
REVIEW
published: 20 November 2020

doi: 10.3389/fpsyt.2020.564415

Frontiers in Psychiatry | www.frontiersin.org 1 November 2020 | Volume 11 | Article 564415

Edited by:

Cynthia H. Y. Fu,

University of East London,

United Kingdom

Reviewed by:

Inge Kamp-Becker,

University of Marburg, Germany

Ryu-ichiro Hashimoto,

Showa University, Japan

*Correspondence:

Anja Philippsen

anja@ircn.jp

Specialty section:

This article was submitted to

Computational Psychiatry,

a section of the journal

Frontiers in Psychiatry

Received: 21 May 2020

Accepted: 20 October 2020

Published: 20 November 2020

Citation:

Philippsen A and Nagai Y (2020)

Deficits in Prediction Ability Trigger

Asymmetries in Behavior and Internal

Representation.

Front. Psychiatry 11:564415.

doi: 10.3389/fpsyt.2020.564415

Deficits in Prediction Ability Trigger
Asymmetries in Behavior and Internal
Representation
Anja Philippsen* and Yukie Nagai

International Research Center for Neurointelligence (IRCN), The University of Tokyo, Tokyo, Japan

Predictive coding is an emerging theoretical framework for explaining human perception

and behavior. The proposed underlying mechanism is that signals encoding sensory

information are integrated with signals representing the brain’s prior prediction. Imbalance

or aberrant precision of the two signals has been suggested as a potential cause for

developmental disorders. Computational models may help to understand how such

aberrant tendencies in prediction affect development and behavior. In this study, we

used a computational approach to test the hypothesis that parametric modifications

of prediction ability generate a spectrum of network representations that might reflect

the spectrum from typical development to potential disorders. Specifically, we trained

recurrent neural networks to draw simple figure trajectories, and found that altering

reliance on sensory and prior signals during learning affected the networks’ performance

and the emergent internal representation. Specifically, both overly strong or weak reliance

on predictions impaired network representations, but drawing performance did not

always reflect this impairment. Thus, aberrant predictive coding causes asymmetries in

behavioral output and internal representations. We discuss the findings in the context of

autism spectrum disorder, where we hypothesize that too weak or too strong a reliance

on predictions may be the cause of the large diversity of symptoms associated with this

disorder.

Keywords: predictive coding, computational modeling, recurrent neural networks, internal representation, autism

spectrum disorder

1. INTRODUCTION

Predictive coding is a general theory that has been proposed as an underlying principle of
cognitive processes in the brain (1–3). According to this theory, new bottom-up sensory signals
are integrated with top-down prior predictions to form posterior perceptions. Such priors could be
provided by internal models (4) which the brain creates in order to predict how sensory percepts
are caused by the external world and our own actions. In the framework of predictive coding,
perception and action selection can be interpreted as permanent efforts to minimize the prediction
error (or to maximize the amount of information gained). Many recent studies demonstrated
that computational models based on predictive coding can account for the development of
sensorimotor control (5, 6), multisensory cue integration (7), and other aspects of human behavior
and cognition (6, 8).

The relative reliance on predictions at the expense of sensory signals is an important parameter:
attending to one’s own predictions is necessary to exploit previous experiences, but attending to
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sensory signals is required for learning new and previously
unobserved patterns. How humans integrate these two signals
depends on the situational context and previous experiences.
However, in addition, there might also be individual tendencies
to rely more strongly on either predictions or sensory signals.
These ideas have been recently investigated in the context of
developmental or psychiatric disorders (9–14). In particular,
many studies focus on autism spectrum disorder (ASD),
a neurodevelopmental condition whose neurological origin
remains unclear. Individuals with ASD exhibit deficits in social
interaction and atypicalities in sensory processing. A particular
challenge in studying ASD is its heterogeneous phenotype:
Some people diagnosed with ASD show only slight aberrations
from typical behavior, while others exhibit severe impairments
of social interaction and language learning (15). It has been
suggested that predictive coding could account for symptoms,
such as hypersensitivities and the detail-focused processing style
of individuals with ASD: Stronger reliance on sensory signals
at the expense of prior predictions could alter information
processing and affect perception and behavior (9, 10, 16, 17).

To investigate the plausibility of these claims, computational
replications of common symptoms or other characteristics of
the disorder are required. In particular, generative computational
models have to be built that can test the effect of modifying
specific aspects of the neural mechanisms on the model’s
behavior. In contrast to other computational approaches to
autism that mainly aim at diagnosing ASD from behavioral
data (18, 19), generative approaches like our study aim at
identifying potential causes for impairments by manipulating
model parameters that could be relevant for certain neural
functions. Various models have been proposed recently for
computationally replicating ASD and other disorders, such
as schizophrenia using parameter modifications of generative
models, in particular, using neural networks (11). A growing
number of proposed models in recent years are based on
predictive coding ideas as an underlying mechanism (20–25).
One study that tested the effect of aberrant sensory precision was
performed by Idei et al. (22). In their study, they investigated
how aberrant sensory precision in a neural network affected
the behavior of a controlled robot in interaction with a human
experimenter. They found that repetitive behavior occurred with
increased as well as with decreased sensory precision. Despite
a similar effect on behavior, the underlying mechanisms in the
network dynamics differed in both extreme conditions. These
results suggest that evaluating computational models could give
important insights about the potential mechanisms of such
developmental disorders. However, a shortcoming of their study
(22) is that the parameter of the pre-trained “mature” system
was modified after training. Thus, the effect of differences
in information processing during the development could not
be measured. To uncover differences in the way that the
computational model represents a task, it is crucial that the
prediction deficit is already present at an early stage of learning.

