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Abstract

When people invest effort in cognitive work, they often keep an eye open for rewarding alternative activities. Previous research
suggests that the norepinephrine (NE) system regulates such trade-offs between exploitation of the current task and exploration of
alternative possibilities. We examined the possibility that the NE system is involved in another trade-off, i.e., the trade-off
between cognitive labor and leisure. We conducted two pre-registered studies (total N = 62) in which participants freely chose
to perform either a paid 2-back task (labor) versus a non-paid task (leisure), while we tracked their pupil diameter—which is an
indicator of the state of the NE system. In both studies, consistent with prior work, we found (a) increases in pupil baseline and (b)
decreases in pupil dilation when participants switched from labor to leisure. Unexpectedly, we found the same pattern when
participants switched from leisure back to labor. Both increases in pupil baseline and decreases in pupil dilation were short-lived.
Collectively, these results are more consistent with a role of norepinephrine in reorienting attention and task switching, as
suggested by network reset theory, than with a role in motivation, as suggested by adaptive gain theory.
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Introduction

In their pursuit of rewards, such as food, all organisms are
continuously confronted with two choices: continue
exploiting their current location to harvest rewards, or leave
their current place to explore the environment for potentially
more attractive alternatives. These two strategies, called ex-
ploitation and exploration, can both contribute to maximizing
rewards in the long-term. When organisms exploit, they aim to
maximize rewards by sticking with the activity that they be-
lieve yields the highest payoft at the moment. When organ-
isms explore, they aim to maximize rewards by gathering
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information on whether other activities yield higher returns.
This fundamental dilemma between exploitation and
exploration plays a central role in foraging models, which
have a rich history in behavioral ecology (Charnov, 1976).
Foraging models have proven valuable in various fields, in-
cluding artificial intelligence, psychology, and neuroscience
(Calhoun & Hayden, 2015; Hayden, 2018; Hills, Todd,
Lazer, Redish, & Couzin, 2015), and have recently been sug-
gested as a general framework for understanding value-based
choice (Hayden, 2018; Hunt & Hayden, 2017; Rushworth,
Kolling, Sallet, & Mars, 2012).

A limitation of previous foraging experiments with humans
is that these experiments did not account for the effort costs of
different activities (Constantino & Daw, 2015; Kolling,
Behrens, Mars, & Rushworth, 2012). In real life, obtaining
higher rewards often requires higher effort exertion (e.g., lon-
ger, faster, or more intense performance in sports), and thus
higher effort is often strategically invested for higher reward
prospects (Bijleveld, Custers, & Aarts, 2009, 2012). Similar to
reward pursuit in foraging, also physical (Meyniel, Sergent,
Rigoux, Daunizeau, & Pessiglione, 2013) and mental (Kool &
Botvinick, 2014) effort mobilization are not constant over
time. Instead, effort mobilization is interrupted by breaks that
might serve the recreation from effort expansion (Jett &
George, 2003). It thus makes sense to conceptualize decisions
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for rewards not just as a trade-off between exploration and
exploitation but also as a trade-off between cognitive labor
(i.e., exerting effort to attain a reward) and cognitive leisure
(i.e., performing a nondemanding and nonprofitable activity,
such as relaxing; Kool & Botvinick, 2014, 2018). Note that
labor and leisure are conceptualized in relative terms, such that
a task is a leisure task if it provides relief from effort mobili-
zation in another (labor) task; no task is intrinsically labor or
leisure.

It is important to note that these two dilemmas—
exploration versus exploitation and labor versus leisure—are
conceptually independent. After all, exploitation versus explo-
ration concerns the question of how to maximize reward,
whereas labor versus leisure concerns the question of how to
optimally allocate effort. The exploration—exploitation dilem-
ma emerges when people face a choice between (a form of)
short-term reward pursuit and (a form of) information gather-
ing, whereas the labor—leisure dilemma emerges when people
face a choice between some high-effort activity and some
activity that provides relief. Because of their independence,
the exploration—exploitation and labor—leisure trade-offs do
not directly map onto each other. That is, labor activities can
sometimes be exploitative (e.g., when working on a spread-
sheet helps to make progress to a work-related goal, and thus,
is continued), but at other times is exploratory (e.g., when
working on a spreadsheet is chosen as a potentially rewarding
distraction from some other activity). Similarly, leisure activ-
ities can be exploitative (e.g., when talking to colleagues at
work is rewarding, and thus, is continued) but also exploratory
(e.g., when talking to colleagues is chosen as a potentially
rewarding distraction from some other activity).

In this research, we examined the particular case in which
people are faced with the choice between high-effort cogni-
tive work that yields a higher expected reward (i.e., labor)
and taking a low-effort break that yields a lower expected
reward (leisure). In our view, this case is prototypical of
many real-life decisions under uncertainty. In such cases,
labor often may co-occur with exploitation (since labor tasks
reliably yield external rewards), and leisure often may co-
ccur with exploration (since leisure tasks yield no external
reward, but provide opportunities to detect other, more intrin-
sic rewards, e.g., encouraging social interactions). Our re-
search concerns the particular cases in which this mapping
holds and is agnostic about other cases in which this mapping
is reversed or more dynamic (e.g., when this mapping chang-
es over time because the rewards associated with labor and
leisure change over time). By studying these particular cases,
we examined a potential connection between the two trade-
offs. In particular, using a labor-leisure paradigm, we inves-
tigated whether the neural mechanisms that people seem to
use to balance exploitation and exploration (i.e., the locus-
coeruleus norepinephrine system) also may be used for trad-
ing off cognitive labor and leisure.
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Our research exceeds prior work in two ways. First, we
used a dual-task paradigm with two qualitatively different
tasks. We chose to use this paradigm to model decisions in
real life, where labor (e.g., working on a spreadsheet) usually
comprises a vastly different activity than leisure (e.g., talking
to colleagues). Second, we examined transitions between la-
bor and leisure in both directions. That is, we not only exam-
ined decisions to take breaks (while working), but also exam-
ined when people decided to start working again (after taking
a break). An important feature of our studies is that analysis
plans were pre-registered before data collection. In what fol-
lows, we introduce the major biological theory linking the
exploration-exploitation trade-off to neural processes, de-
scribe previous human research supporting this theory, and
explain why our paradigm allows for a more comprehensive
investigation of NE levels when humans switch between labor
and leisure.

A major theory linking the trade-off between exploration
and exploitation to neural mechanisms is adaptive gain theory,
which connects these behavioral states to qualitatively differ-
ent neural states of the locus coeruleus—norepinephrine (LC-
NE) system (Aston-Jones & Cohen, 2005; Cohen, McClure,
& Yu, 2007). According to adaptive gain theory, exploitation
is driven by a phasic mode of locus coeruleus (LC) activity. In
the phasic mode, baseline norepinephrine (NE) levels in the
LC are moderate, but bursts of NE release occur in response to
task-related stimuli. Given that NE release in cortical areas
increases neural responsivity to incoming information
(Berridge & Waterhouse, 2003; Servan-Schreiber, Printz, &
Cohen, 1990), this pattern is likely adaptive: it helps animals
to process task-relevant information. In contrast, exploration
is driven by a fonic mode of LC activity. In the tonic mode,
baseline NE levels are chronically elevated, and bursts of NE
(in response to task-relevant stimuli) are attenuated or even
absent. It has been suggested that this pattern may widen at-
tention, allowing people to better detect task-irrelevant—but
potentially rewarding—stimuli (Cohen et al., 2007).

