes an important atlas of gene–phenotype associations
along with tools to interrogate, contextualize and inter-
pret the results. ExPheWas enables gene-level discoveries
that may otherwise have been missed by traditional single-
variant approaches. Furthermore, the integrated cis-MR
module provides a powerful tool to conduct causal in-
ference and to further our understanding of gene-specific
causal effects.

DATA AVAILABILITY

Access to the UK Biobank resource requires applica-
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sults browser is available online at https://exphewas.ca/.
The code for the results browser including the database
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ExPheWAS.
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research chair in atherosclerosis. M.-P.D. holds the Canada
Research Chair in precision medicine data analysis.

FUNDING

Health Collaboration Acceleration Fund, Government of
Quebec. Funding for open access charge: Health Collabo-
ration Acceleration Fund, Government of Quebec.
Conflict of interest statement. Unrelated to this work,
JCT has received personal fees from AstraZeneca, Sanofi,
Servier; and personal fees and holds minor equity interest
from Dalcor. Unrelated to this work, MPD received per-
sonal fees and holds minor equity interest from Dalcor.

https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://exphewas.ca/
https://github.com/pgxcentre/ExPheWAS
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkac289#supplementary-data


Nucleic Acids Research, 2022, Vol. 50, Web Server issue W311

REFERENCES
1. Denny,J.C., Ritchie,M.D., Basford,M.A., Pulley,J.M., Bastarache,L.,

Brown-Gentry,K., Wang,D., Masys,D.R., Roden,D.M. and
Crawford,D.C. (2010) PheWAS: demonstrating the feasibility of a
phenome-wide scan to discover gene–disease associations.
Bioinformatics, 26, 1205–1210.

2. Denny,J.C., Bastarache,L., Ritchie,M.D., Carroll,R.J., Zink,R.,
Mosley,J.D., Field,J.R., Pulley,J.M., Ramirez,A.H., Bowton,E. et al.
(2013) Systematic comparison of phenome-wide association study of
electronic medical record data and genome-wide association study
data. Nat. Biotechnol., 31, 1102–1110.

3. Gagliano Taliun,S.A., VandeHaar,P., Boughton,A.P., Welch,R.P.,
Taliun,D., Schmidt,E.M., Zhou,W., Nielsen,J.B., Willer,C.J., Lee,S.
et al. (2020) Exploring and visualizing large-scale genetic associations
by using PheWeb. Nat. Genet., 52, 550–552.

4. Buniello,A., MacArthur,J.A.L., Cerezo,M., Harris,L.W., Hayhurst,J.,
Malangone,C., McMahon,A., Morales,J., Mountjoy,E., Sollis,E.
et al. (2019) The NHGRI-EBI GWAS Catalog of published
genome-wide association studies, targeted arrays and summary
statistics 2019. Nucleic Acids Res., 47, D1005–D1012.

5. Ghoussaini,M., Mountjoy,E., Carmona,M., Peat,G., Schmidt,E.M.,
Hercules,A., Fumis,L., Miranda,A., Carvalho-Silva,D., Buniello,A.
et al. (2021) Open Targets Genetics: systematic identification of
trait-associated genes using large-scale genetics and functional
genomics. Nucleic Acids Res., 49, D1311–D1320.

6. Kamat,M.A., Blackshaw,J.A., Young,R., Surendran,P., Burgess,S.,
Danesh,J., Butterworth,A.S. and Staley,J.R. (2019) PhenoScanner
V2: an expanded tool for searching human genotype–phenotype
associations. Bioinformatics, 35, 4851–4853.

7. Staley,J.R., Blackshaw,J., Kamat,M.A., Ellis,S., Surendran,P.,
Sun,B.B., Paul,D.S., Freitag,D., Burgess,S., Danesh,J. et al. (2016)
PhenoScanner: a database of human genotype–phenotype
associations. Bioinformatics, 32, 3207–3209.

8. Ochoa,D., Hercules,A., Carmona,M., Suveges,D.,
Gonzalez-Uriarte,A., Malangone,C., Miranda,A., Fumis,L.,
Carvalho-Silva,D., Spitzer,M. et al. (2021) Open Targets Platform:
supporting systematic drug-target identification and prioritisation.
Nucleic Acids Res., 49, D1302–D1310.

9. Wang,Q., Dhindsa,R.S., Carss,K., Harper,A.R., Nag,A.,
Tachmazidou,I., Vitsios,D., Deevi,S.V.V., Mackay,A., Muthas,D.
et al. (2021) Rare variant contribution to human disease in 281,104
UK Biobank exomes. Nature, 597, 527–532.

10. Gauderman,W.J., Murcray,C., Gilliland,F. and Conti,D.V. (2007)
Testing association between disease and multiple SNPs in a candidate
gene. Genet. Epidemiol., 31, 383–395.

11. de Leeuw,C.A., Mooij,J.M., Heskes,T. and Posthuma,D. (2015)
MAGMA: generalized gene-set analysis of GWAS data. PLoS
Comput. Biol., 11, e1004219.

12. Didelez,V. and Sheehan,N. (2007) Mendelian randomization as an
instrumental variable approach to causal inference. Stat. Methods
Med. Res., 16, 309–330.

13. Hemani,G., Zheng,J., Elsworth,B., Wade,K.H., Haberland,V.,
Baird,D., Laurin,C., Burgess,S., Bowden,J., Langdon,R. et al. (2018)

The MR-Base platform supports systematic causal inference across
the human phenome. eLife, 7, e34408.

14. Bycroft,C., Freeman,C., Petkova,D., Band,G., Elliott,L.T., Sharp,K.,
Motyer,A., Vukcevic,D., Delaneau,O., O’Connell,J. et al. (2018) The
UK Biobank resource with deep phenotyping and genomic data.
Nature, 562, 203–209.

15. Pedregosa,F., Varoquaux,G., Gramfort,A., Michel,V., Thirion,B.,
Grisel,O., Blondel,M., Prettenhofer,P., Weiss,R., Dubourg,V. et al.
(2011) Scikit-learn: machine learning in Python. J. Mach. Learn. Res.,
12, 2825–2830.

16. Svishcheva,G.R., Belonogova,N.M., Zorkoltseva,I.V.,
Kirichenko,A.V. and Axenovich,T.I. (2019) Gene-based association
tests using GWAS summary statistics. Bioinformatics, 35, 3701–3708.

17. Liu,J.Z., McRae,A.F., Nyholt,D.R., Medland,S.E., Wray,N.R.,
Brown,K.M., Hayward,N.K., Montgomery,G.W., Visscher,P.M.,
AMFS Investigators et al. (AMFS Investigators2010) A versatile
gene-based test for genome-wide association studies. Am. J. Hum.
Genet., 87, 139–145.

18. McCullagh,P. and Nelder,J.A. (1983) In: Generalized Linear Models.
Chapman &Hall, London.

19. Storey,J.D. and Tibshirani,R. (2003) Statistical significance for
genomewide studies. Proc. Natl Acad. Sci. U.S.A., 100, 9440–9445.

20. Bento,A.P., Gaulton,A., Hersey,A., Bellis,L.J., Chambers,J.,
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