In this paper, we address this issue using a computational
model that is similar to the model from Idei et al. (22), with a
number of substantial differences. First, in contrast to (22) we
apply the parameter modifications during the learning process

such that we can investigate how the modifications affect the
development of internal network representations. Second, we
investigate the effect of two different parameter modifications
that are related to the hypothesis of aberrant prediction ability
in ASD (9, 16). The first parameter expresses how strongly
the network relies on sensory input as opposed to its own
predictions. In particular, a too strong reliance on predictions at
the expense of reliance on sensory output has been suggested to
be related to symptoms, such as hypersensitivity in ASD (9). The
second parameter corresponds to the aberrant sensory precision
parameter proposed by Idei et al. (22) andmodels overestimation
or underestimation of environmental noise, based on theories
that aberrant precision may cause inflexible behavior in subjects
with ASD (16, 26). Finally, in this paper, we investigate the effect
on behavior and internal representation at a more abstract level.
Specifically, we train recurrent neural networks for the task of
predicting and reproducing simple two-dimensional trajectories.
This procedure enables us to gain a general understanding of
the properties of the acquired internal network representations
that are difficult to analyze in more complex task settings.
Specifically, we compare the network’s ability to reproduce
the learned patterns with the quality of the formed internal
network representations. This 2-fold evaluation enables us to
assess how the network’s behavior relates to the learned internal
representations—an important measure that might predict the
network’s general performance, including its performance on
novel tasks.

In contrast to previous computational models, the aim of this
paper is not the replication of experimental data. Instead, we aim
at evaluating how parameter modifications that are discussed as
causes for ASD affect the development in general, with the aim to
generate new hypotheses and propose a new direction for future
research in cognitive neuroscience.

In the remainder of this paper, we first introduce the
computational model and the task that we use to study the
problem (section 2). Then, we present our results (section 3).
Finally in section 4, we discuss potential implications of our
findings for developmental disorders. Specifically, we suggest that
some aspects of ASD might be explained by a too weak or too
strong reliance on predictions.

2. COMPUTATIONAL MODEL OF
PREDICTIVE CODING

An essential cognitive ability underlying many complex tasks is
the ability to learn patterns from observations of the environment
and use them for predicting the future (6). Our computational
model is based on a recurrent neural network (RNN) and learns
to predict temporal dynamics and their statistics. During a
training phase based on prediction error minimization (2, 6), the
network learns to predict the sensory perception of the next time
step. Therefore, the network takes the role of an internal model
which represents the dynamics of the observed world (4).

The crucial ingredient of our model is an integration that
happens at the input level of incoming sensory information and
the predictions that the network produces in every time step.
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FIGURE 1 | Model and data used in the experiments. (A) The S-CTRNN learns to predict input sequences by estimating the mean and variance of the next time step

via a recurrent context layer. Our parameters modify how the network integrates external sensory information with its own predictions (χtrain) and determine whether

the variance is accurately estimated or overestimated/underestimated (K). (B) Training data provided to the network consisting of four ellipses (left) and four “eight”

shapes (right), located at four different positions in the input space.

A network, thus, can make new predictions either directly from
sensory input, or by utilizing its own output from the previous
time step as a predicted input signal (or prior).

In this section, after introducing the model and the training
procedure in section 2.1, we explain how the parameter
modifications can be used to change the network’s prediction
ability (section 2.2). Then, the learning task is presented
(section 2.3). An overview of the model is shown in Figure 1A.

2.1. Model
RNNs can learn to reproduce complex time-varying trajectories
and are commonly used in neurocomputational studies and
cognitive robotics experiments (27, 28). The particular network
that we use is the stochastic continuous-time recurrent neural
network (S-CTRNN) (29), a recurrent neural network model
that is simple yet sufficiently powerful to implement the
predictive coding paradigm. It has been previously applied for
modeling ASD (22). The S-CTRNN differs from traditional
RNNs in that it can predict the mean and the variance of time-
fluctuating trajectory data x0, x1, . . . , xt , . . . , xT by capturing
time-dependent information in the recurrent layer of the
network ut . The estimation of variance (inverse precision) is
important, because it can be used to selectively update the
prediction error arising between the sensory input and the
network’s own predictions. For example, a large prediction
error is taken less into account when a large variance in
the sensory signal is expected. This mechanism prevents the
network from overlearning unpredictable data and also enables
us to investigate the effect of modifying the network’s variance
estimation mechanism (cf. section 2.2). We chose the S-CTRNN
because it allows us to investigate alterations of variance
estimation and because it was frequently chosen in similar
studies (11). Whereas other recent deep learning approaches, in
particular generative models, may be able to similarly reproduce
our findings, the simple nature of the S-CTRNN enables us
to thoroughly investigate the internal representations formed
during learning.

As shown in Figure 1A, the network consists of an input layer
(two-dimensional), where the input x is provided in every time
step, a context layer with N context neurons connected to each
other to learn the time dependencies in the trajectories (here,
N = 70), and two output layers for estimating the mean y and
variance v of the input in the next time step.

The two-dimensional coordinates of the trajectory xt are fed as
input to the network in every time step. The state of the recurrent
urect layer is updated, given the current input xt,i (input dimension
i in time step t), as

urect,i = (1−
1

τ
)urect−1,i +

1

τ
(

I∑

j=1

w
inp
ij xt,j +

C∑

j=1

wrec
ij ht−1,j), (1)

where τ is a time scale parameter that determines how quickly the
recurrent layer adapts to a new input (analogously to previous
studies (22, 29), we set τ = 2). Further, I and C denote the
dimensions of the input and context layer, respectively, and wij

denotes the incoming synaptic weight of neuron i from neuron j.
Neuron activations ht of the context neurons are computed from
the network’s state as ht,i = tanh(urect,i ).

The states of the neurons in the output and output variance
layer are updated from the context layer as

uoutt,i =

C∑

j=1

wout
ij ht,j, uvart,i =

C∑

j=1

wvar
ij ht,j. (2)

The predicted mean and variance of the next time step can be
computed from these states using activation functions. Using the
exponential function for computing the variance ensures positive
output values:

yt,i = tanh(uoutt,i ), vt,i = exp(uvart,i ). (3)

The network is trained to minimize the prediction error, given
a set of training sequences (see Figure 1B and section 2.3 for
details on the training data). All the available input is presented
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to the network, and the network’s prediction is compared to
the actual sensory input of the next time step. In particular, the
likelihood that the estimated mean yt and estimated variance vt
accurately predict the next time step xt+1 should be maximized.
Mathematically, this can be implemented as the minimization of
the negative log likelihood:

− ln(Lout) =

T∑

t=1

O∑

i=1

(ln(2πvt,i)+
(xt+1,i − yt,i)

2

2vt,i
), (4)

where T is the number of time steps and O denotes the output
dimensionality.