Importantly, NE levels are correlated with pupil diameter in
both monkeys (Joshi, Li, Kalwani, & Gold, 2016; Rajkowski,
Kubiak, & Aston-Jones, 1994) and humans (Murphy,
O’Connell, O’Sullivan, Robertson, & Balsters, 2014;
Murphy, Robertson, Balsters, & O’Connell, 2011). For exam-
ple, in line with predictions from adaptive gain theory, previ-
ous research found that pupil diameter covaried with task en-
gagement and disengagement in an auditory discrimination
task (Gilzenrat, Nieuwenhuis, Jepma, & Cohen, 2010). In this
task, participants judged which of two tones had a higher
pitch. Task difficulty continuously increased while rewards
decreased with every error a participant made. At any time,
participants could reset task settings by pressing an “escape”
button, which the authors interpreted as exploration behavior.
Changes in pupil dilation also were observed in transitions
between bandit gambling machines (Jepma & Nieuwenhuis,
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2011) and in a task that required people to solve Raven’s
Matrices (Hayes & Petrov, 2016). Overall, in these studies,
exploitation was characterized by relatively low baseline pupil
diameter, combined with large pupil dilations in response to
task stimuli. By contrast, exploration was characterized by
high baselines and smaller dilations in response to task-
relevant stimuli.

While the studies described in the previous paragraph link
the LC-NE system, and particularly pupil diameter as an ob-
servable correlate, to exploration—exploitation dilemmas, it is
not yet clear whether the LC-NE system is involved in peo-
ple’s decisions to switch between labor and leisure. After all,
prior studies operationalized exploration as brief transitions
between extended phases of exploitation, making it impossi-
ble to disentangle disengagement from the previous task ver-
sus reengagement in the next task. Also, these studies manip-
ulated task payoff and difficulty, thus incentivizing all partic-
ipants to start exploration at a defined moment, instead of
keeping the environment constant and tracking individual dif-
ferences in participants’ natural drive for exploration. In con-
trast, we studied participants’ self-directed decisions to take a
break (vs. to continue working), which are arguably similar in
structure as exploration—exploitation dilemmas, because
agents have to decide whether (a) to stay with a current activ-
ity and its payoff or (b) to quit this activity and explore the
environment for more rewarding alternatives—at the risk of
wasting time and foregoing rewards. Indeed, in research on
fatigue and effort, the LC-NE system has been mentioned as a
candidate mechanism for understanding labor-leisure transi-
tions (Inzlicht, Schmeichel, & Macrae, 2014; Kurzban,
Duckworth, Kable, & Myers, 2013). Yet, to our knowledge,
this possibility has not been tested.

Present research

Based on adaptive gain theory, we hypothesized that labor-
to-leisure transitions (i.e., decisions to take a break from
work) are preceded by (a) increases in pupil baseline and
(b) decreases in pupil dilation. For leisure-to-labor transi-
tions (i.e., decisions to start working after taking a break),
predictions are somewhat less straightforward. On the one
hand, based on adaptive gain theory, we would predict that
baselines stay high during the leisure phase to ensure a
broadened attention that facilitates the detection of alterna-
tive activities. However, when switching back to labor,
people need to focus on the labor task only, so that (a) pupil
baseline should decrease and (b) pupil dilations should
increase again. On the other hand, one also could pose that
leisure-to-labor transitions are not different from labor-to-
leisure transitions in that they constitute a case of task-
switching. A role of NE in task switching has been sug-
gested by network reset theory (Bouret & Sara, 2005; Sara

& Bouret, 2012), which suggests that NE is primarily re-
leased when people detect unexpected changes in the en-
vironment. When these changes happen, NE promotes re-
orientation towards stimuli that have become relevant in
the new task environment, facilitating adaptation to new
demands. So far, it has not been explored whether NE
could have a similar function in humans’ self-directed de-
cisions to switch tasks. If this was the case, we would
expect (a) increases in pupil baseline and (b) decreases in
pupil dilation preceding both labor-to-leisure and leisure-
to-labor transitions, because network reset theory assumes
NE processes to be independent of the activity performed
previously and the activity to-be-performed after the
switch. By investigating leisure-to-labor transitions, our
research directly tested adaptive gain theory and network
reset theory against each other.

We operationalized /abor as a 2-back memory task and
leisure as an attractiveness rating task, following a para-
digm by Kool and Botvinick (2014). We employed both
linear and additive mixed models, which allowed us to
more closely examine the onset and duration of pupil
shifts. To shed light on the functional role of the processes
underlying pupil changes, we conducted exploratory anal-
yses in which we correlated the magnitude of pupil chang-
es with individual differences in self-reported procrastina-
tion and action orientation in everyday life. To this end, we
used well-validated questionnaires (Kuhl, 1994; Kuhl &
Fuhrmann, 1998; Steel, 2010). We chose personality di-
mensions that reflected how readily people engaged into
effortful tasks and how they dealt with fatigue following
from effort. We explored whether people who successfully
dealt with these challenges in everyday life would show a
different pupil pattern around switches than people who
had problems with initiating or maintaining effort mobili-
zation. These analyses were exploratory and served
hypothesis-generation for future studies.

We report the methods and results for Studies 1 and 2
together, because protocols in both studies were identical ex-
cept for two brief control assessments that were administered
following the main task in Study 2. In our pre-registration for
Study 1, based on previous literature (Gilzenrat et al., 2010),
we expected pupil shifts to occur before task switches, which
would have allowed us to predict switches prospectively
based on pupil diameter." Because our hypotheses found no
evidence in the pre-registered time window, we explored them
in a later time window centered around the behavioral switch.
We preregistered these analyses for Study 2 to replicate our
exploratory findings from Study 1.2

! Pre-registration for Study 1: https://osf.io/ypyha/register/
5730e99a9ad5al02c5745a8a
2 Pre-registration for Study 2: https://osf.io/48kyw/register/
5730e99a9ad5al 02c5745a8a
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Methods
Participants

In Study 1, 35 participants completed a 50-minute study in
exchange for a €7.50 voucher and an extra cash payment of up
to €5, depending on their task performance. We recruited par-
ticipants in the age range 17-30 years who had normal or
corrected-to-normal vision (using contact lenses), understood
English, and did not suffer from neurological disorders. In line
with pre-registered exclusion criteria (see Supplementary
Online Material S1), four participants were excluded from
analyses, so that the final sample consisted of 31 participants
(68% female, M, . =22, SD,4. = 2.7).

In Study 2, 35 participants completed a 60-minute study in
exchange for a €10 shopping voucher and an extra cash pay-
ment of up to €5. Participants were recruited from the same
population as in Study 1, using the same exclusion criteria (see
S2). Four participants were excluded from analyses, so that
the final sample consisted of 31 participants (65% female,
Mge = 22, SD,q. = 3.1). Studies were approved by the local
ethics review board.

Procedure

Participants were welcomed in a room equipped with a sta-
tionary SMI iView X infrared eye-tracker (SensoMotoric
Instruments, Teltow, Germany) sampling at 500 Hz. We
placed this device’s chin rest 72-cm away from a 24-inch
monitor, on which the task stimuli were presented (using a
script programmed in PsychoPy; Peirce, 2007). After they
were seated, participants first completed a 9-point calibration
of the eye-tracking device, followed by a 10-min practice
phase, in which participants were familiarized with the labor
and leisure tasks (which were first practiced separately), but
also with labor-to-leisure and leisure-to-labor switches.