During training, all network weights are updated
(Winp,Wrec,Wout,Wvar in Figure 1A), as well as the initial
activation vector of the recurrent network layer of the first time
step t = 0, the so-called initial states. Different initial states
for each category of trajectory input make it possible for the
network to generate different dynamics depending on the type
of training trajectory. The initial states, together with the full
context activation trajectory, correspond to attractors of the
RNN; each attractor corresponds to one asymptotic behavior of
the network (which, after successful training, become the trained
trajectories) (30). These initial states are initialized as zero and
automatically determined during training. As better separation
of the trajectories is achieved with a stronger differentiation
between trajectories, a second likelihood term is included in the
loss function such that initial states do not diverge forever, but
maintain a predefined distance from each other (29):

− ln(Linit) =

S∑

s=1

C∑

i=1

(ln(2πvdist)+
(u

(s)
0,i − û0,i)

2

2vdist
), (5)

where S is the number of different trajectory classes that the
network is trained with. This formula maintains the distance of
the actual initial states u

(s)
0 from the mean initial state û0 at a

certain variance level, determined by a predefined variance term
vdist [here, vdist = 10, informed by prior work (29)].

Learning proceeds in epochs, and at the end of each epoch,
the prediction error is minimized by updating all network
weights and the initial states via the Adam optimizer (31),
which performs stochastic gradient descent optimization. The
network is implemented using the deep learning framework
CHAINER (32).

A number of learning parameters of the RNN have to be
determined. Owing to the relatively simple training task, we
observed that the exact choice of the parameters does not
crucially affect the results. In the presented results, the recurrent
layer of the network consists of 70 neurons. In each learning
epoch, a single batch of training data is processed, with one batch
containing all eight trajectories 50 times1, generated as clean
trajectories with additive noise (cf. Figure 1B and section 2.3).
Training stops when the learning converges, or after 30, 000
epochs. For this purpose, every 100 epochs, we assess how the

1Choosing a larger batch size mainly serves the purpose of improving the training

efficiency on a GPU, as a single batch can be processed in parallel.

mean and standard deviation of the likelihood (which define
the amplitude of the weight updates) developed during the
previous 500 learning epochs. If the improvement in the mean
likelihood falls below a threshold (< 0.001), and the likelihood
does not substantially fluctuate anymore during different epochs
(standard deviation < 0.05), convergence is assumed and
learning is stopped.

2.2. Parameter Modifications
The parameters that we manipulate in the RNN model modify
two different aspects of the network’s learning mechanism:

1. how the network integrates sensory input with its own
predictions (external contribution parameter χtrain),

2. and to what extent the network’s estimated variance fits the
actual training data variance (aberrant precision parameter K).

These two parameters are highlighted in Figure 1A with a
turquoise background.

2.2.1. External Contribution Parameter
The external contribution parameter χtrain ∈ [0, 1] determines
how strongly the network relies on sensory input at the expense of
its own predictions. The motivation for using this parameter is to
alter how much information the network receives from the input
signal and how much it uses its own previous experience (the
predictions). An imbalance of these two signals, in particular a
stronger reliance on predictions, has been suggested as a potential
cause for hypersensitivity in ASD (9). The parameter χtrain in the
network has a comparable effect: it regulates how strongly the
network utilizes sensory input for making predictions. In other
words, modifying χtrain changes how the network “perceives”
the world.

This parameter change is implemented by changing the
update formula of the context layer in Equation (1) such that
the network receives the integrated input instead of the raw
trajectory input:

x′t+1,i = χtrain ·xt+1,i+ (1−χtrain) ·yt,i+ν, ν ∼ N(0, vt,i), (6)

where xt+1,i corresponds to the raw trajectory input for the next
time step and yt,i and vt,i are the network’s prediction of the mean
and variance, respectively, obtained from the previous time step.
χ interpolates between those two sources of information. Further,
Gaussian-distributed noise with the amplitude of the estimated
variance is added to the predicted mean to imitate the estimated
noise properties of the actual trajectory input. The integrated
input trajectory is also used in the likelihood function. Instead
of comparing the current network output to the original signal
L(x(t), y(t), v(t)), the likelihood function compares the output to
the integrated signal L(x′t , y(t), v(t)).

Thus, this parameter models hypersensitivity or
hyposensitivity to the sensory input. A high value of χtrain

implies strong attention to the sensory signal. With a small value
of χtrain, the network focuses strongly on its own prediction
while ignoring the sensory input.

Note that χtrain = 0 would result in L(y(t), y(t), v(t)), i.e., in
a zero prediction error. The network would ignore the external
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input completely, assuming that its predictions are always true,
and no learning would take place. Therefore, we use a minimum
value of χtrain = 0.1 during learning. During testing, this
parameter can be used to switch the network behavior between
open-loop (χ = 1, reactive generation) and closed-loop (χ = 0,
proactive generation) control.

2.2.2. Aberrant Precision Parameter
The second parameter that we modify is the aberrant precision
parameter K [first introduced by Idei et al. (22, 33)], which
implements the idea that ASD subjects might face difficulties in
accurately estimating the variance of the sensory signal (10, 16,
26). The following formula replaces the estimation of variance in
Equation (3):

vt,i = exp(uvart,i + K)+ 0.00001. (7)

Here, K = 0, K > 0, and K < 0 result in normal estimation,
overestimation, and underestimation of the trajectory variance,
respectively. This parameter was first introduced in Idei et al. (33)
and is inspired by aberrant precision theories suggested for ASD
(16, 26). The idea is that because of an over- or underestimation
of the variability of the environment, prediction errors are
not sufficiently considered (in the case of overestimation)
or too strongly minimized (in the case of underestimation).
Too strong or too weak prediction error minimization might
cause inflexibility in behavior and could, therefore, entail
difficulties in social interaction. This theory is supported by the
experimental findings of the computational model in work by
Idei et al. (22, 33).

By using this parameter modification during training, instead
of after training, as proposed in Idei et al. (22, 33), we can
manipulate how strongly the network relies on the estimated
variance during prediction error minimization. Increasing the
estimated variance with K > 0 causes the network to
overestimate the sensory noise. The network, thus, will not
minimize the prediction error so strongly, which reduces the
effect of learning. A decrease in the estimated variance with K <

0 leads to the opposite effect. The network underestimates the
noise in its predictions and updates the prediction error even in
cases where the input is affected by irregularities or noise in the
patterns—the network “overlearns”.

We presented an initial evaluation of these two parameters
in a previous study (34), which we extend here by additionally
investigating generalization capability and extending
the discussion.

2.3. Learning Task
In this study, we aimed to investigate trained networks in terms
of their performance as well as the quality of the emerged internal
representation. Measuring how well the internal representations
of an RNN are structured is not a trivial task. Certainly, quality
cannot be assessed globally but only in the context of a given
task. Thus, the internal representation quality can be considered
as the network’s ability to represent task-relevant properties in the
recurrent context layer.

For this reason, we train the network with a structured task
that allows us to relate the emerged internal representation to the

properties of the training data. Specifically, we consider the task
of drawing, i.e., learning to predict and generate simple shape
trajectories on a two-dimensional plane, as shown in Figure 1B.
These training data comprise eight different shapes, namely four
ellipse shapes and four “eight” shapes. Each trajectory contains 75
time steps with three repetitions of the drawn shape (e.g., three
circles), which encourages the creation of stronger attractors
in the dynamical system. We added Gaussian noise to the
trajectories to model environmental uncertainty and to make the
task more complex. Specifically, Gaussian noise with a different
standard deviation per trajectory type is added: σ

2
ellipse1

=

σ
2
ellipse2

= 0.001, σ
2
ellipse3

= σ
2
ellipse4

= 0.003, σ
2
eight1

= σ
2
eight2

=

0.005 and σ
2
eight3

= σ
2
eight4

= 0.007.

Previous studies have shown that the internal activation
patterns of the RNN are structured during learning according
to the given input data. With the given task, the network can
structure the input data according to three different criteria: the
shape of the trajectory (ellipse or “eight” shape), the position of
the trajectory (right, left, top, bottom), and the level of signal
noise. As the training data are coded, here, in terms of their spatial
coordinates, it can be expected that structuring occurs according
to the position of the trajectory.

The data used here is computer-generated and only loosely
inspired by behavioral data (studies investigating drawing and
writing ability in developmental disorders (35–37)). However,
the simple structure of the task facilitates the analysis of the
emerged neural network structure, and we expect that properties
found in networks trained on the abstract data will also emerge
when training on other, more complex tasks. Confirming this
conjecture is an important challenge of future work.

3. EXPERIMENTAL RESULTS

To investigate how the prediction ability of the network
affects the network’s development, we trained networks under
different learning conditions by modifying the two parameters
introduced above (section 2.2). We performed two separate
experiments: first, we evaluated the behavioral performance and
compared it with the corresponding neural activation patterns,
and second, we investigated the generalization capability of the
trained networks.

For each experiment and both parameters, 10 individual trials
were performed. In each trial, all the training conditions were
tested: [0.1, 0.2 . . . 1] for χtrain and [−8,−4,−2, 0, 2, 4, 8] for K.
Thus, we trained 10 × 10 networks for the parameter χtrain and
7 × 10 networks for the parameter K. To compare the results
under different conditions more effectively and to exclude the
influence of random weight initialization on the outcomes, the
same 10 sets of initial weights (small random values) was used
once for the networks of all parameter conditions. The effects
of both parameters were tested independently: While changing
χtrain, we kept K constant and equal to 0, assuming normal
variance estimation.While changingK, we set χtrain to 1 such that
the aberrant precision of the variance affected only the prediction
error computation and not the network’s input in the next time
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FIGURE 2 | Training time and performance of the networks for different parameter conditions, measured as the number of training epochs (left) and the prediction

error (mean square error) after training (right). For each parameter condition of (A) the external contribution parameter and (B) the aberrant precision parameter, mean

and standard deviation of 10 individually trained networks are presented.

step. All the results and evaluations were averaged across the 10
individual networks trained under each condition.

3.1. Evaluating Behavior and Internal
Representation (Experiment 1)
The networks were trained under all the training conditions
for the eight trajectories shown in Figure 1B, as described in
section 2.1. To evaluate whether the networks learned the given
task, we let each trained network generate the trained trajectories
after training in a proactive manner, i.e., in the absence of the
external input. For this purpose, we set the activations of the
recurrent layer according to the learned initial state of the desired
shape and performed closed-loop generation by setting χ = 0.
The performance was determined by the overall prediction error
during trajectory generation and provided us with an estimation
of how well the network can solve the task at a behavioral level
(section 3.1.1).

To investigate the network’s internal representations, we
recorded the activations of the recurrent layer during trajectory
generation for each trained network and each training sequence.
The recorded matrices of size 70 × 75 (70 context neurons over
75 time steps) contain information on how the context neurons
of the networks represent the learned tasks. Using these data, we
analyzed which tasks are represented in similar or different ways
in the network (section 3.1.2).

3.1.1. Task-Specific Performance
The networks’ performances are shown in Figure 2 (right)
along with the number of required training epochs (left). The
prediction error refers to the mean-square error of the generated
trajectories compared to one set of the training trajectories.
Owing to the inherent noise of the training trajectories, a
prediction error of 0.004 can be considered as optimal, as it
corresponds to the average level of unpredictable trajectory noise.