Next, participants completed the test phase, which took
25 min and consisted of 500 trials. During both the practice
and test phases, pupil size of their dominant eye was tracked.
In Study 2, additionally, participants completed two control
assessments of 80 trials each to exclude alternative interpreta-
tions of the findings of Study 1. Afterwards, in both studies,
participants rated both tasks on the dimensions work and fun
using a 7-point scale. We assumed that the work ratings
reflected whether participants perceived the labor task as more
effortful than the leisure task, which would mean that our task
successfully fulfilled the criterion for a labor-leisure trade-off.
In contrast, the fun ratings assessed participants’ intrinsic mo-
tivation (opposed to the extrinsic monetary incentives) to do a
task. These fun ratings were important to exclude the possi-
bility that participants performed the labor task not because it
returned monetary rewards, but because it was more fun than
the leisure task. If participants were motivated by fun instead
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of maximizing rewards, neural mechanisms different from
those designed to deal with exploration-exploitation dilemmas
might have been involved. Afterwards, participants filled in
questionnaires assessing their procrastination tendency and
action versus state orientation. Finally, they were debriefed
and paid.

Labor-leisure task

During the test phase, in each trial, participants could choose
between performing an effortful 2-back task (labor task) or an
easy attractiveness-rating task (leisure task; adapted from
Kool & Botvinick, 2014). For each trial they spent on the
labor task, they received 1-cent extra cash payment. It was
announced in advance that participants with accuracy levels
below 75% in the labor task would receive no extra payment
but that previous participants were able to easily achieve this
level if they tried hard. This threshold was implemented to
discourage participants from resting during the labor task
and encourage switching to the leisure task in case they felt
like taking a break. Participants’ responses during the leisure
task did not affect their monetary payout, allowing for an
actual break from paid work.

Participants selected and performed tasks using a joystick.
Specifically, participants selected tasks by moving the joystick
sideways. When the joystick was moved to the left (or right;
counterbalanced), participants performed the labor task; when
moved to the right (or left; counterbalanced), participants per-
formed the leisure task. Both tasks were presented as labels at
the upper corners of the screen (“2-back” and
“attractiveness™). As a reminder, the currently selected task
was surrounded by a white frame. It was only possible to
switch tasks when no stimulus was displayed to prevent par-
ticipants from employing the strategy of first viewing a face
and then choosing which task to perform. Participants indicat-
ed responses via the single backward trigger of the joystick.
We chose to use a joystick in line with the original paradigm
by Kool and Botvinick (2014). Compared with a keyboard, a
joystick reduces the chance that participants accidently press a
different key than they intend; after all, when using a station-
ary eye tracking device with a chin and head rest, participants
could not visually check their manual responses.

Regardless of the position of the joystick, on each trial,
participants saw the following stimuli: a fixation cross (200
ms), a mask stimulus (800 ms), a face (1500 ms), and a blank
screen (400-600 ms). Figure 1 depicts the course of one trial.
When participants had selected the labor task, they were re-
quired to press the joystick trigger when the current face was
the same face as two faces before (i.e., when the current face
was a 2-back target; in case of a nontarget, they were required
to refrain from responding). When participants had selected
the leisure task, they were asked to press the joystick trigger
when they saw an attractive face.
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Fig. 1. Overview of the time course of one trial in the labor-leisure task,
including the parts of the trial in which we measured baselines and dila-
tions, respectively. Face stimulus taken from Said and Todorov (2011)

Stimuli

Faces were selected from the Attractiveness Model Database
(Said & Todorov, 2011), which contains artificially generated
faces. Of the 20 faces used, 10 were drawn from the 5% most
attractive faces of the database; the other 10 from the 5% least
attractive faces. Ten faces were male faces; the other 10 were
female faces. All stimuli were matched on mean luminance
and had the same size (400 x 400 pixels). The mask consisted
of'the pixels of one of the faces randomly rearranged, resulting
in the same mean luminance. For all practice phases and the
final test phase, we generated a pseudo-random order of faces,
with a 30% chance of a 2-back trial occurring. Fifty percent of
trials showed attractive faces.

Control assessments

In Study 2, after the labor-leisure task, participants addition-
ally completed two control assessments of 80 trials (5 min)
each. Both conditions were identical to the labor-leisure task
in trial structure, stimuli, and task labels, but different in
instructions.

First, in the motor control assessment, participants were
instructed to respond to one particular face (and not to any
other face) by moving the joystick in a way as if they switched
between tasks in the labor-leisure task. This particular face
was displayed on trials 5, 15, ... 75, with each of these trials
surrounded by 10 trials without any action, allowing for a
similar analysis of “switches” as in the labor-leisure task.
With this basic vigilance task, we intended to test whether
pupil changes were driven by the motor activity occurring
when moving the joystick.

Second, in the visual control assessment, participants
were instructed to passively watch a series of trials without
any action. In trials 5, 15, ... 75, the frame highlighting the
2-back or attractiveness-rating task label was automatically
shifted to the respective other task label. With this control
assessment, we intended to test whether watching the mov-
ing frame was sufficient to induce the observed pupil
changes.

Questionnaires

In both studies, after people had completed the tasks and left
the eye-tracker, we administered three questionnaires:

The Irrational Procrastination Scale (IPS; Steel, 2010) mea-
sures general procrastination tendencies using nine items,
such as “I often regret not getting to task sooner.” People
responded on a 7-point scale ranging from strongly disagree
(1) to strongly agree (7).

The Action Control Scale (ACS-24; Kuhl, 1994) consists
of24 descriptions of scenarios, with 2 possible strategies to act
in each situation. Participants are asked to select the strategy
that describes best how they would react. It comprises two
subscales: the action orientation subsequent to failure versus
preoccupation (AOF) subscale contains scenarios about deal-
ing with failures, such as “When several things go wrong on
the same day,” for which the action-oriented response is “I just
keep on going as though nothing had happened” and the state-
oriented one is “I don’t know how to deal with it.” In contrast,
the prospective and decision-related action orientation versus
hesitation (AOD) subscale contains items related to planning
and starting activities, such as “When I have an obligation to
do something that is boring and uninteresting” with the
action-oriented response “I do it and get it over with” and
the state-oriented response “It usually takes a while before I
get around to doing it.”

Furthermore, we selected three subscales from the Self-
Government Inventory (SSI-K3; Kuhl & Fuhrmann, 1998):
the self-regulation (competence) subscale relates to feelings
of autonomy, intrinsic motivation, and dealing with ner-
vousness and contains items, such as “When my persever-
ance subsides, I know exactly how to motivate myself
again.” The self-control subscale comprises items about
planning, prospection, and self-confidence, such as “If I
have a lot to do, I work according to a plan (i.e., I have a
schedule for my tasks).” The volitional development (ac-
tion development) subscale consists of items reflecting ini-
tiative and readiness to act in contrast to postponement and
procrastination, such as “If something has to be done, I
begin doing it immediately.” Participants rated how much
each item applied to themselves on a four-point scale from
“not at all” to “completely.” For each of the scales, we
calculated participants’ average scores.
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Data analysis

Pre-processing of eye-tracking data Pre-processing of the pu-
pil raw data included removing values of zero, removing ab-
normally fast pupil changes, deleting outliers, and finally im-
puting missing values using linear interpolation. Our exact
analysis script was built on previous experimental work
(Bijleveld, 2018), and it is available at https://osf.io/b9z4c/
(Study 1) and https://osf.io/ukgsh/ (Study 2).

Pupil measures For each trial, baseline pupil diameter and
maximal pupil dilation were computed. Baseline pupil diam-
eter was defined as the average pupil size during the last
400 ms of the mask presentation. Pupil dilation was defined
as the difference between the maximal pupil size during face
stimulus presentation and the baseline pupil diameter (for an
illustration, see Fig. 1).

Generalized additive mixed models To account for auto-
correlation in the pupil data, we followed recent suggestions
(Baayen, Vasishth, Kliegl, & Bates, 2017) to fit generalized
additive mixed models (GAMMs) to time-series data using
the mgcv package (version 1.8.22; Wood, 2017) in R
(version 3.4.3; R Core Team, 2017). The unit of analysis were
single trials. Trials were nested in bouts, with a bout formed by
the five trials before and five trials after a switch. We used
either pupil baseline or pupil dilation as the dependent vari-
able, each maximum normalized per person.> We used (a) trial
number relative to switch and (b) the interaction between trial
number and switch type (labor-to leisure vs. leisure-to-labor)
as predictors. We fitted GAMMs with random slopes for trial
number for each bout of each participant, which effectively
reduced auto-correlation to levels <0.15.* When testing for
differences between switch types, we coded the predictor
switch types as an ordered factor.