For the parameter χtrain, good performance was achieved
under all the conditions except for extremely small values of
χtrain < 0.3. In these cases, the learning converged more slowly.
The reason is that χtrain affects the prediction error computation
(see section 2.2). With a small χ , the integrated signal mainly
comprises information from the network’s own prediction and
not from the original training signal, which causes a smaller
prediction error. Therefore, smaller updates are performed and
the learning converges more slowly.

With the parameter K, good performance was achieved under
all the parameter conditions; however, a longer training time was
required for extreme values of K. With overestimated variance
(K > 0), the prediction error was reduced; thus, the network
performed smaller weight updates. An underestimation (K < 0)
caused excessively strong weight updates, which increased the
training time owing to overshooting.

In conclusion, all the parameter values, with the exception
of extremely low χtrain values, achieved successful learning. The
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FIGURE 3 | Qualitative comparison of networks trained under different parameter conditions of (A) χtrain and (B) K, starting with the same initial weights. The top rows

show the network’s behavioral output, while the bottom rows show the first principal components (PCs) of the 70-dimensional space of the context activations. The

colors correspond to the eight different trajectories (cf. Figure 1A). Readers may refer to the Supplementary Material for the results of all 10 trials.

networks were able to successfully recall the trained trajectories.
The qualitative results of the reproduced trajectories can be seen
in the top rows of Figures 3A,B.

3.1.2. Internal Representation Quality
The recurrent context layer self-organizes during learning (via
updates of the initial activations and the connection weights), and
an analysis of the neural activations during pattern generation
provides insights into how different tasks are structured in
the network (38). Many RNN studies have investigated how
task-specific features are reflected in the trained networks by
measuring the activations of the context layer neurons while
executing a task and they have suggested that such internal
representation relates to the generalization capability (39, 40).
This evaluation is similar to an assessment of activations of
neuron populations via low-dimensional embeddings as it is
commonly performed in neurological studies (41–43). It has been
shown that such low-dimensional embeddings reflect specific
features of the underlying task (43).

First, we performed a qualitative evaluation by projecting
the per-time-step activations to two dimensions using principal

component analysis (PCA). This visualization enables us to
obtain an impression of how the network represents the given
set of trajectories. Figure 3A shows an example of networks
trained independently with different parameter values (starting
from the same initial weight condition). Corresponding to the
behavior (Figure 3A, top) shown in the two-dimensional task
space, the internal representations are shown in the space formed
by the first two principal components (Figure 3A, bottom) which
capture about 43 or 41% of the overall variance in the χtrain or K
parameter condition, respectively.

The behavior outputs are similar under all the conditions,
with only slight impairment for χtrain = 0.1. By contrast,
the corresponding internal representations change drastically.
With χtrain = 1, the internal representations for different
trajectories overlap similarly to the original data shown in
Figure 1B. With a smaller χtrain, we find an increasing separation
between the trajectories according to the position of the
trajectories in space (similar colors denote the same position
in the task space in Figure 3). Mathematically, such stronger
separation is happening due to the feedback of the network’s
own prediction, which supports the generation of stronger
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FIGURE 4 | Quantitative results of the network’s internal representation quality after training for (A) χtrain and (B) K. Mean and standard deviation across 10 trials per

parameter condition are presented. The inner and outer distances between the generated trajectories and the inner–outer quotient are measured as the dynamic time

warping (DTW) distance. Statistical differences of the inner-outer quotient were evaluated on pairs of parameter conditions using the likelihood ratio test. Full tables of

p-values are provided as Supplemental Material.

attractors in the network. However, this only works with a
sufficient contribution of the input signal. For this reason,
extremely small values of χtrain show a less well-structured
representation. In particular, the activations do not show stable
behavior but drift away while generating the three repetitions
of a pattern.

The internal representations of an example of a set of
networks for parameter K are shown in Figure 3B. There is
no significant difference in the behavioral output (Figure 3B,
top). In the internal representation (Figure 3B, bottom), we
can observe a strong overlap of patterns if K > 0. By
contrast, networks with K < 0 show a stronger separation
of the patterns at the same position of the input space. A
negative K causes an underestimation of the trajectory noise and,
hence, stronger weight updates. Therefore, the weights are not
accurately tuned and convergence takes longer. Positive K values
overestimate the trajectory noise, which leads to careful weight
updates. Interestingly, in terms of the training time, although
overestimation and underestimation of the noise show a similar
effect (Figure 2B), these two types of aberrant precision have
different effects on the internal representation.

In summary, certain parameter conditions appear to cause
a stronger separation of same-position trajectories in the
space of context layer activation. As the input data code
trajectories in terms of their positions, such structuring of
the input space is beneficial and could, for instance, facilitate
generalization capabilities, such as recognizing and generating
new patterns (38).

To test whether the qualitative evaluations shown in Figure 3

also hold for the 70-dimensional context layer space, we
performed a quantitative evaluation in the high-dimensional
space of neuron activations. We computed two different
measures by comparing the trajectories via the dynamic time

warping distance (44). The distances between the activation time
courses of patterns located at the same position in the input
space (e.g., right circle and right “eight” shape) are averaged
and called inner distances. The distances between the activation
time courses of all the pairs of patterns located at different
positions in the input space (e.g., left circle and right circle)
are averaged and called outer distances. Good separation is
achieved if the inner distances are small and the outer distances
large; thus, a small quotient of these two measures (inner–outer
quotient: inner distances divided by outer distances) indicates
good separation.

The results shown in Figure 4 confirm the qualitative
observations: the best internal representation was obtained with
χtrain = 0.4. Furthermore, negative values, i.e., K ≤ 0, maintain
good internal representation and positive values K > 0 lead to
poor separation.

3.1.3. Comparing Behavior and Representation

Quality
The results of the behavioral performances and internal
representations can be summarized as shown in Figure 5. The
values were normalized across all the learning conditions for
both parameters and flipped such that higher values correspond
to better performance or better representation quality. It can be
seen that all values of K and values of χtrain ≥ 0.3 show good
task performance with a small variance (red lines). The internal
representation quality (blue lines) was optimal for moderate
values of χtrain and for K ≤ 0.

The first important conclusion that we can draw from these
results is that for the external contribution parameter χtrain,
impairment of internal representation quality occurs at both ends
of the parameter spectrum: the blue curve in Figure 5A exhibits
an inverted U-shape, suggesting deficits at both extreme ends
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FIGURE 5 | Comparison of task performance (evaluated as prediction error) and internal representation quality (evaluated via inner–outer quotient) for (A) χtrain and (B)

K. All the values are normalized across all the parameter conditions and subtracted from 1 (standard deviations scaled accordingly) to express a quality measure

∈ [0, 1].

of the spectrum. However, the quality of impairment differs.
With parameter values close to 0, the networks fail to form
proper attractors and, therefore, coincide with behavioral deficits.
With values close to 1, the networks form attractors (and the
performance is intact); however, greater overlap occurs between
the representations of different trajectories.

The second conclusion is that for χtrain as well as for K, there
is a gap between the behavioral performance and the internal
representation quality. This result implies that the network’s
performance on trained data and the internal representation
can be considerably different. Thus, behavior alone does not
provide sufficient evidence for drawing conclusions about
the network’s underlying cognitive mechanisms. This finding
indicates that neither behavior nor impairment in the internal
network representation can be considered as a universal
measure: assessing either of them does not predict the value of
the other.

3.2. Generalization Capability to Recognize
an Unknown Trajectory (Experiment 2)
The internal representation quality is often assumed to predict
the network’s generalization capability (38). To determine
whether a good internal representation actually provides a
practical benefit that becomes visible in the behavior, we
performed an additional experiment. In this experiment, the
networks were trained as before, but only on seven out of
the eight trajectories shown in Figure 1B; the bottom “eight”
shape (purple) was excluded. After training, we compared how
well the networks perform in terms of generating the trained
trajectories and generating the untrained trajectory that is new
to the network.

For the untrained trajectory, none of the previously learned
initial states can be used; therefore, a suitable initial state
has to be determined from the high-dimensional space of the
context activations. This inference process has been introduced
as trajectory recognition in Murata et al. (45), and it proceeds
by fixing the network weights after training and updating only

the initial states (starting from a default position, e.g., the mean
of all the initial states) while presenting an input trajectory to
the network. Optimization is performed via backpropagation as
described in section 2.1. After a sufficient number of epochs
(here, 5, 000), the initial state converges to the value that best
reproduces the given trajectory.

This initial state is then used as a starting point for generating
the target trajectory via reactive generation (χ = 1). Thus, given
the current time step, the networks perform only the prediction
for the next time step.

The results are shown in Figure 6. For parameter χtrain

(Figure 6A), a smaller prediction error on untrained data
was achieved for values between 0.3 and 0.7 such that we
can observe a U-shape. For parameter K (Figure 6B), better
generalization was achieved for networks trained with a negative
value of K. These findings correspond to the findings of internal
representation quality.

In Figures 6C,D, qualitative examples are shown for the
parameters χtrain and K. The first and second principal
components capture about 46 or 43% of the variance in
the χtrain or K parameter condition, respectively. It can
be observed that the unknown purple trajectory overlaps
with the blue (same-position) trajectory more commonly
under conditions where better internal representation quality
is measured.

To evaluate whether there is a network-wise correspondence
between the internal representation quality and the
generalization capability, we computed the correlations as
shown in Figure 7. The parameter conditions with better
internal representation quality are indicated in green. Networks
trained with medium values of χtrain and negative K are mainly
located in the bottom left part of the spectrum, which represents
better generalization and better separation in the context layer.
However, the correlation between them (measured as the Pearson
correlation coefficient) is only r = 0.13(p = 0.12) for χtrain and
r = 0.23(p = 0.06) for K, suggesting that there is too much
variability among the data to find a clear correlation between
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FIGURE 6 | Network performance for trained data (training error) and untrained data (generalization capability) under different parameter conditions of (A) χtrain and

(B) K (prediction error (mean square error) and standard deviation averaged across 10 trials are shown). (C,D) Network performance output (top) and principal

components of the context activations (bottom) during trajectory generation. The purple trajectory is untrained and thus corresponds to the generalization capability.

Readers may refer to the Supplementary Material for the qualitative results of all 10 trials. Statistical differences in (A,B) on the trained/untrained data performance

were evaluated on pairs of parameter conditions using the likelihood ratio test. Full tables of p-values are provided as Supplementary Material.

these two measures. Nevertheless, there is a mild tendency
indicating that networks with better internal representation
quality are more likely to perform better for unknown trajectories
and hence exhibit greater generalization capability.

4. DISCUSSION

In this study, we evaluated how parametric modifications
of the prediction ability of a computational model affect
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FIGURE 7 | Normalized inner–outer quotient and the networks’ generalization capabilities (small values are better in both cases) plotted against each other for all 10

trained networks under varying (A) χtrain and (B) K.

behavioral output and the quality of emergent internal
network representations.

4.1. Summary of Experimental Results
The main findings of the experiments can be summarized as
follows:

(i) Too strong as well as too weak attention to sensory input
caused an impairment in the internal representation and
generalization capability (U-shape). However, the quality of
impairment is different and task-specific performances were
opposite at both extreme ends of the parameter spectrum.

(ii) Impairments at the neural level were not necessarily
observable at the behavioral level, and vice versa. Thus, there
appears to be no linear correlation between the behavioral
performance and the internal representation quality.

(iii) Despite high variability between different networks, there
was a tendency for better generalization capability to
be achieved with better internal network representation.
Thus, internal representation quality appears to be an
important measure that predicts performance in more
general tasks.

These results indicate that modifying the model’s prediction
ability can have complex effects on the network’s acquired
capabilities. In particular, asymmetries are caused: a modification
of moderate parameter values to either direction has different
effects on internal representation and behavioral output.
Differentiating behavior and internal representation, therefore, is
important: impairments in internal representation may predict
generalization capabilities, but does not always correspond to
visible behavior in simple tasks like the execution of a movement.