Note that GAMMs fit a smooth curve (consisting of thin
plate regression splines) through all data points and test
whether this curve is significantly different from a straight line
(i.e., from zero) at any time point during the selected time
window. Thus, GAMMs do not qualify the shape (e.g., linear

3 Maximum-normalization was implemented by subtracting the minimum of
an individual from all their values and dividing them by the person’s maxi-
mum. This transformed each individual’s values into the range from 0 to 1,
reducing the effect of outliers. All analyses were repeated with the raw pupil
measures as well as with these measures z-standardized per person. In both
cases, the same pattern of significant and non-significant results was obtained.
“Asa control, we also fitted GAMMs with random smooths, featuring an
ARIMAC(1)-model based on the model with random slopes to account for
auto-correlation. However, given that each bout comprised at most 10 (and
often less) data points, fitting separate smooths for each bout restricted us to
using 8 knots for each smooth only, further constraining the “wigglyness” of
the underlying smooth we could possibly fit. Auto-correlations were hardly
any further reduced. These models yielded F- and p-values that were highly
similar to those of the models with random slopes and led to the same
conclusions.
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vs. curvilinear) or direction (e.g., increase vs. decrease) of a
change. Hence, we additionally fitted linear mixed-effects
models to test for linear increases or decreases in pupil base-
line and pupil dilation. In our interpretations, we gave priority
to the results of the GAMMSs as those (a) account for auto-
correlations, and (b) our hypotheses were agnostic about how
early and how long the predicted changes would occur.

Linear mixed-effects models We fitted linear mixed-effects
models (LMEMs) using the Ime4-package (version 1.1.15;
Bates, Machler, Bolker, & Walker, 2015) with pupil baseline
or pupil dilation as outcome variable and trial number relative
to switch as sole predictor. When comparing the effects of
switch types, we added the factor switch type and the interac-
tion between trial number and switch type. Both outcome
measures and relative trial numbers were standardized, so that
regression coefficients can be interpreted as standardized re-
gression weights. For the factor switch type, we employed
sum-to-zero coding. Models contained a maximal random ef-
fects structure (Barr, Levy, Scheepers, & Tily, 2013), with
random intercepts and random slopes of trial number, switch
type, and their interaction, both for each participant and for
each bout of adjacent trials of each participant, and with all
possible random correlations. We computed type-3-like p-
values using F-tests with Kenward-Roger approximation for
degrees of freedom (Singmann, Bolker, Westfall, & Aust,
2018).

Power estimation We checked in a small pilot study (N = 7)
whether participants followed the task instructions and
switched between tasks often enough to yield sufficient power
for testing our hypotheses with N = 30. Participants switched
on average 8.4 times from labor to leisure. Given N = 30 and
our initial hypothesis of analyzing the last ten but one trial
before switches (see below), we expected to obtain 2,268 us-
able trials. In our pilot data, we obtained intra-class correla-
tions of 0.67 for baselines and 0.37 for dilations. Following
Aarts, Verhage, Veenvliet, Dolan, and van der Sluis (2014),
we estimated effective sample sizes of 357 trials for baselines
and 597 trials for dilations, which allowed us to detect effects
of 3 > 0.14 for baselines and 3 > 0.11 for dilations with 80%
power (power sensitivity analysis for linear bivariate regres-
sion in G¥Power 3; Faul, Erdfelder, Lang, & Buchner, 2007).

Results

Manipulation checks

Task ratings In Study 1, participants perceived the 2-back task
(M =5.87,SD = 0.85) as more work compared with the rating

task (M =2.00, SD=1.03),#30)=17.13, p<0.001, d = 3.08,
but also as significantly less fun (M = 2.58, SD = 0.92)
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compared with the rating task (M = 3.70, SD = 1.53), #(30) =
—4.25, p < 0.001, d = —0.76. Also in Study 2, participants
perceived the 2-back task as more work (M = 5.32, SD =
1.45) than the rating task (M = 2.32, SD = 1.25), #30) =
8.09, p < 0.001, d = 1.45, while fun ratings did not signifi-
cantly differ between the 2-back task (M = 2.84, SD = 1.37)
and the rating task (M = 2.94, SD = 1.34), 1(30) = 0.31, p =
0.756, d = —0.06. This resulted from a lower “fun” rating of
the rating task compared with Study 1, which might have been
due to the fact that in Study 2, between the test phase and the
ratings, participants completed the control assessments for
another 10 minutes. Hence, their memory of the tasks might
have faded. Overall, we concluded that in both studies (a) the
task successfully implemented labor in contrast to leisure, and
(b) the task established a context in which not fun, but reward
maximization, drove participants’ choices about which task to
perform.

Task performance In Study 1, on average, participants spent
396 (SD = 53) out of 500 trials on the labor task; they switched
7.97 times (SD = 7.64) from labor to leisure. In the labor task,
participants gave on average 84% (SD = 4%) correct re-
sponses. In the leisure task, they responded in 27% (SD =
14%) of trials, indicating that participants actively engaged
in this task. In Study 2, participants spent on average 352 trials
(SD = 123) on the labor task; they switched 8.77 times (SD =
6.58) from labor to leisure. In the labor task, they responded in
84% oftrials (SD = 6%) correctly. During the leisure task, they
responded in 28% (SD = 17%) of trials. We conclude that in
both studies, participants were engaged in both tasks, even
though performance on the leisure task had no impact on their
payout. See S3 for details on accuracy directly before switches
to leisure, S4 for differences in accuracy before compared to
after periods of leisure, and S5 for correlations of overall base-
line pupil diameter and pupil dilations with performance
measures.

Overall baseline and dilation differences between tasks To
ensure that changes in pupil baselines or dilations around
switches between tasks were not due to overall differences
between tasks, we fitted LMEMs to the maximum-
normalized baseline and dilation scores with zask as the single
predictor (including full random effects structures). In both
studies, baselines (Study 1: Migpor = 0.58, Migisure = 0.54,
Study 2: Miapor = 0.57, Migisure = 0.56) and dilations (Study
1: Mlabor = 036, M]eisure = 035, Study 2: M]abor = 036, Mleisure
= (.32) tended to be higher during labor compared to leisure.
However, these differences between tasks were only signifi-
cant for dilations in Study 2, F(1, 27.51) =4.50, p = .043 (all
other ps > 0.11), and never exceeded ~0.04 on a maximum-
normalized scale. These differences are substantially smaller
than baseline increases and dilation decreases around switches
(see below) and thus cannot explain the observed pupil

changes around switches. Furthermore, if there were no addi-
tional mechanisms driving pupil changes around switches, the
finding of overall slightly higher baselines and dilations dur-
ing the labor task would make us expect decreases in both
measures around labor-to-leisure switches but increases in
both measures around leisure-to-labor switches, which is in-
consistent with our findings reported below.

Pre-registered confirmatory analyses of Study 1

In our original pre-registration, we decided to select the last
ten but one trials before labor-to-leisure switches and fit
LMEMs with the outcomes baseline pupil diameter or pupil
dilations and the sole predictor trial number relative to the
switch (=10 to —2). There was no evidence for an increase in
baseline pupil diameter, 3 = 0.01, 95% CI [-0.04, 0.06], F(1,
23.50)=0.11, p = 0.743, nor for a decrease in pupil dilations,
 =-0.03, 95% CI [-0.08, 0.02], F(1, 25.68) = 1.33, p =
0.260, during the pre-registered time window.