4.2. Link to Computational and
Psychological Studies of Developmental
Disorders
In recent years, deficits in prediction ability have been frequently
discussed as a potential underlying mechanism of developmental
disorders, such as ASD (9, 16, 26). Therefore, our study

might give some hints about how prediction ability shapes
development and learning, and under which conditions disorders
might emerge. In the following discussion, we review how the
general mechanisms uncovered in this study relate to previous
computational models of developmental disorders (section 4.2.1)
and how they could translate to concrete experimental findings,
using the example of ASD (section 4.2.2).

Our discussion on analogies with ASD is on purpose
high-level oriented and rather highlights broad ideas than
making specific connections to individual experimental findings.
The reason is that this paper followed up on previous
predictive coding literature, testing the effects of parametric
modifications of prediction ability at a higher level using a
generative approach. Specifically, we propose a generative model
that allows us to study how neural impairments caused by
the modifications of relevant parameters produce broad but
systematic change in ASD behavior. We expect that these
general findings of our study would replicate in more complex
models and scenarios. However, future research is required
to verify this expectation using more sophisticated network
models to bridge the gap between computational modeling
and experimental evidence from behavioral studies. A first step
toward this aim has been performed in a recent study (25) which
demonstrated that too weak and too strong reliance on priors
can lead to two different types of impairment in a drawing
completion task.

4.2.1. Link to Existing Predictive Coding Models
In recent years, several computational studies have been
performed to assess how impairments at a neural level might be
related to impaired cognitive functions, especially, in the context
of developmental disorders (11, 22–25). Various parameter
modifications have been probed, many of which are related to
prediction ability (22, 25). The findings in the present study
extend previous findings, in particular of Idei et al. (22) which
focused on the modification of the aberrant sensory precision
parameter K. In Idei et al. (22), the authors modified the
parameter after training and demonstrated that aberrant sensory
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precision in either direction may cause atypical behavioral
characteristics. Whereas, the behavioral symptoms at both
ends of the spectrum were comparable, different underlying
mechanisms were found, namely the presence of either too strong
or too weak prediction error signals. The authors suggest that an
examination of the patient’s neural activity may help to reveal
how the atypical behavior is caused. The findings in our study
support this suggestion: over- and underestimation of trajectory
noise did not result in differences in task-specific performance
but affected the internal representation in distinct ways. Thus,
studying differences in the internal representations (i.e., the
neural circuits in the biological brain) in addition to a behavioral
evaluation could reveal additional insights that might not be
visible at a behavioral level.

A crucial difference of our findings compared to Idei et
al. (22) is that aberrant sensory precision did not cause an
impairment at the behavioral level. The reason is that we
applied the parameter modification not only after training but
already during training, to account for the fact that aberrant
information processing in developmental disorders should affect
the model throughout the full course of learning. Our results
indicate that, when aberrant sensory precision is already present
during training, it does not necessarily cause an impairment of
task-specific behavior: models with all values of K succeed to
learn the trajectories and can reproduce them2. Thus, whereas
Idei et al. (22) showed that a sudden increase or decrease of
sensory precision causes atypical behavior, our findings suggest
that when aberrant sensory precision persists throughout the
lifetime, the model may be able to compensate the negative
effects by experience. This finding may reflect the ability of many
individuals with developmental disorders to acquire behavioral
patterns that are indistinguishable from that of a healthy person.
However, more time might be required for learning (cf. Figure 2)
and impairments could arise when confronted with complex
tasks which require them to generalize (cf. Figure 6).

4.2.2. Analogy to ASD
In recent decades, ASD research shifted progressively toward a
spectrum view on the disorder, moving away from the traditional
study design that matched the performance of a group of ASD
subjects with a group of typically developing (TD) individuals.
It is well-known that autistic traits are also widespread in the
general population (46, 47). Furthermore, many subjects with
ASD have normal general intelligence and overcame limitations
in their capabilities by practicing social communication. The
performance of ASD subjects on specific tasks, thus, can
exhibit large individual differences. While the concrete neural
mechanisms remain unclear, various theories have developed
over the decades to pinpoint the underlying causes of ASD
(48, 49). Most recently, the so-called hypo-prior theory (9, 50)
suggested that weak reliance on predictions may account for
symptoms of ASD. In fact, a weaker reliance on prediction

2In fact, generalization capability seems to be improved when the trajectory noise is

underestimated and weights are strongly updated (cf. Figure 6). However, further

research needs to clarify whether this tendency holds also for tasks with more

complex noise characteristics.

signals, or equally, a stronger relative reliance on sensory signals
(14, 16) can replicate reduced susceptibility to visual illusions or
hypersensitivity symptoms that have been found in many ASD
individuals (47, 51–53). It may also explain intact imitation or
overimitation (54) in ASD subjects, and superior performance
due to stronger attention on sensory signals (55). However, some
studies also find deficits in motor imitation (54), and numerous
other symptoms (35, 36, 56) for which a hypo-prior theory
cannot easily account.

The external contribution parameter χtrain in this study was
designed following the hypo-prior theory. With χtrain close
to 1, the network ignores its own predictions, focusing almost
entirely on sensory signals for learning. As a result, we find
intact performance, but an overlap in network representations
constituting an impairment in internal representations that
might implicate generalization deficits. As generalization deficits
are commonly associated with ASD, the findings, thus, are in
line with the predictions of the hypo-prior theory. However,
we found impaired internal representations not only with a
large χtrain, but also with a small χtrain. In contrast to a large
χtrain where task-specific performance was intact, with a small
χtrain, the impairment was additionally visible at the behavioral
level. Therefore, not only weak reliance on predictions, but
also atypically strong reliance on predictions, e.g., a “hyper-
prior,” could lead to ASD-like characteristics. Following this
interpretation, ASD could be characterized by an aberration
from typical development in either direction. The important
implication is that ASD might have two broad and different
subtypes which might differ significantly and show even some
seemingly incompatible behavioral symptoms. Moreover, this
view implies that also TD is part of the same continuous spectrum
in which differences in behavior and internal representation are
modulated by continuous changes in the underlying mechanism.
The idea is conceptually shown in Figure 8.

Although this is just a speculation at this point, it fits with
observations in the clinical literature of ASD, in particular, with
some inconsistent findings in behavioral studies of ASD. For
example, despite realistic drawing abilities in many individuals
with ASD (57–59), common deficits in drawing and handwriting
have been reported (35–37, 56). Furthermore, studies on gaze
behavior in TD and ASD have yielded conflicting results: some
studies have suggested that individuals with ASD exhibit atypical
gaze processing (60, 61), whereas many studies acknowledge
that gaze behavior in ASD appears to be typical3, showing a
stronger focus on the eye region (62, 63). In particular, despite
the high variability exhibited by the ASD population in most
studies, a tendency toward the extremes has been noted (64), for
example, in low-level sensory processing (65–67), where opposite
effects may occur between individuals or even within the same
individual depending on the situation (68–70). In particular,
studies have reported increased sensitivity, i.e., hypersensitivity,
to certain sensory percepts, as well as seeming indifference to
some sensory stimuli, i.e., hyposensitivity (51, 71). Our findings

3Note, that typical behavior in ASD might also arise due to explicit behavioral

training (cf. applied behavior analysis).
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FIGURE 8 | Schematic summary of the results for adjusting χtrain and a possible interpretation: TD might correspond to medium parameter values with intact internal

representation, whereas a failure to properly optimize performance and too strong optimization of task performance might impair internal representation quality. Both

extremes of this spectrum could correspond to two different types of ASD.

suggest that the same underlying mechanism could explain such
aberrations in both directions.

In Figure 8, such opposite findings would be explained by the
assumption that individuals with ASD differ from TD individuals
in either direction, resulting in an impairment at the neural
level and difficulties in generalization in a similar manner, but
leading to opposite task-specific behavior. At one end of the
spectrum (right side of Figures 4A, 6A, 8), we might find
extraordinary skills, such as realistic drawing ability, which could
result from overfitting for a particular task. The performance is
extremely high, perhaps even superior to TD individuals, but
the capability to solve general tasks may be impaired. Similarly,
networks trainedwithχtrain close to 1 exhibit overfitting, showing
good specific performance but poor generalization. At the other
end of the spectrum (left side of Figures 4A, 6A, 8), owing
to underlearning, the networks cannot sufficiently attend to
the sensory information (χtrain close to 0), similar to how
some children with ASD struggle to learn handwriting (35–
37, 56) and sometimes show hyposensitivity to external stimuli
(51, 71). Thus, opposite effects, such as hypersensitivity and
hyposensitivity might originate from extreme impairments of
the same underlying mechanism in either direction and should
therefore not be considered in isolation but evaluated together.
Hypersensitivity and hyposensitivity might be even causally
related; for example, too much sensitivity to the environment
could trigger an ASD individual to completely shut down his/her
attention and to ignore the environment in order to reduce the
stress level.

Furthermore, finding (ii) in section 4.1 states that behavioral
performance does not necessarily correlate to impairments in

internal representations. Therefore, an impairment at the neural
level might not be observable directly in the behavior, and it
only affects the generalization capability when confronted with
more complex tasks. Thus, it cannot be inferred from typical
performance that also the underlying cognitive mechanisms are
typical; similar behaviors can be caused by different cognitive
strategies. Such differences in cognitive mechanisms are to be
expected not only between TD and ASD but also between
different ASD individuals, and might in particular be used by
individuals located at different ends of the spectrum as discussed
above. For the example of gaze processing, more attention to
the eye region can be caused by different cognitive strategies
employed by subjects with and without ASD, which lead to
similar observed behavior (72). For instance, eye contact can be
motivated by a desire for social communication, but it can also
reflect a drive to direct stronger attention to more salient features
of the face (eyes have high contrast and pronounced movements,
which attract attention). Hence, it is difficult to interpret
the behavior of a subject with ASD without simultaneously
measuring their internal representation.

In conclusion, aberrant prediction ability can cause complex
effects on performance and internal representation quality and,
therefore, is a good candidate mechanism that could aid to
understand the heterogeneous literature of ASD research. A
particular suggestion from our simulation results that could be
tested in future cognitive neuroscience studies is that not only
weak reliance but also overly strong reliance on predictions may
be related to autistic traits.

There are, however, also a number of shortcomings of the
current study. In particular, we assumed that one network,
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modeling one individual, is characterized by a fixed parameter
value. However, individuals likely have the ability to adjust such
a parameter value according to environmental and physiological
changes (68, 69) There is some evidence that hyper- as well
as hypo-sensitivity can even occur in a single individual
(70). A recent study by Harris et al. (73) demonstrated that
situational factors (specifically, the training protocol) influence
learning in ASD. They showed that inflexible behavior in ASD
caused by overlearning can be eliminated by reducing stimuli
repetition, thus, by making the task more heterogeneous (i.e., less
predictable). With this training protocol, ASD (as well as TD)
subjects generalized better. One possible explanation that our
study provides in this context is that the more heterogeneous task
might have prompted the participants to adapt their internally
used χtrain parameter to a more moderate value to adapt to this
situation. Further research should address how parameter values
can be adapted flexibly according to the situation and task and
which differences might exist between ASD and TD. To this end,
ASD might be characterized by a tendency to use extreme values
(64) or a reduced speed of updating (74, 75).

A further limitation is the relatively simple task setting in
which we test the parameter settings. The reason for choosing
such a task, here, was to investigate the general effects of
the proposed parameters on development and to evaluate
the internal representations in a systematic manner. Although
our computational model simplifies cognitive development and
considers behavior and representation quality only at an abstract
level, we believe that this approach may open up new potential
routes for discovering general features underlying the spectrum
of ASD. We hope that these findings help to establish a basis

for developing future models as well as for designing behavioral
studies on ASD.
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