Exploratory analyses Study 1 and pre-registered
analyses Study 2

As a next step, we ran exploratory analyses on the data from
Study 1. For this purpose, we considered a different range of
trials, namely the last five trials before and the first five trials
after switches, centered on the trial on which participants de-
cided to switch. This allowed us to investigate whether pupil
changes started later than we initially expected, namely only
one to two trials before the switch. Also, we investigated both
switches from labor to leisure and from leisure to labor. Unless
otherwise indicated, all analyses reported below were pre-
registered for Study 2.

Changes in baseline diameters Table 1 reports the results of
the fitted GAMMs and LMEMs for both studies. GAMMs
yielded significant changes in both baseline pupil diameter
and pupil dilations, for both switch types, in both studies.
Time courses of the GAMMSs are plotted in Fig. 1. In
Table 1, we further report LMEMs. We used these LMEMs
to test whether there was a significant net increase or decrease
(recognizable by the sign of the beta coefficient) across the
entire specified trial window.

As predicted by both adaptive gain theory and network
reset theory, GAMMSs showed that baseline pupil diameter
increased around labor-to-leisure switches in both Study 1
and Study 2 (Fig. 2a and b). Whereas LMEMs indicated that
there also was an overall net increase in baselines in Study 1,
there was no significant evidence for such an increase in Study
2. Nevertheless, Fig. 2b clearly displays an increase, which
might be too temporally constrained to be picked up as a net
increase by the LMEM. We thus ran an additional exploratory
analysis by refitting this LMEM on a more restricted time
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Table 1  Results of generalized additive mixed models (GAMMSs) and linear mixed-effects models (LMEMs) for pupil baseline diameter and pupil
dilations across labor-to-leisure and leisure-to-labor switches in Study 1 and 2
Measure Switch type Study GAMM LMEM
Baseline Labor-to-leisure 1 F(8.54,3577.26) = 23.65, p < 0.001 B =0.12,95% CI1[0.04, 0.19],
F(1,25.88) =9.89, p = 0.004
2 F(8.30, 4257.04) = 11.43, p < 0.001 3 =.03,95% CI[-0.02, 0.08],
F(1,26.14) = 1.56, p = 0.222°
Leisure-to-labor 1 F(8.50, 3577.26) = 23.95, p < 0.001 B =0.16, 95% CI[0.09, 0.24],
F(1,27.85)=19.35, p < 0.001
2 F(8.57,4257.04) = 21.46, p < 0.001 3 =0.12,95% CI1[0.07, 0.17],
F(1, 23.46) = 23.46, p < 0.001
Difference 1 F(1.00, 3584.57) = 1.16, p = 0.281 B =-0.02,95% CI [-0.08, 0.03],
F(1,26.56) = 0.96, p = 0.336
2 F(3.33,4261.67) = 4.06, p = 0.005 3 =0.04, 95% CI [-0.09, 0.01],
F(1,26.72) =351, p = 0.072
Dilation Labor-to-leisure 1 F(7.76,4012.88) =2.91, p = 0.003 3 =-0.07, 95% CI [-0.14, —0.01],
F(1,27.75) = 4.90, p = 0.035
2 F(1, 4688.12) = 13.31, p < 0.001 B =—0.06, 95% CI [-0.02, 0.11],
F(1,26.43)=6.71, p = 0.015,
Leisure-to-labor 1 F(7.91,4012.88) = 5.13, p < 0.001 3 =0.001, 95% CI [-0.07, 0.06],
F(1,28.17) =0, p = 0.962°
2 F(7.66,4688.12) = 5.24; p < 0.001 B =0.01, 95% CI [-0.02, 0.05],
F(1,20.07)=0.51, p = 0.482°
Difference 1 F(1.80, 4002.19) = 4.16, p = 0.019 B =-0.04,95% CI [-0.09, 0.02],
F(1,28.54) = 1.95, p = 0.174°
2 F(7.76, 4687.73) = 6.29, p < 0.001 =-0.03, 95% CI[-0.06, -0.01],

F(1, 520.93) = 7.79, p = 0.005"

We fitted separate models for labor-to-leisure and leisure-to-labor switches testing our pre-registered hypotheses and then exploratory models to compare

both switch types

* Estimates were significantly different from zero when we refitted them on a more constrained time window of two trials before until two trials after

switches (see main text)

°Due to convergence warnings, we simplified the model by dropping the random slopes either per bout or per subject until the model converged

a) Study 1: Baseline pupil diameter around switches

lab

to-lei itch —eeee e to-labi

labor-to-lei: it

Baseline pupil diameter
(maximum-normalized per person)
0.50 055 0.60 0.65 0.70

b) Study 2: Baseline pupil di

hi

around swi

4

c) Study 1: Pupil dilation around switches

lab

3002 A1 1‘ 2 3 ‘

Trial number relative to switch

to-lei itches ---- lei to-lab:

4

0.40

Pupil dilation
(maximum-normalized per person)
0.35

0.30

0.25

I

4

Fig. 2. Top panels: Time course of baseline pupil diameter around labor-
to-leisure and leisure-to-labor switches in Studies 1 (A) and 2 (B). Bottom
panels: Time course of pupil dilations around labor-to-leisure and leisure-

3 02 a4 1 2
Trial number relative to switc

}
3
h

4

=y
[*]
QO
0N
gc_o
T =
43|
59°
=N
Q_EO
8ES]
22
3 £8
3
SE°
xX O
| EQ b—+—+——+ Ly
5 = 5 4 3 -2 A1 1 2 3 4 5
Trial number relative to switch
= d) Study 2: Pupil dilation around switches
c
_— go Iabsiteai itch \ to-1abor switch
(I
=)
N L:
S3Tuw =
ja— -
Tw®
s |
g8,
£0o
-
£
3&)
| Eoc | } | } } | } } | |
5 = 5 4 3 -2 - 1 2 3 4

5

Trial number relative to switch

to-labor switches in Studies 1 (C) and 2 (D). All time courses were

@ Springer

derived from the GAMMs described in Table 1 (time courses are model
estimates, not averages of data). Shades indicate 95% Cls. Vertical lines
indicate the time point of the switch
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window from two trials before until two trials after the switch,
which yielded indeed a strong, but temporally constrained,
increase, 3 = 0.13, 95% CI [0.07, 0.20], F(1, 27.30) =
13.19, p = 0.001.

Furthermore, in line with network reset theory, but in con-
tradiction with adaptive gain theory, GAMMs yielded a sim-
ilar increase in baselines across leisure-to-labor switches in
both studies. This was corroborated by LMEMs in both stud-
ies, which both showed net increases in baselines across these
switches.

We ran exploratory analyses to test whether the time
courses of pupil dilations differed between switch types.
When comparing switch types in Study 1, neither GAMMSs
nor LMEMs indicated evidence for a significant difference
between switch types. In Study 2, the GAMM yielded that
the increase in baselines was even slightly stronger for
leisure-to-labor compared to labor-to-leisure switches (Fig.
2b), whereas the LMEM yielded no evidence for a net differ-
ence. Overall, in both studies, we found significant increases
in pupil baselines in labor-to-leisure switches, which is con-
sistent with both adaptive gain theory and network reset the-
ory, as well as in leisure-to-labor switches, which is consistent
with network reset theory, but inconsistent with adaptive gain
theory.

Changes in pupil dilations For labor-to-leisure switches, as
predicted by both adaptive gain theory and network reset the-
ory, GAMMs revealed significant decreases in pupil dilations
in both studies (Fig. 2c and d). This was corroborated by
LMEMs indicating significant net decreases in dilations in
both studies.

For leisure-to-labor switches, GAMMs indicated a similar
decrease in both studies, which was in line with network reset
theory, but inconsistent with adaptive gain theory. However,
LMEMs did not yield evidence for a significant net decrease
in either study. Given that decreases were clearly visible in
Fig. 2c and d, we again ran exploratory analyses by refitting
the models on a more temporally restricted trial window from
two trials before until two trials after a switch. In this window,
there was a strong significant decrease both in Study 1, 3 =
—0.16,95% CI [-0.24, —0.08], F (1, 21.94) = 15.36, p < 0.001,
and Study 2, 3 =-0.13,95% CI [-0.19, —0.07], F(1, 21.07) =
17.41, p < 0.001.

We ran exploratory analyses to test whether the time
courses of pupil dilations differed between switch types. As
shown in Fig. 2c, GAMM s indicated that dilation time courses
were significantly different between switch types in Study 1,
with dilations higher three to five trials after leisure-to-labor
switches compared with labor-to-leisure switches. The respec-
tive LMEM yielded no evidence for net differences. In Study
2, both GAMMs and LMEMs indicated significant differ-
ences between switch types. Figures 2d shows that dilations
were higher five trials before and two trials after labor-to-

leisure compared with leisure-to-labor switches but lower
one trial before and five trials after labor-to-leisure compared
with leisure-to-labor switches.

We make two more observations about the particular shape
of the pupil dilation time courses across switches. First, note
that in in both studies, before the decrease, there seems to be a
brief increase on the last trial before a switch (Fig. 2¢ and d).
Although neither adaptive gain theory nor network reset the-
ory predicts this increase, it may be explained by the idea that
pupil dilation reflects effort mobilization (Beatty & Lucero-
Wagoner, 2000; Hess & Polt, 1964; Kahneman & Beatty,
1966; Laeng, Sirois, & Gredebéck, 2012). It may be the case
that initiating the task switch requires particular effort (see also
the motor control assessments below).

Second, regarding labor-to-leisure switches, the GAMM
for Study 1 displays a somewhat abrupt decrease that is
constrained to one to two trials around switches (Fig. 2c¢, red
line), while the GAMM for Study 2 (Fig. 2d, red line) displays
a more gradual decrease over the entire trial window. Again,
neither adaptive gain theory nor network reset theory make
predictions about the exact shape of the decrease. However,
the difference between studies may be explained from the way
GAMM models fit smooth curves through data. In GAMM
models, the order of the best-fitting polynomial is determined
by trading off model fit versus model complexity. For a noisier
raw data pattern (with multiple peaks and troughs), this trade-
off may favor a lower order polynomial (as in Fig. 2d), which
is more likely to reflect the data generative process. When we
visually inspected pupil dilation time courses (for the script
generating the respective plots, see https://osf.io/ukgsh/), we
did indeed observe that the dilation data for labor-to-leisure
switches seemed to be noisier in Study 2 than Study 1, which
may explain why the decrease in pupil dilation seemed to be
more gradual in Study 2.

Pupil changes around switches compared with overall differ-
ences between tasks A possible explanation for changes in
pupil baselines and dilations around task switches is that those
measures are overall higher in one task compared with the
other. If this was the case, pupil changes around switches
would merely reflect the transition from one task to the other,
rather than particular processes that are involved in
implementing the task switch. To rule out this possibility, we
compared the magnitude of pupil changes around switches
(Fig. 2) to overall differences between tasks on those mea-
sures. Baseline increases around switches were of magnitudes
~0.15 on the maximum-normalized scale and dilation de-
creases of magnitudes ~0.10, which was both substantially
larger than overall differences between tasks on those mea-
sures (which did not exceed ~0.04). We thus deem it unlikely
that the observed baseline and dilation changes around
switches are reducible to overall differences between tasks
on those pupil measures.

@ Springer
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Summary of main results In conclusion, across both studies,
we found increases in pupil baseline levels and decreases in
pupil dilations around both labor-to-leisure and leisure-to-
labor task switches. The size of baseline increases and dilation
decreases was largely comparable between both switch types
and across both studies.

These results were fully predicted by network reset theory.
Only the patterns observed for labor-to-leisure switches, but
not the pattern for leisure-to-labor switches, was consistent
with adaptive gain theory. In sum, our data provided support
for network reset theory, which proposes that pupil shifts
across both types of task switches reflect processes involved
in task-switching, independent of the motivational nature of
the task. However, one might argue that these shifts are com-
parable across switches types and studies, because they do not
reflect neural processes underlying task switching, but rather
(a) motor processes initiating the movement of the joystick, or
(b) visual processes of observing the frame highlighting the
current task moving from one task label to the other. Although
these alternative explanations seem rather unlikely given the
prolonged elevation of pupil baselines until 12 seconds after
the behavioral switch, we aimed to rule out those alternative
explanations via two additional assessments.

Control assessments (Study 2 only)
Motor control assessment

A GAMM indicated that contrary to our expectations, the time
course of baseline pupil diameter around motor actions was
significantly different from zero, F(8.93, 1535.64) = 40.40, p
< 0.001 (Figure S6a), and a LMEM yielded a significant in-
crease, 5 =0.11,95% CI[0.05, 0.16], F(1,22.00)=15.25,p <
0.001. Additionally, contrary to our expectations, a GAMM
indicated that the time course of pupil dilation was significant
different from zero, F(8.94, 1665.19) = 20.47, p < 0.001
(Figure S6¢), with a LMEM yielding a significant decrease,

=—0.08, 95% CI [-0.12, —0.03], F(1, 21.99) = 10.63, p =
0.004.

Several factors might account for this unexpected finding.
First, we expected this condition to be an easy task, but par-
ticipants committed a considerable amount of errors (217 of
2,480 trials, i.e., 10% of all trials; with 148 false-positive
switches and 69 false-negative nonswitches).” This indicates
that the task was more difficult (or less engaging) than expect-
ed, and effortful processes different from mere motor activa-
tion (e.g., working memory) might have contributed to pupil
changes (Kahneman, 1973). Second, it seemed that pupil di-
lations were particularly high in the motor control assessments
on the very last trial before a switch, i.e., the trial participants

> For appropriate exclusion of participants and trials from the following anal-
yses, see SOM S2.
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saw the face that triggered them to switch, which could reflect
increased effort (Hess & Polt, 1964; Kahneman & Beatty,
1966). In an exploratory analysis, we directly contrasted the
time courses in the motion control assessment with those
around leisure-to-labor switches, using a GAMM with the
interaction between trial number and the ordered factor switch
type (motor control assessment vs. leisure-to-labor).® The dif-
ferences in the time course of pupil dilation was indeed sig-
nificant, F(8.93, 3975.57) = 12.88, p < 0.001, indicating that
pupil dilations were higher in the motor control assessment on
the very last trial before a switch, but higher in leisure-to-labor
switches on the very first trial after a switch (Figure S6d).
Third, it seemed that baseline increases in motor control as-
sessments were restricted to the very first trial after a switch
but more sustained in labor-to-leisure and leisure-to-labor
switches. When directly contrasting the time courses of pupil
baselines of motor control assessments and leisure-to-labor
switches, we indeed found significant differences, F(8.57,
3657.29) =12.27, p < 0.001: baselines were higher in
leisure-to-labor switches from five to one trial before the
switch and from two to five trials after the switch, but the
motor control assessment was only higher on the very first
trial after a switch (Figure S6b).

The motor control assessment might have been more diffi-
cult for participants than we expected, as indicated by the high
error rates and the strong pupil dilation on the last trial before
the switch, which might reflect increased effort recruitment.
Also, increases in the labor-to-leisure and leisure-to-labor
switches continued for several trials after a switch, while the
increase in the motor control assessment was only present on
the very first trial after a switch. These findings render it un-
likely that the pupil changes observed in labor-to-leisure and
leisure-to-labor switches were fully reducible to processes un-
derlying motor movements.

Visual control assessment

In the selected time window, contrary to our expectations, a
GAMM indicated that the time course of baselines in the
visual control assessment was significantly different from ze-
ro, F(6.63, 2075.75) = 2.92, p = 0.006. Visual inspection
showed however that the time course was overall rather flat
(Figure S6a).” A LMEM found no evidence for any net chang-
es across the selected time window, 3 = —0.04, 95% CI
[-0.09, 0.01], F(1, 30.00) = 3.63, p = 0.067. Similarly, a

6 Pupil changes around leisure-to-labor switches were overall larger than those
around labor-to-leisure switches and thus should be more similar to the time
course in the motor control assessment, providing a more conservative test for
differences. The same results were found when comparing switches in the
motor control assessment to labor-to-leisure switches.

7 When fitted with random smooths on eight knots, the time course in the
visual control assessment was not significantly different from a flat line,
F(2.88, 1695.85) = 2.21, p = 0.060.
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GAMM found no evidence for the time course of pupil dila-
tions deviating from a flat line, F(2.48, 2335.32) = 2.09, p =
0.112 (Figure S6b), and a LMEM found no evidence for net
changes either, 3 = 0.01, 95% CI[-0.03, 0.04], F(1, 30.00) =
0.04, p = 0.835. We conclude that the pupil changes observed
in labor-to-leisure and leisure-to-labor switches do not stem
from merely watching the frame highlighting task labels
move.

Correlations with action orientation across both
studies

We initially pre-registered to run LMEMs with the predictors trial
number, switch type, the respective questionnaire scale, and all
interactions to check whether individual differences in procrasti-
nation and action orientation predicted the amplitude of pupil
changes, and differently so for the different switch types.
Because these models failed to converge, we instead reused the
simple models of baseline increases and dilation decreases re-
ported above, extracted the best linear unbiased predictors
(BLUPs), i.e., the group-level fixed effect slope of trial number
plus the respective random slope of trial number of each partic-
ipant, and correlated those with participants’ average scores on
the questionnaires.® Note that we did not compare correlations
against zero, but against the correlations of the respective other
switch type. Correlations between BLUPs and questionnaires are
displayed in Table 2; descriptive statistics and intercorrelations
between questionnaires in SOM S7. Note that pupil dilation de-
creases around switches, so BLUPs are typically negative; the
more negative they are, the larger is the amplitude of the de-
crease. Most correlations were low. As the most noteworthy
finding, which we think might warrant follow-up research, we
observed that the BLUPs of pupil dilation decreases were posi-
tively associated with action orientation after failure (AOF) and
self-regulation (SR) for labor-to-leisure switches, but negatively
for leisure-to-labor switches. The same pattern, although weaker,
was found for the subscales decision-related action orientation
(AOD) and self-control (SC).” The negative correlations with
BLUPs in leisure-to-labor switches imply that the higher partic-
ipants scored on action orientation, the stronger were their de-
creases in pupil dilation in leisure-to-labor switches, but the
weaker were their decreases in pupil dilation in labor-to-leisure
switches. However, given our limited sample size of only 62
participants, those findings might not be robust and need further
corroboration by future research. No associations were found
with procrastination (IPS) and volitional development (VD).

8 BLUPs were fitted based on the total time window of interest, even though
on a group-level, there was no significant decrease in dilations across leisure-
to-labor switches in either study. This does not exclude the existence of mean-
ingful individual differences between participants.

9 All of these patterns also were reflected in significant or marginally signifi-
cant 3-way interactions in the initially pre-registered LMEMs, which however
yielded convergence warnings.

Discussion

In exploratory analyses (Study 1) and confirmatory analyses
(Study 2), we found that pupil baseline levels increased and
pupil dilations decreased around switches from cognitive la-
bor to cognitive leisure, and from leisure to labor. These
changes in pupil baseline levels and pupil dilations were
short-lived. Our findings extend previous studies that found
similar pupil changes when people disengaged from (and
restarted) an auditory discrimination task (Gilzenrat et al.,
2010), when people shifted between multiple bandit gambling
machines (Jepma & Nieuwenhuis, 2011) and when people
shifted between strategies in solving Raven’s Matrices
(Hayes & Petrov, 2016). By contrast to these previous studies,
in our research, participants chose between two motivationally
different tasks—namely an effortful, but profitable 2-back
(labor) and an effortless, but unprofitable attractiveness rating
task (leisure). Participants showed the same pupillary changes
around switches between tasks in either direction. We will
now discuss the main findings in greater detail.

Pupil changes were similar for labor-to-leisure
and leisure-to-labor switches

Similar pupil changes (increased baseline, decreased dila-
tions) occurred around switches from labor to leisure and in
switches from leisure back to labor. While the former finding
(labor to leisure) is consistent with adaptive gain theory, the
latter finding (leisure to labor) is not. Thus, it seems that pu-
pillary changes around task switches cannot be interpreted as
reflecting people’s motivation to take a break. Rather, these
pupillary changes might reflect cognitive processes that un-
derlie task switches more generally. This interpretation is in
line with some predictions from network reset theory, which
suggests that increases in pupil size (putatively reflecting NE
release) occur when reorientation towards a new environment
is needed. This reorientation account fits previous research
that found increases in pupil diameter in response to environ-
mental instabilities and surprises (Lavin, San Martin, &
Rosales Jubal, 2014; Nassar et al., 2012; Preuschoff, t’ Hart,
& Einhéuser, 2011) and in response to rule changes in the
Wisconsin Card Sorting Task (Pajkossy, Szdlldsi, Demeter,
& Racsmany, 2017). Indeed, recent research found increased
BOLD signals in the LC during task switching in humans
(von der Gablentz, Tempelmann, Miinte, & Heldmann, 2015).

Thus, at least on first sight, our findings seem more consistent
with predictions from network reset theory than with predictions
from adaptive gain theory. We hasten to add, however, that it is
debatable whether our data are in line with all aspects of network
reset theory. In particular, network reset theory is typically used
to understand how unexpected changes in environmental require-
ments drive NE-related reorientation of cortical networks (and its
downstream behavioral consequences). It is not yet clear to what
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Table 2

Correlations of self-reported procrastination tendencies and action vs. state orientation with the Best Linear Unbiased Predictors (BLUPs) of

pupil baseline diameter increases and pupil dilation decreases in both labor-to-leisure and leisure-to-labor switches

BLUPs baseline

BLUPs dilation

Labor-to-leisure switches

Leisure-to-labor switches

Labor-to-leisure switches Leisure-to-labor switches

IPS —0.04 0.01
ACS-24 AOF 0.17 —0.09
ACS-24 AOD 0.14 0.05
SSI K3 SR 0.07 —0.11
SSI K3 SC —0.04 0.20
SSIK3 VD —0.01 —0.14

—0.14 0.01
0.19 —0.28
0.07 —0.13
0.26 —0.27
0.16 —0.25
0.10 0.03

Higher IPS values indicate higher procrastination tendencies, and higher values on the other scales indicate higher action orientation. Samples of both
studies (total N = 62) were combined. IPS = Irrational Procrastination Scale; ACS-24 AOF = ACS-24 Action orientation subsequent to failure vs.
preoccupation subscale; ACS-24 AOD = ACS-24 Prospective and decision-related action orientation vs. hesitation subscale; SSI-K3 SR = SSI-K3 Self-
regulation (Competence) subscale; SSI-K3 SC = SSI-K3 Self-control subscale; SSI-K3 VD = SSI-K3 Volitional development (Action development)

subscale

Tp < 0.10, *p < 0.05, uncorrected

extent network reset theory can help to model the effects of
people’s self-initiated decisions, too.

Nevertheless, research does lean towards the idea that net-
work reset theory applies to self-initiated decisions. In partic-
ular, one author of network reset theory (Sara, 2015, 2016)
recently cited evidence for LC involvement in a task switching
paradigm in humans (von der Gablentz et al., 2015) as evi-
dence for network reset theory. In this paradigm, participants
were not explicitly informed about task switching require-
ments. Instead, they had to infer when they needed to switch
from performance feedback and from their own confidence in
having responded correctly. Thus, it appears that also task
switches that do not follow from evident changes in the envi-
ronment, but from an inference process, may activate the LC.
Using the same rationale, our results might extend network
reset theory by suggesting that NE responses to the detection
of environmental changes, such as threats or dangers, also
might occur as responses to people’s self-initiated decision
to switch between tasks, perhaps helping them to adapt to
the new task’s requirements.

Related to the latter line of reasoning, some recent studies
have suggested that NE plays a more active role in updating
action policies (O’Reilly et al., 2013; Urai, Braun, & Donner,
2017; Van Slooten, Jahfari, Knapen, & Theeuwes, 2018),
helping people to adopt new task mindsets, rather than (or in
addition to) the role of encoding environmental uncertainty
(Dayan & Yu, 2006; Lavin et al., 2014; Nassar et al., 2012).
Such a proposed role for NE in reconsidering action policies is
consistent with recent electrophysiological work in monkeys
that showed that (a) the activity of dopaminergic neurons in
the substantia nigra correlates with motivational variables,
such as expected levels of reward and effort, potentially inte-
grating different signals into one single decision, but (b) ac-
tivity of NE neurons in the LC correlates with actual effort

@ Springer

exertion, potentially aiding the execution of this decision
(Varazzani, San-Galli, Gilardeau, & Bouret, 2015).

In sum, building on our findings and on recent insights in NE
function, it is possible that previous experiments about shifts
from exploitation to exploration (Gilzenrat et al., 2010; Hayes
& Petrov, 2016; Jepma & Nieuwenhuis, 2011; Kane et al., 2017,
Pajkossy et al., 2017) observed NE facilitating the execution of
task switching, rather than NE facilitating motivational shifts. By
contrast to these previous studies, our paradigm used two quali-
tatively distinct tasks, with distinct motivational properties (i.c.,
labor vs. leisure). Due to this design feature, our study could
reveal that the motivational direction does not matter.

Pupil changes were short-lived

Our studies provide a fine-grained examination of the time
course of baseline pupil diameter and pupil dilations around
task switches. For both switches from labor to leisure and vice
versa, changes in baselines and dilations began later than ini-
tially expected. In particular, baselines started to increase on
the last trial (3 seconds) before a switch and levelled off
around four trials (12 seconds) after the switch (Fig. 2a and
b). Generally, dilations decreased from one trial before (3 sec-
onds) until two trials after a switch (6 seconds) and then
returned to preswitch levels (exception: labor-to-leisure
switches did not show this effect in Study 2, potentially due
to measurement noise). Overall, changes in baselines and di-
lations were comparable between both switch types and across
both studies. Importantly, both baselines and dilations
returned to preswitch levels after a few trials, which was
reflected in that our linear mixed-effect models did not always
yielded a net change over the entire trial window (30 seconds).

The short-livedness of pupil changes is potentially relevant to
our evaluation of adaptive gain theory and network reset theory.
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In particular, adaptive gain theory predicts that for extended pe-
riods of exploration, pupil baselines are permanently high and
dilations permanently low. Such extended periods of exploration
may take the form of mind wandering, during which people may
plan for future activities (Kool & Botvinick, 2014). In line with
this idea, some studies found increased pupil baselines during
mind-wandering (Franklin, Broadway, Mrazek, Smallwood, &
Schooler, 2013), whereas others found lower baselines
(Grandchamp, Braboszcz, & Delorme, 2014; Konishi, Brown,
Battaglini, & Smallwood, 2017; Mittner et al., 2014; Unsworth
& Robison, 2016, 2018). Network reset theory, by contrast, pre-
dicts rapid adaptations around task switches. In this regard, our
data seem to be consistent with predictions derived from network
reset theory, as well.

Discoveries from exploratory analyses

Exploratory analyses suggested that individual differences in
pupil dilation changes around switches were correlated with
individual differences in self-reported action orientation. In
particular, participants with higher action orientation showed
smaller decreases in pupil dilation around switches from labor
to leisure, but larger decreases in pupil dilation around
switches from leisure to labor. This association might be plau-
sible when the neural processes reflected by pupil dilation
decreases help humans inhibit an old task mindset and prepare
a new one, as proposed by network reset theory. In this case,
inhibition and preparation are especially needed when going
back to labor, because labor is both effortful and returns re-
wards, but not when switching to leisure. One might speculate
that people who more selectively use their reorientation mech-
anisms in situations in which they are actually needed, i.e.,
when preparing an effortful task, also may approach chal-
lenges more proactively in everyday life.

In line with the latter line of reasoning, previous research
indeed found action-oriented individuals to use their working
memory capacity more effectively (Jostmann & Koole, 2007)
than state-oriented individuals. A similar association was re-
cently discussed for fluid intelligence (Hayes & Petrov, 2016),
suggesting that more intelligent individuals show stronger pu-
pil dilations compared to average-intelligent individuals in
challenging tasks (van der Meer et al., 2010), but weaker
dilations in simple tasks (Ahern & Beatty, 1979). However,
given that we did not predict this association a-priori, these
results should be considered exploratory, and our interpreta-
tion should be considered speculative, requiring further cor-
roboration by future work. It is worth noting that no such
correlations were found for differences in baseline increases.
The statistical power for these correlational analyses was quite
low in our study. Thus, future research is needed to clarify the
role of individual differences, with individual differences in
action orientation as a potential starting point.

Conclusions and future directions

Our results showed that the pupil dynamics that often are
thought to reflect shifts from exploitation to exploration also
occur in shifts from exploration back to exploitation. Our re-
sults also indicated that these pupillary changes were short-
lived; they disappeared within seconds. Although with cau-
tion, we suggest that pupillary shifts around task switches may
not reflect a motivational process (people wanting to take a
break) but instead a reorientation process (people preparing
for the new task).

A limitation of our approach is that we used research on
the exploration-exploitation trade-off to generate hypothe-
ses about the labor-leisure trade-off. As noted in the
Introduction, those two trade-offs might co-occur under
particular circumstances but are prima facie independent.
While the mapping of our tasks on the categories labor and
leisure is likely stable, the mapping on exploitation and
exploration might vary over time, e.g., when during the
leisure task, participants suddenly detect the chance to in-
dulge in a more abstract, intrinsic reward, such as a pleas-
ant memory of an event outside the task context. Thus,
more theoretical work—potentially using computational
modeling to estimate the dynamic values of different goals,
including extrinsic, monetary goals and intrinsic, more he-
donic goals—is needed to draw conclusions about when a
certain activity constitutes an exploitative option and when
not (Meyniel et al., 2013; Mittner et al., 2014).

Future research might more directly test whether chang-
es in pupil baselines and dilations are independent from the
motivational properties of tasks. Also, future research
might include control experiments that test whether the
same pupil changes occur when task switches are external-
ly induced (e.g., when participants see a countdown that
requires them to switch). Such a study could elucidate
whether externally induced switches (as classically con-
cerned by network reset theory) and self-directed switches
as implemented in our task share common mechanisms,
e.g., the updating of action policies. Finally, it might be
interesting to investigate further whether the magnitude
of pupil changes is moderated by the difficulty of an up-
coming task or by individual differences in action
orientation.
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